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. Abstract

> Geographically separated populations can convergently adapt to the same selection pressure. Convergent
s evolution at the level of a gene may arise via three distinct modes. The selected alleles can (1) have
+ multiple independent mutational origins, (2) be shared due to shared ancestral standing variation, or (3)
s spread throughout subpopulations via gene flow. We present a model-based, statistical approach that utilizes
¢ genomic data to detect cases of convergent adaptation at the genetic level, identify the loci involved and
7 distinguish among these modes. To understand the impact of convergent positive selection on neutral
s diversity at linked loci, we make use of the fact that hitchhiking can be modeled as an increase in the
o variance in neutral allele frequencies around a selected site within a population. We build on coalescent
10 theory to show how shared hitchhiking events between subpopulations act to increase covariance in allele
un  frequencies between subpopulations at loci near the selected site, and extend this theory under different
12 models of migration and selection on the same standing variation. We incorporate this hitchhiking effect into
13 a multivariate normal model of allele frequencies that also accounts for population structure. Based on this
1 theory, we present a composite likelihood-based approach that utilizes genomic data to identify loci involved
15 in convergence, and distinguishes among alternate modes of convergent adaptation. We illustrate our method
16 on genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate
17 the adaptation for copper toxicity tolerance in two populations of the common yellow monkeyflower, Mimulus
18 guttatus. We show that selection has occurred on an allele that has been standing in these populations prior
19 to the onset of copper mining in this region. Lastly, we apply our method to data from four populations
2 of the killifish, Fundulus heteroclitus, that show very rapid convergent adaptation for tolerance to industrial
a1 pollutants. Here, we identify a single locus at which both independent mutation events and selection on very
» young standing variation play a role in adaptation across the species’ range.

» 1 Introduction

2 Convergent adaptive evolution, where selection independently drives the evolution of the same trait, demon-
5 strates the impressive ability of natural selection to repeatedly shape phenotypic diversity (Losos, |2011)).
»% Many studies have revealed cases of repeated adaptation resulting from changes in the same molecular
» mechanisms across distinct lineages (Stern), [2013; [Wood et al., |2005)). Here, we use the term convergence to
s define all cases of repeated evolution of similar traits across independent lineages, and do not distinguish
2 between convergent and parallel evolution (Arendt and Reznick, [2008). In some cases, these convergent
s adaptive changes are identical at the level of the same orthologous gene or nucleotide (Martin and Or-
s |gogozo, 2013)), suggesting adaptation may be more predictable and constrained than previously appreciated.
2 Studying repeated evolution has long played a key role in evolutionary biology as a set of replicated natural
33 experiments to help build comparative arguments for traits as adaptations, and to identify and understand
s the ecological and molecular basis of adaptive traits (Harvey and Pagel, [1991)).

3 While we often think of convergent evolution among long-separated species, populations of the same
s (or closely-related) species often repeatedly evolve similar traits in response to similar selective pressures
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s (Arendt and Reznick], |2008). Convergent adaptation at the genetic level among closely related populations
;s may arise via multiple, distinct modes (see |Stern), 2013, for a recent review). Selected alleles present at the
s same loci in multiple populations can have multiple independent mutational origins (e.g. [Pearce et al. [2009;
« |Chan et al. 2010; Tishkoff et al. [2007). Alternatively, adaptation in different populations could proceed
a by means of selection on the standing variation present in their ancestor (e.g. |Colosimo et al., |2005; Roesti
« et all |2014), or a single allele spread throughout the populations via gene flow (e.g. |[Heliconius Genome
s |Consortium, [2012; [Song et all) 2011)). Understanding the source of convergent adaptation can aid in our
a understanding of fundamental questions about adaptation. Distinguishing among these modes may provide
s evidence for how restricted the paths adaptation can take are to pleiotropic constraints and if adaptation is
s limited by mutational input (Orr{2005, for review). Additionally, we can improve our understanding of the
« role of standing variation and gene flow in adaptation (Barrett and Schluter, |2008} [Hedrick, 2013; |Welch and
s |Jiggins| 2014).

" With the advent of population genomic data, it is now possible to detect genomic regions putatively
so underlying recent convergent adaptations. A growing number of studies are sequencing population genomic
51 data from closely related populations, in which some have potentially converged on an adaptive phenotype
2 (e.g. [Turner et al) |2010; [Jones et al. 2012). Population genomic studies of convergent evolution often
53 take a paired population design, sampling multiple pairs of populations that independently differ in the key
s« phenotype or environment are sequenced. These studies are usually predicated on finding large effect loci
ss  which have rapidly increased from low frequency to identify the population genomic signal of selective sweeps
ss shared across populations that independently share a selective pressure. Regions underlying convergent
sz adaptations can potentially be identified by looking for genomic regions where multiple pairs of populations
s are strongly differentiated (e.g. using Fsr) compared to the genomic background. Another broad set of
so approaches identify convergent loci by looking for genomic regions where the populations that share an
6 environment cluster together phylogenetically in a way unpredicted by genome-wide patterns or geography
o (Pease et al., 2016} |[Jones et al.l 2012). While these methods have proven useful in identifying loci involved
6 in convergent adaptation, currently there are few model-based ways to identify the signal of convergence in
63 population genomic data or to distinguish the different modes of convergent adaptation. In the case where
e an allele is shared due to adaptation from standing variation or migration, chunks of the haplotype on which
e the selected allele arose and swept on will also be shared among the populations (Slatkin and Wiehe, [1998;
6 |Bierne} |2010; [Kim and Maruki, 2011} |Roesti et al.l [2014), providing a useful heuristic for these modes to
o7 be distinguished from convergent sweeps from independent mutations. We also note there are a variety of
¢ approaches to detect introgression (see|[Hedrickl [2013 Racimo et al |2015; Rosenzweig et al., [2016), for recent
o reviews). However, these methods are not usually focused on detecting sweeps in both populations, but
7o rather look for signatures of unusual amounts of shared ancestry between populations. Here, we present
n  coalescent theory that leverages these signatures selection has on linked neutral variation in a model-based
22 approach. We extend this to a statistical method that utilizes genomic data to identify loci involved in and
7 distinguish between modes of genotypic convergence.

7 Positive selection impacts neutral diversity at linked loci due to hitchhiking (Maynard Smith and Haigh|
s [1974; Kaplan et all [1989) and can be modeled as an increase in the variance in neutral allele frequencies
7% around their ancestral frequencies. We develop coalescent theory to show how shared hitchhiking events
77 between subpopulations act to increase covariance in allele frequencies around their ancestral frequencies
7 at loci near the selected site, and extend this theory under different models of migration and selection
7 on the same standing variation. We incorporate this hitchhiking effect into a multivariate normal model
s of allele frequencies that also accounts for population structure, allowing for the application to data from
a1 many populations with arbitrary relationships. Based on this theory we present a composite likelihood-based
@ approach (Kim and Stephan,2002; [Nielsen et al., [2005; |Chen et al., |2010; Racimo, [2016) that utilizes genomic
s single-nucleotide polymorphism (SNP) data to identify loci involved in convergence, and distinguishes among
& alternate modes of convergent adaptation. As these models are also specified by relevant parameters, it is
s possible to obtain estimates for parameters of interest such as the strength of selection, the minimum age
s and frequency of a standing variant, and the source population of the beneficial allele in cases of migration.
87 This method should be of wide use with the increase in population genomic samples from across the
s geographic range of a species. Here, we illustrate the utility of our inference method by applying it to
s genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate the
o basis of the convergent adaptation observed across populations of the annual wildflower Mimulus guttatus to
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a1 copper contaminated soils from two populations sampled near Copperopolis, California (Wright et al., [2015)).
oo We find selection has been acting on standing variation shared between these populations for a tolerance
o3 allele present prior to the onset of copper mining in this region. To further exemplify the flexibility of our
o method, we study a more complex population scenario: the rapid adaptation of four populations of killifish
o (Pundulus heteroclitus) to high levels of pollution, sampled across the Eastern seaboard of the United States
o (Reid et al.l [2016). We find that even at the level of a single gene, both selection on very young shared
o7 standing variation and convergent mutation have played a role in adaptation in this species.

« 2 Models

o In the following section, we present models for the three modes of genotypic convergent adaptation: (1)
w0 multiple independent mutations at the same locus, (2) selection on shared ancestral standing variation, and
1 (3) migration between populations spreading a beneficial allele. Throughout this section, we compare our
102 derived expectations to coalescent simulations using mssel, a modified version of ms (Hudson, 2002) that
103 allows for the incorporation of selection at a single site. This simulation program takes as input the frequency
w4 trajectory of the selected allele for each population. We specify stochastic trajectories of the selected allele
s in populations following our three modes of convergence (see Appendix for simulation details). We
ws focus on a set of four populations as shown in Figure [I] where populations 2 and 3 are adapted to a shared
w7 novel selection pressure and populations 1 and 4 are in the ancestral environment. The average coancestry
ws coefficient values across simulations, estimated as described in Appendix are plotted for 100 bins of
w0 recombination distance away from the selected site, which occurs at distance 0. The results for all three
1o models are shown in dashed lines in Figure

m 2.1 Null Model

12 We aim to model the variances and covariances of the neutral allele frequencies within and between popula-
us  tions due to convergent sweeps. First, we must specify a null model that accounts for population structure.
s Populations will have some level of shared deviations away from an ancestral allele frequency, €, due to shared
us  genetic drift. Let x; represent the present day allele frequency in population i (Figure . We denote the
us  deviation of this frequency from the ancestral frequency by Az; = x; —e. Genetic drift, in expectation across
ur  loci, does not change the population allele frequencies (i.e. E[Az;] = 0) as an allele increases or decreases
us in frequency with equal probability. Drift however does act to increase the variance in this deviation across
e loci, with this variance increasing as more time is allowed for drift. The variance in the change of neutral
120 allele frequencies in population i is

Var[Az;] = E[Az?] = (1 — €) fi; (1)

w1 where f;; can be thought of as the genetic drift branch length leading from the ancestral population to
122 population i (Nicholson et al., [2002), specifying how much allele frequencies in population i deviate from
123 their ancestral values (Figure. By rearranging Equation fii can be interpreted as the population-specific
s Fgp for population 4 relative to the total population, here represented by the ancestral population (Wright,
15 |1943] 11951 [Weir and Hill, |2002; [Nicholson et al., 2002)).
126 Populations covary in their deviations from e as some populations are more closely related due to shared
127 genetic drift resulting from shared population history or gene flow. The covariance in this deviation between
128 populations ¢ and j is

Cov[Az;, Azx;] = E[Az;z;] = €(1 —€) fij (2)

120 where f;; is interpreted as the coancestry coefficient between populations ¢ and j, and can be thought of as
130 the shared branch length connecting ¢ and j to the ancestral population (Figure [1f).

131 Other natural interpretations of f;; and f;; follow from these definitions. Specifically, these values are
132 probabilities of a pair of lineages being identical by descent relative to the ancestral population, i.e. the
133 probability two sampled lineages coalesce before reaching the ancestral population (see|Thompsonl [2013] for
13 arecent review). We briefly review this coalescent interpretation in Appendix For f;; these two lineages
135 are sampled both from population . For f;;, one lineage is sampled from population ¢ and the other from
s population j. We note that in practice we do not get to observe the ancestral frequency, nor may the history
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137 of our populations be well represented by a tree-like structure. However, for the sake of clarity, we proceed
18 with these assumptions and deal with these complications in the implementation of the method.

fn ¢
J12 f34
Figure 1: Present day population allele frequencies at a given neutral locus (z1—x4 for populations 1-4,
respectively) are derived from ancestral allele frequency e. FEach population has a coancestry coefficient
proportional to the amount of drift experienced since the split from the ancestral population. fi; is shown
for population 1. Here, populations 1 and 2, and 3 and 4 share drift relative to the ancestral population and

have nonzero coancestry coefficients fio and f34, respectively. Blue diamonds represent the novel selective
environment and red circles the ancestral environment.

We define a matrix, F, for K populations as a K x K matrix of coancestry coefficients. For example, for
the four populations shown in Figure [} this matrix takes the following form:

fir fiz 0 0
P iz foz 0 0
0 0 fiz faa
0 0 faa fu

10 Populations ¢ and j that split after the ancestral population and share no additional drift (e.g. populations
w 1 and 3) have f;; = 0 by definition.

w 2.2 Incorporating selection

12 Positive selection impacts neutral diversity at linked loci due to hitchhiking. As the beneficial allele increases
13 rapidly in frequency, so does the haplotype on which it arose. Neutral alleles further from the selected site
s may recombine off the selected background during the sweep, whose duration depends on the strength of
s selection. The effect of hitchhiking on the changes of linked neutral allele frequencies is similar to that of
s genetic drift. Hitchhiking does not alter the expected frequency change of linked neutral alleles across loci
w (l.e. E[Ax;] = 0) because the selected mutation arises on a random haplotypic background. Moreover,
us  Hitchhiking increases the variance in the deviation in neutral allele frequencies away from their ancestral
1o values (Var[Az;]) at linked sites (Gillespie, [2000). Shared hitchhiking events between subpopulations will
150 act to increase covariance in allele frequency deviations between subpopulations (Cov[Az;, Azx;]) at loci
11 near the selected site. This effect of hitchhiking on linked diversity,within and among populations gives us
12 a way to distinguish among alternate modes of convergent adaptation.

153 We define new matrices of coancestry coefficients that incorporate selection in addition to drift as F),
15« In the following section, we use a coalescent approach to derive coancestry coefficients within and between

155 populations, fi(is) and f i(f), for the three modes of genotypic convergent adaptation (Figure . In Appendix
156 we derive some of the same results forwards in time to help guide the reader’s intuition. Note that all
157 our models of selection are phrased in terms of distortions to the neutral matrix F; therefore, the precise
158 source of the neutral population structure (e.g. whether its due to shared population history or migration)
10 is relatively unimportant to our approach. A deeper knowledge of the basis of this structure does add to the

1o interpretation of the results, as we explain in the discussion.
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(a) Independent mutations model (b) Standing variant model (c¢) Migration model

Figure 2: Trajectories of the beneficial allele (red) for the three modes of convergent adaptation. Populations
i and j are under selection with present-day allele frequencies x; and x; at a neutral locus, derived from an
ancestral population with allele frequency e. The populations share some amount of drift proportional to f;;
before reaching the ancestral population. Beneficial mutations, indicated by the orange triangles, occur
independently in the selected populations after they have become isolated. Selection begins, indicated by the
blue triangles, once the beneficial allele is present in the population. The beneficial allele sweep to fixation
in ts generations. The beneficial allele is standing at frequency g in the ancestral population. After the
selected populations split, it is still standing at frequency g for ¢ generations prior to the onset of selection.
The beneficial allele arises in population ¢ and begins sweeping in population i. Meanwhile, there is a
continuous low level of migration from population 7 into population j. The beneficial allele establishes in j
after § generations, where it is swept to fixation in t, generations.

w1 2.2.1 Independent mutation model

12 We first consider the case when a beneficial allele arises independently via de movo mutations at the same
163 locus, or tightly linked loci, in both of the selected populations. We expect hitchhiking to increase the
16« variance in neutral allele frequency deviations around the selected site in both populations. However, as the
s sweeps are independent and there is no gene flow between populations during or after the sweep, we expect
16 10 covariance in the neutral allele frequency deviations between these populations, beyond that expected
17 under neutrality due to shared population history prior to the introduction of the beneficial allele.
168 Moving backward in time, sampled neutral lineages linked to the selected site will be forced to coalesce
1o if both lineages do not recombine off the sweep. We define the probability that a single neutral allele fails to
o recombine off the background of the beneficial allele during the sweep phase as y, which we can approximate
171 as

Yy~ e el (3)

2 where r is the recombination rate between the neutral locus and selected site, and ¢4 is the amount of time
s the sweep phase takes (Figure . When the beneficial allele arises from a new mutation and selection is
e additive, ¢ & 2log(4N,s)/s, where s is the selection coefficient for the heterozygote, such that heterozygotes
s experience a selective advantage of s and homozygotes 2s (Gillespie, [2000; [Barton, |1998). The factor of 4N.s
e is due to the fact that our new mutation, if it is to establish in the population, rapidly reaches frequency
v 1/(4N,s) in the population and then increases deterministically from that frequency (Maynard Smithl (1971}
s |Bartonl [1998; [Kim and Nielsen, [2004)).

179 The coancestry coefficient in population ¢ that experiences a sweep, fi(is), is defined as the probability
1o that two lineages sampled from population ¢ coalesce either due to the sweep phase or neutrally before
1w reaching the ancestral population. With probability »2, both lineages fail to recombine off the beneficial
12 background during the sweep, and they will be forced to coalesce. If one or both lineages recombines off the
13 sweep (with probability 1 — y?), they can coalesce before reaching the ancestral population with probability
184 fi;. Combining these we find

fi(f) = y2 +(1— y2)f“ (4)
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(b) Standing variant model

Figure 3: We calculated the average coancestry co-
efficient values across 1000 runs of simulations for
each of 100 bins of distance away from the selected
site to compare our simulation results (dashed lines)
to our theoretical expectations (solid lines). (3a))
Average coancestry coefficients under the indepen-
dent mutations model (N, = 100,000) within a se-
lected population (population 2) with varying s. Also
shown is the coancestry coefficient between selected
populations which in this case is 0, the neutral ex-
pectation. (3bl) Coancestry coefficients under the
standing variation model between selected popula-
tions with varying amount of time beneficial allele
has been independently standing in populations (t).
The coancestry coefficient within a single population
is also shown for ¢ = 50. For all, N, = 10,000,
g = 0.001,s = 0.01. Coancestry coefficients un-
der the migration model, within both selected popula-
tions (source population 2 and recipient population 3)
as well as between source and recipient (2,3) and be-
tween recipient and a non-selected population (1,3).
Here we are showing one set of parameters (s = 0.01,
m = 0.001, N. = 10,000) as estimates do not vary

dramatically with changing m (see [Figure S2J).
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185 For the coancestry coefficient between two selected populations ¢ and j, we can calculate the probability
16 two lineages, one sampled from population ¢ and the other from population j, coalesce. When the sweeps
17 are independent, the lineages can only coalesce with probability f;; before reaching the ancestral population,
18 as they have no probability of coalescing during the sweep phases which have independent origins. Thus,

) = fi (5)

189 Comparison to simulated data In Figure we show the case of convergence due to independent
10 origins of the beneficial allele. As we predicted there is no additional coancestry between the selected
11 populations. Additionally, we show how the coancestry within a selected population decays with distance
12 from the selected site for a range of values for the strength of selection. These coancestry values decay to the
13 neutral expectation at other regions of the genome. With larger s, this decay is slower as the sweep occurs
s more rapidly and there are fewer chances for recombination to occur during this time.

s 2.2.2 Standing variant model

16 We turn now to the case of a sweep shared between populations ¢ and j due to selection acting on shared
17 ancestral variation (Figure . Our model is appropriate for cases where the standing variation from which
18 the sweep arises was previously neutral or was maintained in the population at some low frequency by
109 balancing selection. Let the beneficial allele be standing at frequency ¢ in the ancestral population. We
20 assume that the beneficial allele frequency does not deviate much from that of the ancestral population such
21 that it is still g in the daughter populations prior to selection. Selection favoring the beneficial alleles begins
22t generations after the populations split and the beneficial allele reaches fixation in both populations after
203 ts generations (see Figure .

204 We first consider the coalescent process of two lineages within a single selected population. Again, y is
205 the probability that a neutral lineage fails to recombine off the background of the beneficial allele during
206 the sweep phase. Given that the beneficial allele is increasing from frequency g, y takes the same form as
21 Equationd] where now ¢, ~ 2log(1/g)/s. If both lineages fail to recombine off the beneficial background
s during the sweep, there is a probability of coalescing during the standing phase that is higher than the
200 probability of two neutral lineages randomly sampled from the population coalescing. Following from our
20 assumptions during the standing phase, the rate at which two lineages coalesce within a population is
a1 1/(2N.g) per generation. Alternatively, a lineage can recombine off in the standing phase onto the other
a2 background with probability (1 — g) =~ r per generation. As these are two competing exponential processes,
a3 the probability two lineages coalesce before either recombines off the beneficial background can be simplified
24 to

1

P(coalesce in standing phase) = 15 aNra
elg

(6)
a5 as described by Berg and Coop| (2015). If either neutral lineage recombines off the beneficial background
26 before they coalesce, the probability of coalescing with the other lineage before reaching the ancestral popu-
a7 lation can be treated as the coancestry coefficient associated with that particular portion of the population
218 tree.

210 Taking these approximations into account, we derive a coancestry coefficient for a neutral allele in pop-
20 ulation i that experiences selection from standing variation as

() _ 2 1 ANerg 1 2V f 7

19 =0 (s + T i) + (=) )

a1 The first term corresponds to both lineages failing to recombine off the beneficial background during the
2 sweep phase, which puts them both on the same background as the beneficial allele in the standing phase.
»3 Now, the two lineages can either coalesce in the standing phase or recombine off of the background of the
24 beneficial allele where they can coalesce neutrally before they reach the ancestral population. Alternatively,
25 one or both lineages can recombine off during the sweep phase and again they can coalesce neutrally.

226 Populations that share a sweep due to shared standing ancestral variation will have increased covariance
27 in the deviations of neutral allele frequencies around their ancestral means around the selected site since
»s  they will have a shared segment of the swept haplotype. From a coalescent perspective, this occurs because
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29 two lineages sampled from each population have a higher probability of coalescing if they stay on the
20 beneficial background during the sweep and standing phases than two lineages sampled randomly between
2 the populations.

23 The probability that a single lineage does not recombine off onto the non-beneficial background during
23 the standing phase for ¢ generations can be approximated as

re=1—-r(l—g) ~e™ (8)
234 The coancestry coefficient between populations 7 and j is now
s 1 4N,rg
fi(j =y (7}2 (1 T iN.rg 1IN Tgfij + (=) fij ) + (=) fij- (9)

235 This derivation follows from that of fi(s )

;/ in Equation |7, but now incorporates the additional probability r?
26 of both lineages failing to recombine off the beneficial background during their independent standing phases
27 for time ¢.

238 These results hold when we have a simple tree as in Figure However, for more complex models, it
239 18 necessary to incorporate a model that has the standing allele spreading by migration from some source
20 population to recipient populations ¢ generations in the past. See for details. This model differs from the
2 migration model presented in the next section in which we assume a continuous rate of migration throughout
2 the duration of the sweep and that the variants sweep as soon as they are established in the population. In
23 this standing case with a source of the standing variant, moving backwards in time we assume that the allele
2a  is standing for ¢ generations in a population after the sweep and before the beneficial lineage migrates back
25 instantly into a specified source population (see Figure . This is done to formally specify the changes
us in coancestries between selected and non-selected populations as well as between selected populations when
27 there are multiple pairs to generate self-consistent covariance matrices. Biologically, it naturally captures
xus the case where the allele is shared between the populations due to migration but is standing for sometime
xuo  before it sweeps.

20 Comparison to simulated data In Figure 3D we show comparisons of simulations to show the fit of
1 our predictions to simulations with adaptation from standing variation. As the duration of the independent
» standing phases, t, increases, the coancestry at linked neutral alleles between selected populations decreases.
»3  Forward in time, this has the interpretation that the longer the beneficial allele is standing in the populations,
»s  the shorter the shared haplotype between the populations will be due to independent recombination events
5 before selection begins. In the case that the beneficial allele has been standing for a very long time (t — 00)
»6  before selection occurs, this additional covariance will reduce to zero as in the independent sweeps case
s (Equation . Conversely, if the standing variant is very young (¢ — 0), the decay in covariance between
s populations takes the form of the variance within populations (Equation [7]) which, as we will see in the next
20 section, looks similar to the pattern generated under the migration model.

w0 2.2.3 Migration model

% We now consider the case where the selected allele is spread across sub-populations by migration. This
% scenario has been studied by a number of authors (Slatkin and Wiehe, [1998; |Santiago and Caballero, 2005}
%3 [Kim and Maruki, 2011)), and our approach here follows similar lines to that of Kim and Marukil (2011)). Let
xs  there be a single origin of the beneficial allele, which occurs in population i. We assume a low, continuous level
%5  of migration during the sweep, with a proportion m of individuals in population j coming from population
26 ¢ each generation. We say the sweep began in population j at time ts generations in the past and at time
27 ts + 0 for population i (Figure . Kim and Maruki| (2011 found that the mean delay time, §, between the
%68 two sweeps can be approximated by

~ élog (1 + %) . (10)

%0 The coancestry coefficient of the source population, fi(is), follows that of a population experiencing an
a0 independent sweep from new mutation (Equation . To derive the coancestry coefficient of the recipient
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on population, f;f), we first need to consider the fate of two lineages sampled in population j at the selected
. site. Two events can occur if we trace the lineages of two beneficial alleles back in time: either the two
a3 lineages coalesce in population j and a single lineage migrates back into population ¢ or the two lineages
aa independently migrate back into the source population and coalesce there. We define the probability of these

a5 two events as @ and 1 — @, respectively. We use the approximation

1

~ 11
@ 1+4Nm (11)

x6  (see [Pennings and Hermisson, 2006). Assuming m is small, such that a beneficial allele sampled at present
a7 day in population j migrates back into population ¢ approximately ¢, generations in the past, the probability
a - of a linked neutral allele recombining off during the sweep phase in population j can be approximated by y.
a0 If the lineage migrates back into population i before it recombines off the beneficial background, there is an
20 additional time § in population i for recombination to happen. So, there is an additional probability, e~"?,
s of recombination of our linked neutral allele off the beneficial background.

282 Thus, the coancestry coefficient for the recipient population is now

15 = Qv+ 1 =A85) + 1= Q) (v + (A =+ 20 —yyfiy + (1= 9)f5)  (12)

283 The terms in this approximation correspond to the following coalescent scenarios: First, if two lineages
2 sampled in population j coalesce before migrating (with probability @), then linked neutral alleles can
25 coalesce either during the sweep if neither lineage recombines off the beneficial background or neutrally if
26 either lineage recombines off. Alternatively, if the two lineages fail to coalesce before one or both migrates
2w (w.p. 1 —@Q), there are four ways linked neutral alleles can coalesce:

288 1. Both lineages fail to recombine off the beneficial background during the sweep and are forced to
289 coalesce during the sweep in population i. The factor e~ 2" represents the additional opportunity for
200 recombination when both lineages have migrated back into population 1.

201 2. Both lineages stay on the beneficial background in population j (w.p. %?) but one or both lineages

202 recombines off in population i (w.p. 1 —e~2") and they coalesce neutrally in the source population
203 with probability f;; before reaching the ancestral population.

200 3. Either lineage recombines off the beneficial background while it is still in population j and the two
205 lineages coalesce neutrally in the shared drift phase of populations i and j, with probability f;; before
206 reaching the ancestral population.

207 4. Both lineages recombine off during the sweep phase while they are still in population j and they coalesce
298 neutrally with probability f;;.

200 When a beneficial allele is shared between populations i and j via migration, there will be additional

s0 covariance in the deviations of linked neutral allele frequencies from their ancestral means. In this case,
sn  there are three ways a lineage sampled from population ¢ and a lineage sampled from population j can
sz coalesce. They are forced to coalesce during the sweep if both lineages fail to recombine off the background
33 of the sweep, which occurs with probability y?e~". Alternatively, the lineage sampled in population j can
s recombine off the beneficial background before it migrates back to source population i, in which case the
s lineages can coalesce neutrally before reaching the ancestral population in their shared drift phase, with
w6 probability f;;. Lastly, if the lineage sampled in population j migrates back into population 7 then the
7 two sampled neutral lineages can coalesce neutrally in population ¢ with probability f;; if the lineages don’t
w8 coalesce due to the sweep (i.e. either recombines off in time tg or 4). Thus, in the case of continuous
0 migration the coancestry coefficient between the source and recipient population is

1 =y (L= ) foy +y(L—ye ) (13)

310 To fully specify the coancestry matrix with selection, we need to take into account the effect migration
asu has on non-selected populations. Specifically, the coancestry coefficients between recipient and non-selected
a1z populations are impacted since there is some probability linked neutral lineages will migrate from the recipient
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a3 population into the source population backwards in time. Let population k£ be a non-selected population.
s Now, the coancestry coefficient between populations j and k can be expressed as

£ ==y fix+yfa (14)

315 This is informative about the direction of migration. First, there is no impact of selection on the re-
a6 lationship between the source and non-selected populations. Additionally, the sweep shared via migration
s will induce additional coancestry between j and k if k is more closely related to our source population (e.g.
as  population 1 in Figure [1] if population 2 is the source). The opposite is true if k is more closely related to
a0 our recipient population (e.g. population 4). Now, there is a deficit in the background level of coancestry
0 between populations j and k near the selected site.

s Comparison to simulated data In Figure|3c| we show our results above compared to simulations with
s2 migration, for a single set of parameters (s = 0.01, m = 0.001). Here, we have migration occurring from
33 population 2 into population 3. We show the four relevant coancestries as a function of distance from the

2¢  selected site: the covariance within source ( 2(;3 )), within recipient ( fég )), between source and recipient ( 2(5 )),

»s  within recipient and a non-selected population ( g )). We see the coancestry within the recipient population
s decays more rapidly than coancestry within the source population. This fits our expectations as there
a7 is some probability a lineage will, backwards in time, migrate back to the source population, decreasing
s the probability of coalescing before reaching the ancestral population when m is small. As m increases,
39 this relationship changes . We also see increased coancestry near the selected site between the
30 selected populations. The pattern of decay varies from that observed in our standing variation model,
s except for when ¢ is small. Additionally, we see increased coancestry between the recipient population and
s a non-selected population that decays with recombinational distance to their neutral expectation. Note,
;3 the reverse, coancestry recovering to the neutral expectation with recombinational distance is observed for
13¢  populations that initially are more related to the recipient population (i.e. population 4), is also seen (Figure
s [53a)). The coancestries between the source population and non-selected populations are unaffected (Figure
s [S3b]). Together, these observations using information from non-selected populations help distinguish possible
s source populations.

s 3 Inference

30 We have described how selection at linked loci affects the matrix of coancestry coefficients, allowing us to
uo parameterize the variance and covariance in neutral allele frequency deviations within and between popu-
s lations. To estimate the likelihood of our data under convergent adaptation models, we need a probability
a2 model for how allele frequencies depend on these variances and covariances. Neutral allele frequencies across
w3 K populations can approximately be modeled jointly as a multivariate normal distribution around the an-
sa  cestral allele frequency, e, with covariance proportional to the coancestry coefficients (Nicholson et al., 2002}
ss  |Weir and Hilll 2002 (Coop et al.l [2010; [Samanta et al., |2009). Specifically,

T~N (ef, e(1 — e)F) (15)

us where X is a vector of population frequencies and F is the K by K matrix of coancestry coefficients without
ur  selection.

s Above we demonstrated that we can generate coancestry matrices F®) to explain the coancestry between
uo  multiple populations due to neutral processes and various modes of convergent adaptation. F®) is a function
30 of the neutral coancestry, (F) the model of convergence (M) and its parameters (©,7), and the recombination
s distance a neutral site is away from a selected site (r;). Thus, modeling neutral allele frequencies as multi-
2 variate normal with covariance proportional to this new coancestry matrix, we can calculate the likelihood
3 of observed data a given distance away from the selected site under a specific model of convergence as

P(zy|r, F, M, ©Op) %N(fl laT, (1 —e)FS (ry, F, M, 9M)> (16)

10
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354 In practice, we do not know the true ancestral mean at a given locus, ¢;, so we use the mean of the
s present day population allele frequencies and calculate likelihoods of mean-centered allele frequencies and
6 coancestry matrices (we account for this mean centering in appendix . We also do not know the true
7 neutral coancestry matrix, F, but estimate it from deviations of allele frequencies from sample means across
s the entire genome. We also incorporate the effects of sampling into this variance-covariance matrix. See

0 appendix for details.

w 3.1 Composite likelihood framework

s We calculate the likelihood of all data (D) in a large window around the selected site (¢) under a given
s model of convergent adaptation (M), with its associated parameters (O,s), as the product of the marginal
33 likelihoods for sites all distances away from the selected site. This composite likelihood is used as an
¢ approximation to the total likelihood of all sites, but is not a proper likelihood as neighboring sites are
ss  correlated due to shared histories. Moving Lies; sites to the left of the proposed selected site and Lyigne sites
6 to the right,

Liett Lyight
Lo(M, Oy Do) = [[ P(@: | MJES) (i, F, M, O)) [] P | FSP (. Fo M, ©a) (17
i=1 j=1

s7 where r; is the genetic distance from site ¢ to ¢, and similarly for r;. We can also obtain a composite
ss  likelihood of our data under a neutral model (N), Lo(N; Dy), which is only parameterized by F. This
w0 framework enables us to:

370 1. Identify the maximum likelihood location of the selected locus in a region by varying the location of the
an proposed selected site. For a given region and model of convergent adaptation we vary the location of
372 the selected site, taking the maximum composite likelihood over a grid of parameters. We take as our
373 best estimate of the location under a given model of convergence, the maximum composite likelihood
374 location of the selected site (E =argmaxz Lo(M, O Dg)).
, Om
w75 2. Determine the parameter(s) which maximize our composite likelihood estimates under a given model
376 at a given location of the selected site (£). We obtain these maximum composite likelihood estimate
377 (MCLE) parameters by evaluating the composite likelihood across a grid of parameters for a given
378 location of the selected site (61\\4 =argmax Lo(M, O Dg)).
M

379 3. Distinguish between modes of convergence, and neutrality, in a genomic region by comparing the
380 maximum likelihood under various models of convergent evolution. At a given location of the se-
381 lected site (¢) we compare the maximum composite likelihood of each model to the neutral model

3

@
o

<1Og (Lo(M, Onr; Dy)/Le(N; De))>~

383 This composite likelihood ignores the correlation in allele frequencies (linkage disequilibrium) between
s neutral sites so the composite likelihood surface will be too peaked. A number of authors have taken
s composite likelihood approaches to inferring a range of population genetic parameters (e.g. [Hudson| (2001);
s see|Larribe and Fearnhead| (2011)); [Varin et al.| (2011)) for a broader statistical views on composite likelihood).
sz In the setting of inferring genome-wide parameters, e.g. parameters of neutral demographic models, the
s maximum composite likelihood parameter estimates are known to be consistent in the limit of many unlinked
0 genomic regions (Wiuf, |2006). While in general composite likelihood methods perform well, in all of these
w0  settings typical measures of uncertainty of parameters (confidence intervals) and model choice methods (e.g.
sn AIC) are undermined due to the over peakiness of the likelihood.

302 Composite likelihood approaches have also been used in the context of selective sweeps, starting with
33 |Kim and Stephan! (2002) who take a composite likelihood formed like Equation|17|of the product of marginal
3¢ probabilities of allele frequencies within a single population moving away from a proposed selected site (an
a5 approach expanded on by |[Kim and Nielsen| 2004} Nielsen et al., 2005} |Chen et al., 2010} [DeGiorgio et al.l
ws  2014; [Racimol |2016]). Our method is most closely related to that of |(Chen et al| (2010) and Racimo, (2016)
w7 who look at allele frequencies across two or three populations respectively, and look for the signal of a sweep

11
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38 in one of the populations (or in the case of [Racimo}, [2016] in the ancestor of a pair of populations). We note
w0 that we have a further layer of abstraction over these previous composite likelihood methods. Extending Kim
wo Jand Stephan| (2002)), previous methods have calculated the likelihood of the sample frequency considering
w1 & binomial draw from some underlying population frequency, which is naturally modeled as being bounded
w2 between 0 and 1. We, however, use a multivariate normal likelihood to model our sample frequencies, which
w3 does not bound allele frequencies between 0 and 1. This further abstraction is justified by the fact that by
ws  using the multivariate normal approach we are able to handle arbitrarily large number of populations with
ws arbitrary population structure and to flexibly model different forms of selection into an easily extendable
ws form to the covariance matrix. Future work could potentially concentrate on hybrid approaches, combining
w7 the flexibility of our approach with the realism of previous approaches.

0 3.2 Inference method on simulated data

wo  To test our method, we utilized the datasets generated using mssel (as discussed above with details in
a0 Appendix to see if we could recover the parameters and convergent mode used for simulation. The
a1 neutral coancestry matrix F was estimated using data from 1000 runs with no selection (as described in
a2 Appendix. We assume that the model parameters N, and r are known and we set these at the values used
a3 to generate the simulations. We calculated the composite log-likelihoods for each of the simulated datasets
ae  under the following four models: neutral (no selection), independent sweep model, standing variation model,
a5 and migration model with the beneficial allele originating in population 2. We calculate the likelihoods
a6 under a dense grid of selection coefficients (s), migration rates (m), and standing times (¢). In the standing
a7 variation model, the standing frequency (g) is held at 0.001. See Appendices and for details.
as We repeat this procedure for each of 100 runs of all simulated datasets. To compare between models, we
a9 calculate the composite log-likelihood differences between the true model and all other models including
20 the neutral model, at the maximum composite likelihood parameter estimate (MCLE) obtained under each
a1 model.

22 3.2.1 Parameter estimation

»3  Location of selected site To explore our method’s ability to localize the selected site, we vary the true
w24 location of the selected site simulating under the independent mutation model. We estimate the maximum
w5 composite likelihood location under the independent sweep model over a fine grid of locations and selection
w6 coefficients. The method is able to correctly identify the location of selection (Figure , with higher
w27 accuracy when the true location of the site is in the middle of the window. The method does show an edge
w8 effect when the true location of the selected site is at the edge of the region of interest perhaps because we
w29 do not get to see the decay of coancestry on both sides of the selected site. Additionally, we are able to
a0 correctly estimate the strength of selection while allowing the location of the selected site to vary
and there is no correlation between these joint parameter MLCEs (Figure S1bj).

431

22 Independent mutations model To verify our ability to recover the selection coefficient, we simulated
a3 under the independent mutation model for a range of values for s, holding the location of the selected site
¢ at its true value. We are able to recover the parameters used for simulation (Figure . The ability to
a5 correctly estimate s breaks down for large enough s, given a fixed window-size around the selected site and
s Tpp, since we will not observe the full decay in coancestry.

.7 Standing variant model To explore our inference using the standing variant model, we hold the location
ss  of the selected site at its true location and take as our estimate of s and ¢ their values at the joint maximum
a0 composite likelihood. Under the standing variant model, we are again able to accurately estimate s (Figure|
w0 [S6). The inference of s and g simultaneously is somewhat more confounded (Figure [5)). How the signal of
a1 the sweep within populations decays, as we move away from the selected site, is primarily determined by s
w and g (see Equation . While a higher frequency of the standing variant (g) can lead to a quicker decay,
w3 this can be partially compensated for the strength of the sweep being stronger (higher s, lower ;). This
aas  explains the J-shaped ridge in the likelihood surfaces for s and g, seen in Figure |5l Therefore, in practice
ws  we can often infer a lower bound s and an upper bound for g, but not find the precise values of each when

12
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us inference is performed under the standing variation model. We are able to accurately estimate the time the
w7 beneficial allele has been standing in the independent populations prior to selection, ¢, as shown in Figure
a8 Our inference of t is relatively free of confounding with s and g, as t primarily governs the decays in
wo  coancestry between populations, making it separable from the scale of the sweep within populations.

w0  Migration model We explored our inference under the migration model of parameters m and s, again
s fixing the location of the selected site and taking the joint maximum composite likelihood estimate. We are
w2 able to correctly estimate s (Figure S4b)). However, we obtain poor estimates of the rate of migration, m
453 . This is perhaps unsurprising as the coancestry coefficients under the migration model depend
s only weakly on m. We obtain fairly bimodal estimates of m that are usually either very low (107> to 1073)
5 or high (1). As the true value of m increases, we see fewer estimates of small m and more estimates of m = 1.
s These estimates of m seem to be a true reflection of the patterns in the simulated datasets. Specifically, this
w7 effect is mostly observed in the variance within the recipient population as Equation depends on m in
s both @ and 0. High m estimates correspond to datasets with lower empirical levels of coancestry within the
w9 recipient than datasets where low estimates of m were obtained . We believe that the bimodality
w0 results from stochasicity in how many lineages ancestral to the sample migrate before they recombine off the
w1 sweep in the recipient population. While our estimates of m are noisy, the migration model does capture
w2 key features of the spread of adaptive alleles by migration, allowing it potentially to be distinguished from
w3 other modes of convergence. We now turn to the performance of the method in distinguishing modes of
w4 COMVErgence.

13
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(c) MCLE of the standing time (t) for 100 simulations
under the standing variant model (10 chromosomes
per population, N. = 10,000, s = 0.01, g = 0.001).
For scale, we left out estimates of ¢ > 15,000 (2, 9,
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Figure 4: Maximum composite likelihood parameter estimates calculated under model used for simula-
tion. We vary the true value of the parameter used for simulations along the x-axis and show the MCLE for
each of 100 simulations (points). Crossbars indicate first and third quartiles with second quartiles (medians)
as the horizontal line. The true values of the parameters are marked with dashed, black lines.
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Figure 5: Composite log-likelihood surface of the strength of selection (s) and the frequency of standing
variant (g) for three simulations (with N, = 10,000, ¢t = 500, g = 0.001, s = 0.01) to exemplify confounding
of s and g under the standing variant model. Blue diamond pluses represent the true location of the
parameters used for simulation. Blue circles represent MCLE.

ws  3.2.2 Model comparison

ws To test the ability of our method to distinguish between modes of convergence, we calculated the maximum
w7 composite log-likelihood of 100 simulations for each dataset generated under both the true model and all
ws other models with a fixed, fine grid of parameter values. The location of the selected site is fixed at its true
ws location. The results are summarized in Figure [6] which shows histograms of the difference in maximum
a0 composite log-likelihoods calculated under a given model relative to the true model used for simulation. For
o example, in evaluating the independent mutations model, we present the difference in the composite log-
a2 likelihoods calculated for data simulated under the independent mutations model for all other models and
a3 the composite log-likelihood calculated for the true independent mutations model. Thus, values less than
s zero indicate that the correct model has a higher maximum composite log-likelihood than the true model.
a5 Conversely, values greater than zero indicate the incorrect model of convergence has a higher composite
as  log-likelihood than the true model. For inference under the migration model, we fix the source to be the
ar true source of the selected allele when simulating under the migration model, and to an arbitrary one of the
s two selected populations when performing inference on simulations under other models.

aw  Neutral model We first compare the composite likelihoods calculated for data generated with no selection.
w0 For the selection models, we fix the location of the selected site. The distributions of the resulting composite
s log-likelihood ratios are shown in Figure [6al As expected for a composite likelihood, the composite log-
sz likelihood ratio between a convergent selection model and the neutral model with no selection are inflated
s compared to those expected under the usual asymptotic x? distribution. However, these likelihood ratio
waa  differences are relatively small compared to those we observed when simulating under alternative models.
ss 'This is because when s — 0 in all models with selection, the coancestries converge to our neutral expectations.
s Indeed when we look at the MCLE for the strength of selection (§) under the incorrect models with selection,
w7 we see that for all nearly simulations § is close to zero 0 (Figure . Overall, this suggests that our null
s model is reasonably well calibrated, given the limitations of composite likelihood schemes.

#s Independent mutations model As shown in Figure [6b] we are able to correctly distinguish between
s a neutral model of no selection and the true independent mutation model by at least 160 composite log-
s likelihood units even for relatively weak selection (s = 0.005). This difference increases as the true value of
w2 s increases. This same relationship is true when comparing the migration model to the true independent
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w3 mutation model. Therefore, we have good ability to distinguish the independent sweeps model from neutral
w0 and migration model over a range of selection coefficients.

a0 Our ability to distinguish between the standing variation model and the true independent mutation model
ws 18 less clear. When the true s is small, the two models have comparable composite log-likelihoods, with
w7 differences ranging from -3 to 20. This difference decreases, with higher likelihood for the true independent
w0 mutation model more frequently, as s increases. This result makes sense when we look into the maximum
a0 likelihood estimate of the parameter ¢ (Figure . We obtain estimates of ¢ approaching our highest
so  value on the grid (10%). Thus, we may not be able to distinguish between the cases where the origins of
s the beneficial allele are truly independent or whether selection has been on a single variant that has been
s standing independently for a long time as these two models converge for large t.

s3 Standing variant model Simulating under the standing variation model, the picture is more complicated.
se  Like the other models, we can exclude the neutral model, although note that this would become challenging
sos  when the allele has been standing at high frequencies, g > 0 (Berg and Coop,, |2015)). When the independent
ss  standing time, ¢, is small, we see little difference in the composite log-likelihoods between the true standing
sov . model and the migration model. Ast increases, we see a larger difference between these two models. However,
s as t increases, the composite log-likelihood difference between the independent mutation model and standing
so0  variation model tightens around 0. These results fit our expectations as we know the models look similar
si0  in the extreme values of ¢, the migration model when the standing time is small and independent mutation
su  model when the standing time is large, respectively.

s Migration model We are able to distinguish the migration model from the neutral and independent
si3 sweeps model. However, the standing variation and true migration model are again somewhat confounded.
s The values of the composite log-likelihood differences range from -44 to 123 when m = 10~ and this range
si5. - narrows closer to 0 as m increases. These results fit our understanding when we again look at the MCLEs
sis of ¢ in the standing model. Now, the estimates are at ¢ = 0 (Figure indicating it is hard to distinguish
si7 - between convergence that is due to migration or selection on a shared standing variant that has only been
sis  standing for a very short time, as they result in similar patterns in decay of coancestries.

s9 Summary We can clearly distinguish the outcomes of the migration and independent sweeps models from
s0 each other. Both models are hard to distinguish from the standing variation case, but in very different
sa regimes of the standing variation model. The estimated time the variant has been standing (t¢) for is a
s helpful indicator of the mode of convergence, with very low estimates meaning that the standing model
53 is indistinguishable from the migration model, while very high estimates mean that the standing model is
s indistinguishable from the independent sweeps model. When data is simulated under the standing model
s with intermediate values of ¢, we can distinguish this from both independent sweeps and recent migration
s models. This is because an intermediate value of ¢ generates a covariance pattern not well explained by either
so7 - other model. Therefore, while comparing the maximum composite likelihoods between models is useful, the
s estimated value of t is useful in judging the different models.
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Figure 6: Histograms of the differences in max-
imum composite log-likelihoods calculated un-
der a given model relative to the true model used
for 100 simulations. Parameter values used to sim-
ulate are noted, varying along the vertical dimen-
sion. Values less than zero, marked with solid line,
indicate the true model has a higher maximum com-
posite likelihood than alternative model. Conversely,
values greater than zero indicate the alternative, in-
correct model of convergence has a higher compos-
ite log-likelihood than the true model. For
N, =100, 000, N, = 10,000, s = 0.01, g = 0.001,
N, = 10,000, s = 0.01.
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Figure 7: Histograms of MCLE for parameters estimated under incorrect models.

= 4 Applications

s 4.1 Copper tolerance in Mimulus guttatus

s The study of adaptation to toxic mine tailings is a classic case of rapid local adaptation to human altered
s»  environments (MacNair et al.l|1993)). We apply our inference method to investigate the basis of the convergent
53 adaptation seen between populations of the annual wildflower Mimulus guttatus to copper contaminated soils
s near Copperopolis, CA. Wright et al.|(2015) sequenced pooled samples from 20-31 individuals from two mine
535 and two off-mine populations from two distinct copper mines in close geographic proximity (all populations
s3  within 15 km of each other) to 34-72X genome-wide coverage for each population. They observed elevated
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s genome-wide estimates of genetic differentiation between mine and off-mine populations (Fsr M/OM= 0.07
s and 0.14), with similar levels of differentiation between the mine populations (Fsz MM= 0.13). Only a small
s number of regions had high levels of differentiation. Here, we focus on the region with the strongest signature
s0 of differentiation between the two mine/off-mine pairs found on Scaffold8 by Wright et al| (2015). They
s observed low genetic diversity within each mine population in this region compared to off-mine populations.
s2 - When the mine populations are compared to each other, they have elevated differentiation in this region,
se3 except for in the center where they share a nearly identical core haplotype. This pattern suggests the sweeps
s may not have been independent within each mine population, and that the sweep is possibly shared either
sis  due to migration or selection of shared standing variation.

546 We estimate the F matrix using SNPs from twelve scaffolds that showed no strong signals of selection
se7  (shown in . Using all SNPs in the 169.3 kb Scaffold8, we apply our inference framework to both
ss identify the locus under selection and distinguish between modes of convergence between the two mine
se0 populations. We move the proposed selected site along this scaffold and calculate the composite likelihood
s0 under our three modes of convergent adaptation: (1) both mine populations have had independent mutations
ss1 at the same locus, (2) the beneficial allele was standing in the ancestor of the two mine populations and
2 selection occurred independently once the mine populations were isolated, and (3) the beneficial allele arose
53 in one of the mine populations and spread to the other via migration. We estimate the maximum composite
s likelihood over a dense grid of parameters used to specify these models . For the migration model,
55 we allow both adapted populations to be possible sources. We use an N, = 7.5 x 10°, calculated from the
s5s  observed pairwise diversity m = 4N, u using a mutation rate of g = 1.5 x 1078 and rgp = 4.72 x 1078 (Lee,
557 2009)

558 In Figure we summarize the results, showing the difference in maximum composite log-likelihoods
s between a given model of convergence and the neutral model of no selection as a function of the proposed
s0  selected sites along the scaffold. We see the three likelihoods peaking when the selected site is approximately
s1  at position 302665-308504 and that the model with the highest likelihood is selection on shared ancestral
s standing variation. Focusing on this model at the most likely selected site, we can obtain parameter estimates
s for the strength of selection (s), standing frequency of the beneficial allele (g), and the amount of time that
sea  the beneficial allele has been standing in both mine populations after they have been isolated but prior to
s selection (¢). This time also has the interpretation of the minimum age of the standing variant as it has
sss  been standing for at least this amount of time and potentially longer in the ancestral population. We see the
sv - maximum composite log-likelihood is obtained when this time is approximately 430 generations (Figure .
ses  As copper mining started in 1861 in this region (Aubury 1908), this suggests the tolerance allele was present
se0  prior to the onset of mining. The strength of selection and starting frequency of the allele are confounded
so  (Figure as expected. Our maximum composite log-likelihood parameter estimates suggest selection was
sn  relatively strong (>0.02) and the allele was not standing at very high frequencies (< 1073) when selection
572 began.

573 We also ran the standing variation model with one of the two copper-mines as the source (as detailed in
s Appendix . The standing variant likelihood surfaces, over selected sites, using either copper population
s5 - were identical to the case of the standing variant model with no source (see . Therefore, there is
s little information about the source of the standing variant. This is perhaps unsurprising as there is relatively
sz little hierarchical structure among the populations. The composite maximum likelihood estimate of ¢ is
s.s higher for the models of standing variation with a source, than the simple model of standing variation (see
so [Figure S7b|). This is likely because making one of the populations a source of the standing variant increases
ss0  the covariance around the selected site among the selected populations, as described in Appendix and
ss1 50 the model compensates by increasing the rate of decay of this covariance.
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s» 4.2 Industrial pollutant tolerance in Fundulus heteroclitus

ss3 We demonstrate how our method can be extended to more complex population scenarios. Populations of
s« the Atlantic killifish, Fundulus heteroclitus, have repeatedly adapted to typically lethal levels of industrial
ses  pollutants (Nacci et al., 1999, 2010). Reid et al, (2016) have sequenced 43-50 individuals from four pairs of
6 pollutant-tolerant and sensitive populations along the U.S. Atlantic coast (see Figure , sequencing each
sz individual to 0.6-7X depth. The southern pair of populations form a distinct clade relative to the northern
ss populations, consistent with a phylogeographic break centered on New Jersey (Duvernell et al., [2008).
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589 Reid et al.| (2016) found that a number of the strongest signals of recent selection are shared between all
s tolerant populations, suggesting genotypic convergent adaptation. We focus our method on their strongest
sn  signal of selection, Scaffold9893 (GPS_009145616.1, the scaffold containing the AIP gene), where all four pairs
s of tolerant/sensitive populations sampled show high levels of differentiation. Here, we test the hypotheses
ses  that all four tolerant populations show convergent adaptation due to our three previous modes of independent
s mutation, migration, or selection on shared ancestral variation. For our standing variation model, we specified
s the source of the standing variant (as described in Appendix . We also test the hypotheses that there
s6 18 an independent mutation in the southern tolerant population while the three northern populations are
so7  sharing a sweep at this locus, either due to migration between populations or selection on variation present
ss  in the ancestor of the Northern populations. This latter set of hypotheses is consistent with the fact that
s0  |Reid et al.| (2016)) detect a shared haplotype in the three northern tolerant populations while a different
e0 haplotype appears to have swept in the southern tolerant population. We estimated the F matrix from four
s scaffolds that show no strong signal of selection, and it is shown in We use N, = 8.3 x 10% and
o2 Tpp =2.17 x 107 (N. Reid personal communication).

603 The results are summarized in[9b] For the models where all four tolerant populations share the selected
ea allele by either migration or standing variation, we plot the maximum composite log-ikelihood for the most
o5 likely source at each location of the selected site (to reduce the number of lines plotted, see for
s the full figure). We see the model with the highest composite log-likelihood is when convergence is due to
sor selection on shared standing variation in the North and an independent mutation in the southern tolerant
s population. This occurs when the selected site is at approximately position 1960000 on the scaffold. This
so model has the highest composite log-likelihood when the source population of the standing variant is T3,
s10  southernmost population sampled in the North (composite log-likelihood = 547060), but this model may not
su be distinguishable from that where the source is T2 (545580). Under this model, we obtain the maximum
sz composite log-likelihood estimate of the minimum age of the standing variant, ¢, of eight generations (Figure
s3 [10a)). This implies the beneficial allele has been standing for a negligible time independently in the northern
s1a populations prior to selection or that migration is assisting the spread of this allele as both scenarios lead
eis  to similar decays in shared coancestry as we move away from the selected site. Lastly, again, we see partial
sis confounding of the strength of selection and the frequency of the standing variant (Figure but our
sr  results indicate selection has been very strong (>0.3) and the allele was initially at a very low frequency
618 (< 10_6).
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Figure 9: Inference results for Fundulus heteroclitus pollutant tolerance adaptation on Scaffold9893
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Figure 10: The composite likelihood surfaces for the parameters for Fundulus heteroclitus convergent data in
combined standing variation and independent sweep model with position 1961198 on Scaffold9893 as selected
site and population T3 as source.

w0 D Discussion

&0 In this paper we have presented a novel approach to identify the loci involved in convergent adaptation and to
e distinguish among the three ways genotypic convergence can arise: selection on (1) independent mutations,
s2 (2) standing variation present in the ancestor of the selected populations, and (3) beneficial alleles introduced
e3 via migration. We leverage the effects selection has on linked neutral sites via a coalescent-based model
ea approach that captures many of the heuristics that have been used in previous studies. This approach also
o5 allow us to potentially distinguish between more subtle models, such as the origin and the direction of gene
o6 flow of a beneficial allele, since they are explicitly modeled in our framework. Our approach takes advantage
67 of information among all of the population samples simultaneously while accounting for population structure.
e Therefore, it naturally accommodates information from across multiple samples, rather than just pairs of
620 populations, and thus offers a number of advantages in identifying the mode of convergence over other
60 approaches. We provide the relevant R code for our approach in https://github.com/kristinmlee/
631 | dmcC.

62 Distinguishing among models We have demonstrated that our method is able to accurately distinguish
63 among modes of convergent adaptation, across a relatively wide parameter space, in simulated data. However,
6 we do see some confounding of models in particular regions of parameter space. In particular, we see the
65 patterns generated from a model of selection on ancestral standing variation can look like our expectations for
6 the other two modes of convergent adaptation for extreme values of the parameter ¢, the time the beneficial
¢ allele has been standing time independent in the selected populations. When ¢ is small, we see confounding
es  between the standing model and a model of convergence due to gene flow. The two models are very similar
639 since in our standing variation model, as ¢ — 0, the covariance in the deviations of a neutral allele between
a0 selected populations approaches the variance within a selected population (the strong overlap in models is
s especially true when we have a source for the standing variant). Intuitively this indicates that the beneficial
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sz allele is on a haplotype that is mostly shared among the selected populations. This can be due to a very
&3 young standing variant shared amongst very closely-related populations from an ancestral population, a
s standing variant that was shared by gene flow before selection, or by the selected haplotype quickly moving
w5 across populations by gene flow after selection began (which are all closely related models, see [Welch and
ss  |Jiggins, [2014) for additional discussion).

647 To illustrate distinguishing between these possibilities we now revisit our applications. The Northern
as  tolerant killifish populations, under a standing variation model, have a very low estimate of . We can likely
a9 rule out the sweep occurring in an ancestor of the tolerant Northern populations, as both T1 and T2 are sister
e0 populations to different sensitive populations. We note that in cases where two populations that are sister
61 Share a sweep, we can extend our models to test if the sweep is ancestral or truly convergent. Furthermore,
es2  given the very low estimate of ¢ the allele cannot have been standing since the common ancestral population
63 of T1, T2, T3. Therefore, the allele must be shared by gene flow among the three populations and it seems
ea likely that the migration of the allele occurred either after selection began in one of the populations or very
es shortly before. Interestedly, however, they find no other signals of admixture from migration elsewhere in the
ess  genome between Northern tolerant populations. The case for adaptation from ancestral standing variation
o7 is clearer for the Mimulus copper tolerance example. Here, the estimate of ¢ is much greater than zero and
ess indeed older than the putative selection pressure. Additionally, the standing variant model considerably
0 outperforms the migration model (Figure . That said, given that the level of neutral differentiation of the
e0 mine populations very likely reflects much more than 430 generations of drift, it seems likely that this allele
61 is shared between the mine populations by gene flow but that the allele was standing in both populations for
s2 some time before selection began (as described by the standing model with a source model, see Appendix
663 and Figure . Thus, distinguishing among these models is possible in some cases, but may
es  Tequire extra knowledge of population history.

665 Conversely, when ¢t is large, we see a collapse of our standing model onto a model of convergence due to
e independent mutations in our selected populations. This intuition holds forwards in time since as ¢ — oo
67 generations, recombination in our isolated populations independently breaks down the similarity of the
es haplotypes carrying the beneficial mutation. Thus, when selection for the standing variant begins, even
60 tightly-linked, hitchhiking neutral alleles will not be shared between populations more than expected by
e chance. This is also the case when beneficial alleles arise multiple times independently. For example, in the
e case of the killifish, it is formally possible that the signal of independent selection in the Southern tolerant
o2 population is actually due to a very old standing variant shared with the Northern populations where there
o3 18 almost no overlap between the Southern and Northern tolerant populations in the haplotype the selected
e allele is present on, even close to the selected site. As the precise functional variant(s) in this swept region are
o5 currently unknown (Reid et al., 2016) it is hard to totally rule out this very old standing variant hypothesis.
e In other cases it may be possible to rule out the standing variant hypothesis with very large parameter
e estimates of ¢t if we know more about the population histories (i.e. our selected populations split more
e recently than the standing time). Additionally, it may be possible to totally rule out the standing variant
oo hypothesis in cases where if the functional variants can be tracked down to clearly independent genetic
0 changes (e.g. [Tishkoff et al. 2007). However that degree of certainty may be difficult to achieve in many
681 CaSes.

sz Extendibility and flexibility of our approach We show the applicability of our method on two em-
63 pirical examples of convergent adaptation: the evolution of copper tolerance in Mimulus guttatus and of
esa  pollutant tolerance in Fundulus heteroclitus. The latter exemplifies the extendibility and flexibility of our
es approach. As the number of selected populations increase, our potential number of hypotheses grows since
es any grouping of two or more populations could share selection due to migration or standing variation. Ad-
e7 ditionally, with more populations, we have more potential sources of the beneficial allele in the migration
es  model. Our model could also be extended to have selection occurring in some of the adapted populations
es0 and the neutral model in others, to identify genomic regions that are not experiencing convergent adaptation
s0 among all populations sharing the selected environment. These models are all relatively easy to implement
e1 into our framework; however, the sheer number of possible hypotheses as the number of populations grows
sz will likely call for some more systematic way of implementing these models and exploring their relationships.
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es Caveats and possible extensions Studying repeated evolution has long played a key role in evolutionary
sa biology as a tool to help identify the ecological and molecular basis of adaptation. It is worth noting with
es this approach, we are able to identify sweeps in the same region and whether they appear to be shared or
e independent. However, in the scale of an entire genome, it may be possible for two, unrelated sweeps to
eor overlap. In the case of adaptation via independent mutations across multiple populations, it is especially
ss hard to determine whether selection at the same site was acting on the same phenotype. It is potentially
s0 more plausible to claim that the phenotype and selection pressure are shared among populations in cases
00  where the swept haplotype is shared. Ultimately, in demonstrating convergence, we will have to rely on
o1 a range of evidence. Shared sweeps can offer one substantial piece of evidence, particularly when we are
02 studying recent adaptation to a strong selective pressure that is distinct to the adapted populations.

703 We assume a single selected change underlies the sweep within a population, and that recombination is
0 free to break down associations between neutral alleles and this selected variant. If, for instance, selection
705 acts on an epistatic, haplotypic combination of allele that sweeps, a long haplotype could be shared between
706 populations not due to recent migration but because selection acts against recombinants breaking up the
7z haplotype (Kelly and Wade, 2000). Convergent adaptations due to shared inversions also violate the as-
s sumptions of our method. Inversions can repress recombination across the entire inversion (see [Kirkpatrickl,
w0 2010, for a recent review). Inversions significantly alter both neutral and selective model expectations (e.g.
no  |Guerrero et al) [2012)) and could lead to long shared haplotypes among populations even if the shared inver-
m  sion is old. It may be possible to use our approach to model the decay in coancestries outside of the inverted
n2  region, but this requires knowledge of the inversion and its break points a priori and a detailed knowledge
73 of recombination rates surrounding the inversion.

714 Additionally, our framework could be extended in various ways to both leverage more information and
ns  model more biologically relevant or interesting scenarios. There is more information to be gained from
ne  haplotypes and associations between sites that we fail to include in our composite likelihood when we sum
77 across information from individual sites. Additionally, models of migration that include selection against
ns  maladaptive migrants (Barton and Bengtsson, [1986; |(Charlesworth et al, [1997; [Roesti et al., 2014) will be
7m0 important to consider.

720 Finally, here we use this approach to analyze genomic regions that we a priori assume to be under
=1 convergent selection. We are currently working on ways to efficiently extend this approach to the application
22 of genome-wide data to scan for genomic regions exhibiting convergence.

23 Final thoughts With the falling cost of population genomic sequencing, it is increasingly easier to obtain
= genome-wide polymorphism data from across many populations showing an adaptation to the same selective
s pressure. We hope that with the advent of these data in a wide range of systems and methods like those
26 outlined here, we can gain insights into fundamental questions regarding the nature of adaptation and
727 convergence.
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= A Appendix

% A.1 Coalescent intepretation of covariances and F-matrix estimation

Let x; be the allele frequency of allele 1 in population ¢ at locus [, and that the frequency of this allele in
the ancestral population is ¢;. Consider the covariance Cov(Az;;, Ax;;) over replicates of the drift processes
at locus . We can write

COV[($il€l)7 (LL'Z'I — 61)] = E[(l‘ll — El)(l‘jl — 6[)] (Al)

= Elzgzji] — € (A.2)

757 which follows from the fact that E[z;] = E[zj;] = ¢. We can interpret E[z;;2;;] as the probability that we
s sample a single allele in 7 and an allele in j and that they both are of type 1. Taking that interpretation,
70 assuming that there is no mutation, E[z;;x;;] is the probability that, tracing back a coalescent lineage from
=o 1 and a lineage from j, both lineages trace back to type 1 alleles in the ancestral population. Let our pair
1 of lineages drawn from 4 and j coalesce with probability f;;. If our lineages coalesce before reaching the

n2  ancestral population then they will be identical by descent, and share the ancestral choice of allele. Therefore,
73 We can write

E[xille] = (1 — fij)612 + fijel (AS)
z4  Then we can rewrite the covariance

COV(Al’il, ijl) = fijel(]- - q), (A4)

ns and for the variance we set ¢ = j. Thus, under a model of genetic drift alone, we can intepret the entries of
s our covariance matrix as expressions of the underlying coalescent probabilities.

7 Estimating F In the main text we assume that we have estimates of our neutral coancestry matrix F. We
ns  now describe how we obtain these. From above, Equation the expectation of zyx; across loci is

Eifzqzs) = Bi(1— fij)e + fijel] (A.5)
19 Therefore we can write estimate f;; as

_ Bz — Eief]
fz] o El[q(l — 6[)]

(A.6)

70 We can obtain an unbiased estimate of E;[e7] and E;[e;(1 — ¢;)] using the sample allele frequencies from two
= populations on either side of the root of the population phylogeny (see Supplement of Lipson et al., |2013]).
»2 Let ¢ and j' be a pair of populations that span the root of the population tree, then we can use the estimate

1 1
El[El(l - 6[)] = El[axi’l(l — xj’l) —+ 5(1 — xi’l)(xj’l)] (A?)
3 Likewise, we use the estimate
1 1
El [€l2] = El[ixi’l(xj'l) =+ 5(1 — xi’l)(l — xj’l)] (AS)

75 An estimate of the term [E;[x;;2 5] can be obtained by using the sample frequency of allele 1 in populations
s 1 and j. However, as we only have a sample from the population frequency we need to account for the finite
6 sampling bias within populations (¢ = j). Let n be the sample size in population 4, then
(23] — Eileal 2y — Eile]

n—1

Eifer (1 — )]

77 where our  are now sample frequencies. There is no finite-sample size correction for f;;, i # j and Equation
s [AZ0] can be used directly.

750 In our simulations to show the effect of selection on the coancestry coefficients (Figure|3]), we estimate f;;
w0 in bins of fixed genetic size moving away from the selected site. We do this by approximating the expectations
%1 in the numerator and denominators in Equations and by the average of the expression over all of
w2 the SNPs that fall in a given genetic distance bin over all of the relevant simulations. To account for biases
73 induced by defining the allele of interest, we randomize the reference allele at each SNP.

fii = (A.9)
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= A.2 Simulation implementation details

s We perform coalescent simulations using mssel, a modified version of ms (Hudson, 2002)) that allows
w6 for the incorporation of selection at single site (the code for this is provided in https://github.com/
w7 kristinmlee/dmc)). The program allows the user to specify the frequency trajectory of the selected allele
s through time across populations, this trajectory is then used to simulate genetic data under the coalescent
0 model conditioning on this trajectory (using the sub-divided coalescent model [Hudson and Kaplan| (1988]);
m |Kaplan et al| (1991)). We generate stochastic trajectories for the selected allele across populations and
m  describe the simulation process below. We simulate multiple instances of the stochastic trajectories and
2 average our results across datasets generated for these trajectories. We focus on a set of four populations
73 with relationships as shown in Figure|l} Populations 2 and 3 are adapted to a shared novel selection pressure
e and populations 1 and 4 are in the ancestral environment.

s The original implementation of mssel assumes only a single origin of the selected allele, which occurs
e moving backward in time when the frequency of the derived allele goes to zero in the final population it
mr segregates in. We modified the mssel source code directly to accommodate multiple origins of the selected
s allele as is necessary in the independent sweep model. We do so by allowing an independent origin of the
o selected allele in any population where the frequency of the derived selected allele goes to zero, if that
0 population currently has a migration rate of zero to any other population containing the selected allele.

m  A.2.1 Generating stochastic trajectories for the selected allele

w2 We generate stochastic trajectories for the selected allele to be used as input for mssel to generate sequence
73 data for given convergent adaptation scenarios. We simulate the allele frequency trajectory for the selected
s allele forward in time using a normal deviate approximation to the simulation the Wright-Fisher diffusion.
s Specifically, given the frequency of the beneficial allele at time ¢, X (¢), we simulate its frequency at time
s  t+ At according to

X (t+ At) ~ N(us(X(t)At, (X (t))At) (A.10)

77 where pg( ) and o2( ) are the infinitesimal mean and variance of the Wright-Fisher diffusion. We set
s At = 1/(2N), representing one Wright-Fisher generation on the diffusion time-scale (2N generations). We
w0 set X(0) = g, the initial frequency of the beneficial allele. When selection starts from a new mutation,
w g=1/(2N).

701 For all our models, the infinitesimal variance is
o (X (1) = X(t)(1 - X (1)), (A.11)

2 representing the effect of genetic drift.
703 For populations not impacted by migration, we condition our trajectory on the beneficial allele going to
s fixation forward in time. To do this we use the conditional infinitesimal mean

_ANsX(B)(1— X (1))

ps(X(t) = tanh(2NsX (1)) (A.12)

5 (see |Przeworski et all 2005; Berg and Coopl 2015, for previous applications). We simulate this process
w6 forward in time till fixation is reached.

7 Migration model In the case of our migration model, there is one way migration from population i into j.
e The trajectory of X; is simulated first forwards in time, conditioning on fixation, using the above approach.
70 We then simulate the frequency in population j starting from X;(0) = 0, with the infinitesimal mean

s (X, () = 2N X, (6)(1 — X;(0) + 2Nm(Xi(t) - X, (1)) (A.13)

so  (expanded from [Ewens, 2004). We simulate the process forward in time until the selected allele reaches
sor fixation in both populations. The first population to reach fixation is held at frequency 1 until the other
s2 population fixes for the beneficial allele.
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s03  Standing variation model. We define the standing variation trajectory as having three phases, the
s neutral phase, the standing phase, and the selected phase. To specify a trajectory in which the beneficial
ss allele has been standing at frequency g for time ¢, we simply hold the allele frequency constant for this
ss amount of time. We simulate a stochastic neutral trajectory of our beneficial allele from frequency g to 0
s backwards in time according to

X(t— At) ~ N(un(X(t)At, o(X(t))At) (A.14)
ss using the infinitismal mean conditional of the neutral allele going to loss
N (X (1) = ~X(2) (A.15)

a0 (see [Przeworski et al., |2005; Berg and Coop, 2015, for previous applications). We simulate the selection
s phase forward in time for 2log(1/g)/s generations. If the beneficial allele has reached fixation before this
sun  time, it is held constant at frequency 1 for the remaining time. If not, the trajectory is simply stopped at
sz this time. This allows for the interpretation of the standing time and the time of the onset of selection to
a1z be the same throughout simulations. For the whole trajectory of a beneficial allele, we paste together these
sia  three components: neutral increase of allele from frequency 0 to g, the standing phase at frequency g for
sis  time ¢ generations, and the selective phase. For populations not experiencing selection, the beneficial allele
sis 1S kept at frequency ¢ for the entire length of the trajectory.

sz A.2.2 Details of coalescent simulations

sis  In this section we give the details of the coalescent simulations, including the mssel command lines. The
si0 mssel input can be interpreted as follows,

s0 ./mssel nsam_tot nreps nsam_anc nsam_der trajFile locSelSite -t 6 -r p nsites
821 —-I npops nAnc_popl nDerv_popl ... nAnc_popi nDerv_popi

822 For all of the simulations we generate neutral allele frequency data for 10 samples from each of 4 popula-
3 tions. The populations are related to each other as shown in Figure[I[] Note, we did 1000 replications of the
s2¢  simulations for parameters used to generate comparisons of average simulations coancestry coeflicients com-
@5 pared to theoretical expectations. 100 replications were done for simulations used for parameter estimates
26 and model comparisons. For simulations used for both, the first 100 runs were used.

27 Independent sweep model. We generated beneficial allele frequency trajectories under four different
w28 selection coefficients: s = [0.005,0.01,0.05,0.1] under the independent sweep model with N, = 100,000. We
@20 set r, the per generation probability of cross-over between ends of the simulated locus, to 0.005. The neutral
s mutation rate, u, for the entire locus is the same as r. mssel input for all independent sweep model is of the
a1 following form with different trajectory files for each s,

./mssel 40 1000 20 20 ind_sel0.1l_stochastic.traj 0 -t 2000 —-r 2000 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.05 3 4 -ej 0.05 2 1 -ej 0.07 4 1

832 We also simulate the same population structure with no selection to generate data to estimate the neutral
g3 coancestry matrix, F, using ms as follows

s+ ./ms 40 1000 -t 200 -r 2000 1000 -I 4 10 10 10 10 -ej 0.05 3 4 -ej 0.05 2 1 —-ej 0.07 4 1

s Standing variation model. With s = 0.01 and g = 0.001, we generated beneficial allele frequency
a6 trajectories for standing times ¢ = [50, 250, 500, 1000, 5000] generations under the standing variation model
s with N, = 10,000. Our t references the time that the populations have been independent. Therefore,
ss we adjusted the split times to ensure that the ¢ of interest corresponded to the duration of time that the
80 selected populations had the standing variant prior the populations joining in the ancestral population. The
a0 population split times were determined to ensure selection started after the populations were completely
a1 isolated and to maintain a similar ratio of time for 4 independent populations to 2 ancestral populations.
a2 We again set r = p = 0.005. The ms input was as follows,
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./mssel 40 1000 20 20 sv_sel0.01_g0.001_t50_stochastic.traj 0 -t 200 -r 120 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.0346 2 1 -ej 0.0346 3 4 -ej 0.03575 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t250_stochastic.traj 0 -t 200 -r 200 10000
-I 4100 0 10 0 10 10 0 -ej 0.039 3 4 -7 0.039 2 1 -ej 0.0408 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 2 1 -ej 0.04 3 4 -ej 0.047 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t1000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 3 4 -ej 0.04 2 1 —-ej 0.0595 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t5000_stochastic.traj 0 -t 200 -r 200 10000
-I 410 0 0 10 0 10 10 0 -ej 0.135 2 1 -ej 0.135 3 4 —-ej 0.1595 4 1

843 We also simulated under two additional selection coefficients, s = [0.001,0.05], keeping ¢ = 500 and
844 G = 0.001.

./mssel 40 100 20 20 sv_sel0.001_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.3455 3 4 -ej 0.3455 2 1 -ej 0.3578 4 1

./mssel 40 100 20 20 sv_sel0.05_g0.001_t500_NelO000O_stochastic.traj 0 -t 200 —r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.00695 3 4 -ej 0.00695 2 1 -ej 0.01935 4 1

815 Again, neutral regions were simulated in ms using the same population structure (i.e. each parameter
ws  set had its own neutral data generated).

s Migration model. Lastly, we simulated under the migration model with m = [0.0001,0.001,0.01,0.1],
ws  holding s = 0.01 for N, = 10,000. Again, we simulated 10 samples from 4 populations related to each other
s as specified in Figure[]] Now, in mssel, we specify migration to start just prior to origin of the beneficial allele
so in the source population. We set population 2 to be the source and have 4 N.m migrants from population 2
et into population 3 each generation. We again set » = p = 0.005. Thus,

./mssel 40 1000 20 20 mig_sel0.01_migle—-04_stochastic.traj 0 -t 200 —-r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 —ej 0.1 4 1
-em 0.059 32 0 -em 0 3 2 4

./mssel 40 1000 20 20 mig_sel0.01_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 410 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 32 0 -em 0 3 2 40

./mssel 40 1000 20 20 mig_sel0.01_mig0.01_stochastic.traj 0 -t 200 —-r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 —-ej 0.1 4 1
—em 0.059 3 2 0 —em 0 3 2 400

./mssel 40 1000 20 20 mig_sel0.01_mig0.1_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 4000

852 We also simulated under two additional selection coefficients, s = [0.005, 0.05], keeping m = 0.001.

./mssel 40 100 20 20 mig_sel0.05_mig0.001_stochastic.traj 0 -t 200 —-r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.021 2 1 -ej 0.021 3 4 -ej 0.03 4 1
-em 0.014 3 2 0 -em 0 3 2 40

./mssel 40 100 20 20 mig_sel0.005_mig0.001_stochastic.traj 0 -t 200 —-r 200 10000
-I 4100 0 10 0 10 10 0 -ej 0.12 2 1 -ej 0.12 3 4 -ej 0.17 4 1
-em 0.11 3 2 0 —em 0 3 2 40

853 Neutral regions were again simulated using ms. Each set of parameters has its own neutral data generated
s« as the migration rate impacts neutral coancestry as well.

s A.2.3 Interpretating mssel output

ss Lhe output from mssel and ms is in the form of haplotypes for each of the sampled chromosomes at polymor-
s phic sites in addition to their positions on a scale of (0,1). We use this to calculate sample allele frequencies
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ss  at each site for each population. Prior to performing further estimations or analyses with these neutral allele
so  frequencies, we randomize the reference allele so that there is no bias resulting from which allele was called
so ancestral or derived. We exclude sites where the average allele frequencies across populations are less than
w1 5% or greater than 95%.

2 A.2.4 Composite likelihoods of simulated data under all models details
s3  We calculated the composite log-likelihoods of each the simulated datasets under all models, including the
ss  neutral model, with the same parameter space shown in

s A.2.5 Maximum likelihood estimate of parameters from simulated data under correct model

ss  We also calculated the composite log-likelihoods of each the simulated datasets under the correct model used
s7 to generate the data now with a more dense grid of parameters to obtain better estimates of the MCLE of
ss each parameter. We allowed ¢ to vary in the calculations of the MCLEs under the standing variation model.

w0 See [Table 52| [Table S4] [Table So|

o A.2.6 Inference details: mean-centering allele frequencies and covariances, sample size cor-
871 rection, and speed-ups

sz Given that we do not know the true ancestral mean at locus [, ¢;, we use the mean of the present-day sample

. . _ 1 K . .
sz allele frequencies at this locus, 7; = ¢ > ieq1 i When mean-centering, we lose a degree of freedom so in
s calculating the likelihood it is necessary to drop information from one population. Since the information
g5 from the dropped population is incorporated in the mean, the choice of the dropped population is arbitrary.
ers  In matrix form, the mean-centered allele frequencies with one dropped population can be expressed as

7 =T, (A.16)

gz where T is an K — 1 by K matrix with % on the main diagonal and —% elsewhere. Prior to mean-
ers  centering, we randomize the reference allele at each SNP to account for biases induced by defining the allele
ero  of interest.

880 Now, we model the mean-centered allele frequencies as multivariate normal around mean zero with

g1 covariance proportional to a mean-centered parameterized covariance matrix (F(S)') as
-/ N = — (S)r
T NN(O,xl(l —a:l)F ) (A.17)

sz where we use the average present day allele frequency across populations at the locus, ;, as an estimate of ¢;
3  in the site-specific term in the covariance. We note that ;(1 — ;) is a slightly downwardly biased estimate
e Of €(1 — €), but for our purposes it seems sufficient to include this term as a locus-specific adjustment to the
ss  expected covariance.
886 To obtain the corresponding mean-centered covariance matrix, dropping the same population, we can
ss7  apply the following matrix operations,

F& = TFS)TT, (A.18)

ss  this new matrix is K — 1 by K — 1 and full rank.

889 Before mean-centering, F ), we apply a sample size correction to correct for the finite sampling bias.
w0  We add 1/n; to the diagonal where n; is the sample size in population i. We take twice the number of
g1 diploid individuals sampled in population i as n; for data applications. In simulations, we use the number of
g2 chromosomes sampled in population i as n;. Note that both this mean-centering and sample size correction
g3 18 also preformed on the neutral matrix, F before likelihood calculations under a neutral model with no
sa  selection.

805 To decrease some of the computational time involved in our likelihood calculations, we precompute the
s0s mean-centered covariance matrices with selection, F )/, for given bins of distance away from a putative
sor  selected site. We first divide our distances in our window into 1000 bins and take the midpoint of the
ws  distances in these bins to calculate F®®) as this matrix is a function of distance. To avoid the costly step
a0 of recomputing the corresponding inverses and determinants needed for likelihood calculations, we do this
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oo step first and use these values for all SNPs in a given bin, and store them and reuse them over all locations
o1 of the selected site.

902 Thus, we calculate the likelihood of mean-centered allele frequencies, 7', given our model M and its
o3 parameters O, a given locus [ as

exp(— 31’ (B~ L(a(1 - @)~

(A.19)
V2 (1 (1 — @) det B

P(z] | S (7, M, 0) =

oa  where k = K — 1, the rank of matrix FO,

o A.3 Standing variant model with a source population

s  When there are multiple selected populations and they do not follow a bifurcating tree structure, it is
o7 necessary to incorporate a model that has a source population for the standing variant to have self-consistent
o mean-centered covariance matrices.

900 Let population [ be a selected population and the source of the beneficial allele. In all other populations,
oo the beneficial allele is standing for time ¢ generations at frequency ¢ before the lineage returns to the
ou  source population where it still standing at frequency g (see Figure . We can define pairwise coancestry
a2 coefficients for all pairs of populations under this model. Let populations i and j represent populations that
a3 experience selection and population k£ be any unselected population.

Figure 11: Trajectories of the beneficial allele (red) for the standing variant model with a source population.
Populations [ and i are under selection with present-day allele frequencies z; and x; at a neutral locus,
derived from an ancestral population with allele frequency €. The populations share some amount of drift
proportional to f;; before reaching the ancestral population. The beneficial allele is standing at frequency
g in the source population, [. It migrates into population ¢ from [,where it is standing at frequency g for ¢
generations prior to the onset of selection, indicated by the blue triangles.

o14 Since population [ is the source, its variance follows the same form as Equation [7}
(S) 9 1 4N,rg 9
= 1-— A.20
Ju Y (1 + 4N.rg * 1+4N.rg fu ) +( v fu ( )
o1 All other selected populations have a modified variance since lineages that fail to recombine off the

ais  beneficial background during the sweep and fail to coalesce or recombine during the standing phase return
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a7 to the source population. Thus,

(8) _ 2pr . ) 3 2 7t(27‘+%)( 1 4NeTg )
) = (1 —y)?fu +2y(1 - u+ (1—1t) f ey
fi? = A=y fi+ 290 —y)(refu + (1 —rt) fii) +y <e T 5 dNrg T 15 ANrg "

_ 1 1 _ 1 4N,rg PV U 4N,rg
1_et@romy_ 1 (1_ t@rtoig)y Vel gty AT ) »
+(l—e TN T\d—e T aN.,g e TNy )7
_ 1 4N,rg
1— t(T‘FzNe N *teld i
+( ¢ ! )1+2Nergrtfl
(A.21)
018 There is additional coancestry between pairs of selected populations. This takes a different form than

as  Equation [J] as there since if either lineage fails to recombines off the beneficial background during the sweep
o0 or standing phase, the lineage will be in population [. For selected populations ¢ and j, now

5 1 4N,rg
fi(j Y= (-2 +y2(7“t2(1 T iN.rg "1 4N, rgf” + (L= 7r)*fij + (L= re) (fur + fjl))
‘ ‘ (A.22)
#a1 =) (20 =m0 + i+ )
o1 If either population is the source, ! this reduces to
1 4N,rg
£ =y <y7"t(1 i T a0 0 —yrt)fu) + (1= yro) fa (A.23)

o2 since if the lineage fails to recombines off the beneficial background in population i, it is back in population .
o3 If the lineage in [ is still on the beneficial background after the sweep and the initial ¢ generations of standing,
o4 they can coalesce during the standing phase in population [. Else, the lineages will coalesce neutrally in
o5 population [. However, if the lineage sampled in population i does not return to the source population (i.e.
w6 it recombines during the sweep or standing phase of ¢ generations), the lineages can coalesce with neutral
o7 probability f;.

028 Lastly, we must incorporate the impact linked selection has on the coancestry between lineages sampled
o0 from any pair of non-source selected population ¢ and non-selected population k.

1 = y(rtsz + (- Tt)fz’k) + (1= y) fir (A.24)

o0 Since lineages that do not recombine off the beneficial background in population ¢ go back into the source
o1 population [, non-selected populations may now have more or less coancestry with population ¢ depending
o2 on whether [ is neutrally has more or less coancestry with population [, respectively.

933

a A.4 Migration model extensions

s A.4.1 Single pulses of migration

o We also considered models of a single pulse of migration. We solve for fi(is) and fi(f ) for the bounds on
or  the time during which the beneficial allele could migrate: (1) “instantly” after the beneficial allele arises in
as  population ¢ and (2) after the beneficial allele reaches fixation in the population i.

o0 Beneficial allele migrates instantly after it arises in population i. In this case, we are specifying
a0 the pulse of migration from population i into population j occurs sufficiently soon enough after the sweep
o1 began such that the entire haplotype the beneficial mutation arises on in population ¢ migrates to population
w2 j (i.e. there is no time for recombination to occur). This case gives us results for an extreme of a single
a3 pulse of migration may not be particularly relevant as the spread of the beneficial allele into population j
aa  will likely only occur after it has reached a sufficiently high frequency in population ¢ as it may be lost due
as  to drift. However, these results aid in our intuition of this model.
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946 As the beneficial allele originates in population 4, again,
) — (fu+ 121 = fu A.25
fii? = (fii + v~ (L= fii)). (A.25)
047 The probability of two lineages in the recipient population, j, coalescing before reaching the ancestral

s population is now
s
1) =+ 21 =9) fiy + (1= )55 (A.26)

wo  Here, both lineages can not recombine off the sweep (w.p. y?) and therefore coalesce with probability 1.
w0 Exactly one lineage can recombine off the sweep (w.p. 2y(1 — y)) and therefore the two lineages can only
o1 coalesce in the shared drift phase (w.p. f;;) as the lineage that does not recombine off the sweep migrates
s into population i. Both lineages can recombine off the sweep (w.p. (1 — y)?) and then can coalesce in
o3 population j before they reach the ancestral population.
954
055 The probability of two lineages drawn from each population coalescing before reaching the ancestral
o6 population is
s
1 = =) f +yly + L= fa) (A.27)

o7 In this case, if the lineage in population j recombines off the sweep (w.p. 1 — y) , the two lineages can
s only coalesce in the shared drift phase (w.p. f;;) before reaching the ancestral population. If the lineage in
w0 population j fails to recombine off the sweep (w.p. y), it migrates back to population ¢ and will be forced
o0 to coalesce with the lineage in population i if it also failed to recombine, else they will coalesce neutrally in
o1 population .

o2 Beneficial allele migrates after it reaches fixation in population i. For the coancestry coefficient
o3 for population j, the logic follows from that of when the pulse of migration happens instantly. However
oss in deriving the coancestry coefficient between populations 7 and j, in the case where the lineage sampled
o5 from population j fails to recombine off the sweep and migrates back to population ¢, which happens with
o6 probability y, it is like we have two lineages sampled in population i. Now, both could either fail to
o7 recombine off the sweep and coalesce with probability 1 or one or both could recombine off the sweep and
os coalesce neutrally in population ¢. This can be written as

£ = (=) fis +y@* + (1 =) fu (A.28)

969 Together, these results characterize the other end point of a single pulse of migration spreading the
o0 beneficial allele to the recipient population.

s A.5 Forward in time derivation examples

o2 For the forward in time results we utilize |Gillespie/s (2000) psuedohittchiking approximation with the incor-
o3 poration of recombination to model the variance in the change in neutral allele frequencies due to a selective
as  sweep (Agz; for population 7). A new beneficial mutation will arise on the same background as a neutral
a5 allele with probability equal to its frequency in the population, . In the case no crossing over occurs and
ors  the new mutation sweeps to fixation, the neutral allele frequency after the hitchhiking event, x/, will either
o7 be 1 with probability  or O with probability 1 — z. Therefore,

Az = (1—-2x) W%th probab%l%ty x (A.29)
-z with probability (1 — z)
o thus E[Agz] = 0 and Var[Agz] = z(1 — z).
979
980 Recombination can be incorporated into this model, allowing the neutral allele stop hitchhiking before

os1 it reaches fixation. The frequency of the haplotype on which the favorable mutation arises will increase to
o2y and all other alleles will have their frequencies reduced by 1 — y. So, if the favorable allele appears on

33


https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119578; this version posted March 22, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

se3  the same background of our neutral allele, which happens with probability z, 2/ = (1 — y)z + y. Else, with
s probability 1 — z, o/ = (1 — y)z. Therefore,

Az = y(l —x) W%th probab?l?ty x (A.30)
—yx with probability (1 — x)
s thus with recombination, E[Agz] = 0 and Var[Agz] = y?z(1 — ).
986
987 We can break down the changes in allele frequencies in the two populations from the ancestral allele

s frequency e into three components if we assume the independent drift in each population after the sweep
o is negligible: the change due to (1) shared drift between populations ¢ and j before they split (Anz;;),
oo (2) independent drift in each population before the sweep (Ayz; and Ayz;), and (3) the selective sweep
w1 occurring in each population (Agz; and Agz;).

002 Define E[Ayz3;] = €(1 — €)fi; and E[Ayz7] = €(1 — ¢) f; for population i. The total amount of vari-
w3 ance in a neutral allele frequency for the ith population is defined as €(1 — €) f;; which we approximate as
os  €(1 —€)(fi; + fi). This only holds if we assume the time intervals are short relative to drift so that these
s terms act additively. If this is not the case, the E[Ay2?] is no longer the probability that two alleles drawn
o from population i before the sweep begins are identical by descent with reference to the ancestral population
o7 with neutral allele frequency e, but rather with reference to the population before the split into populations
ws ¢ and j with neutral allele frequency z;;. A more careful treatment of these parameters could be done to
o9 relax this assumption, and follows naturally in a coalescent setting.

1000

1001 From a forward in time perspective, we can solve for Var[Az;], Var[Az;], and Cov[Az;, Ax;] with Az; =
we  Anzi; + Ayx; + Agz;. Assuming drift terms are independent of each other, we are left with the following
1003 expressions

w04 and
COV[A{Ei, Al‘]] = E(]. — E)fij +E[AN$ij . Asxl} +E[Ainj . Asl‘j] +E[AN’£1 . Asxj] +]E[As$i . Asl‘j] (A32)

ws A.5.1 Independent sweep model

In the case of independent sweeps where there is no gene flow between populations, many terms in Equations
and equal zero since the sweeps are independent. For the variances, we are left with

Var[Az;] = e(1 — ¢€) fi + E[Ag27]

=e(l—e)(fi +y°(1 = fur)) (A.33)

1006 The covariance in allele frequencies between populations ¢ and j, is simply what we would expect under
w07 neutrality.

COV[ALL‘h ALEQ} = 6(1 — e)fij (A34)

wes  A.5.2 Shared sweeps via migration

w0 The migration models better exemplifies these forward in time calculations. We demonstrate the calculations
oo of Var[Az;] and Cov[Az;, Az;] for pulse of migration models specified in

1011 Beneficial allele migrates instantly after it arises in population i. The background on which
w12 the beneficial mutation arises depends on the neutral allele frequency in population ¢ before the sweep, x;.
1wz We are specifying the pulse of migration from population ¢ into population j occurs sufficiently soon enough
w4 after the sweep began such that the entire haplotype the beneficial mutation arises on in population ¢ mi-
o5 grates to population j (i.e. there is no time for recombination to occur). Now Agz; depends on the neutral
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e allele frequency in population i before the sweep.

1017

A y(1 — (e + Anxij + Anzx;)) with probability e + Ayx;; + Ana; (A.35)
x; = .
5% —y(e+ Anzij + Anz;) with probability (1 — (e + Anx;; + Anz;))
1018
1019
1020 As the beneficial allele originates in population 4, again,

Var[Az;] = e(1 = ¢)(fu + y°(1 = fir))- (A.36)

1021
1022

Now Agz; depends on z;, E[Ayz; - Aszj], E[Asz; - Agxz;], and E[Anx;; - Agz,] are no longer zero. So,
Var[ij] = 6(]. — E)fjj + QE[ANI” . AS(EJ'] + ]E[ASZL’?]
=e(l—e)(fi; — 291 +y* (L + f; — fij)) (A.37)

and

COV[AI‘Z‘, A.TJ] 6(1 — E)fij + E[ANJ}Z' . Agml] + E[As.’l}i . Asa)‘j]

=e(l—e)(fi; +ufi+yv*(1— fi— fi)): (A.38)
1023 This result is the same as Equation if the assumption about drift being additive holds such that
we  fii = fi + fij-

1025 Beneficial allele migrates after it reaches fixation in population i. Now, the frequency of a
w6 neutral allele in population i after the sweep has occurred is

) {y + (1 —y)xz; with probability z;
Xl =

(1—y)a; with probability (1 — z;)
1027 Fixing that the migration from population ¢ into j occurs after the sweep has finished in population 4,
A y(1 — (e+ Anzi; + Anyxj)) with probability e + Ayax;; + Anz; + Aga; (A.39)
T = :
54 —yle+ Anzij + Anzy) with probability (1 — (¢ + Ayxi; + Ayx; — Agz;))
1028 This can also be written as
y(1 —z;) with probability z;(y + (1 — y)z;)
Asz; — y(1 —z;) W%th probab%l?ty (I—z)(1—y)z; (A.40)
—yz; with probability z;(1 —y — (1 — y)z;)
—yx; with probability (1 —z;)(1 — (1 —y)z;)
1020 Here, the first case is that the beneficial allele arises on the same background as our neutral allele in

w030 population ¢ and then is the haplotype that migrates into population j. The probability of the haplotype
w3 migrating is equal to its frequency in the population. The third case also includes the beneficial allele arising
w2 on the same background as our neutral allele, but the other haplotype migrates. The second and fourth cases
033 are when the beneficial mutation arises on the other background as our neutral allele. In the second case,
w3 the haplotype containing our neutral allele migrates after the sweep and in the fourth, the other haplotype
1035 migrates.

1036

1037 The variance within population ¢ and population j are the same as in the case of the beneficial allele
w038 migrating instantly. The only term changed by specifying that the pulse of migration happens after the
e sweep is E[Agz; - Agz;] which is now (1 — €)y®(1 — f;;). So,

Cov[Az;, Azj] = e(L—e)(fi; +yf; + > (A — f; — fij)) (A.41)
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(a) MCLE of selection coefficients as function of
true location of selected site. Each location of selected
site has 100 simulations under independent muta-
tion model (10 chromosomes per population, N, =
100,000, s = 0.05). Crossbars indicate first and third
quartiles with second quartiles (medians) as the horizon-
tal line. The true values of the parameters are marked
with dashed, black lines.

Figure S1: MCLE of parameters for independent mutation

vary.

(b) MCLE of selection coefficients versus MCLE of
location of selected site. True location of selected
site is marked by color. Each location of selected site has
100 simulations under independent mutation model
(10 chromosomes per population, N. = 100,000, s =
0.05)
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Figure S2: Average coancestry coefficient values for migration simulations with various m, across 100 runs of
simulations for each of 100 bins of distance away from the selected site, showing the migration rate parameter
does not have a large effect on both expectations (solid lines) and simulation results (dashed lines). For all
simulations, s = 0.01, N, = 10,000, and the source of the beneficial allele is population 2.
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(a) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
recipient population (3) and non-selected populations (1
and 4).
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(b) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
source population (2) and non-selected populations (1
and 4).

Figure S3: Average coancestry coefficient values for migration simulations across 100 runs of simulations
for each of 100 bins of distance away from the selected site, between source and recipient populations and
non-selected populations (s = 0.01, m = 0.001, N, = 10,000).
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(b) MCLE of selection coefficients for 100 simula-
tions under migration model (10 chromosomes per
population, N. = 10,000, m = 0.001)

Figure S4: MCLE of parameters for migration model simulations. We vary the true value of the
parameter used for simulations along the x-axis and show the MCLE for each of 100 simulations (points).
Crossbars indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true
values of the parameters are marked with dashed, black lines.
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Figure S5: Coancestry coefficient for the recipient population as a function of recombination distance from
the selected site, partitioned into simulations with MCLE for m = 1 and m < 1 (s = 0.01, m = 0.001, N,
= 10,000).
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Figure S6: MCLE of selection coefficients for 100 simulations under standing variant model (10
chromosomes per population, N, = 10,000, ¢ = 500, g = 0.001). We vary the true value of the parameter
used for simulations along the x-axis and show the MCLE for each of 100 simulations (points). Crossbars
indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true values of
the parameters are marked with dashed, black lines.
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Figure S7: Inference results for standing variant model applied to Mimulus data using both original standing

variant model and more complex model where a source population is specified. In this case, the composite
log-likelihoods do not change, but the parameter estimates do. We obtain higher MCLE for ¢t when a source
is specified (646 generations) compared to the original no source model (434 generations). This fits our
expectation as t has slightly different interpretations under the two models.
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Figure S8: Composite log-likelihood for Fundulus heteroclitus pollutant tolerance adaptation on Scaf-
f0ld9893, showing all possible sources for models with migration and standing variant model, as a function
of the proposed selected site.

Table S1: Parameter spaces for composite likelihood calculations for simulated datasets

Position of selected site 0
1074, 5x107% 1073,2x 1073, 4 x 1073, 5 x 1073, 6 x 1073, 8 x 1073,
s 0.01, 0.012, 0.014, 0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1,

0.11, 0.12, 0.14, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6
0, 5, 15, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 900, 1000, 1200, 1500, 1800, 2000, 2500,

t 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 9000,
104, 1.5 x 10°, 2 x 10°, 3 x 10°, 5 x 105, 7 x 10, 9 x 10°, 10°, 10°

g 1073

m 1072, 107%, 5 x 107, 1072, 5 x 103, 0.01, 0.2, 0.5, 0.9, 1

Migration source population | 2
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Table S2: Parameter spaces for composite likelihood calculations for independent sweep model simulations

Position of selected site

0

10772x107%,3x 1075, 4x 1074, 5x 1074, 6 x 1074, 7x 10~%, 8 x 1074, 9 x 104,
0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065,
0.007, 0.0075, 0.008, 0.0085, 0.009, 0.0095, 0.01, 0.0105, 0.011, 0.0115, 0.012, 0.0125,
0.013, 0.0135, 0.014, 0.0145, 0.015, 0.0155, 0.016, 0.0165, 0.017, 0.0175, 0.018,
0.0185, 0.019, 0.0195, 0.02, 0.0205, 0.021, 0.0215, 0.022, 0.0225, 0.023, 0.0235,
0.024, 0.0245, 0.025, 0.0255, 0.026, 0.0265, 0.027, 0.0275, 0.028, 0.0285, 0.029,
0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.0325, 0.033, 0.0335, 0.034, 0.0345,
0.035, 0.0355, 0.036, 0.0365, 0.037, 0.0375, 0.038, 0.0385, 0.039, 0.0395, 0.04,
0.0405, 0.041, 0.0415, 0.042, 0.0425, 0.043, 0.0435, 0.044, 0.0445, 0.045, 0.0455,
0.046, 0.0465, 0.047, 0.0475, 0.048, 0.0485, 0.049, 0.0495, 0.05, 0.0505, 0.051,
0.0515, 0.052, 0.0525, 0.053, 0.0535, 0.054, 0.0545, 0.055, 0.0555, 0.056, 0.0565,
0.057, 0.0575, 0.058, 0.0585, 0.059, 0.0595, 0.06, 0.0605, 0.061, 0.0615, 0.062,
0.0625, 0.063, 0.0635, 0.064, 0.0645, 0.065, 0.0655, 0.066, 0.0665, 0.067, 0.0675,
0.068, 0.0685, 0.069, 0.0695, 0.07, 0.0705, 0.071, 0.0715, 0.072, 0.0725, 0.073,
0.0735, 0.074, 0.0745, 0.075, 0.0755, 0.076, 0.0765, 0.077, 0.0775, 0.078, 0.0785,
0.079, 0.0795, 0.08, 0.0805, 0.081, 0.0815, 0.082, 0.0825, 0.083, 0.0835, 0.084,
0.0845, 0.085, 0.0855, 0.086, 0.0865, 0.087, 0.0875, 0.088, 0.0885, 0.089, 0.0895,
0.09, 0.0905, 0.091, 0.0915, 0.092, 0.0925, 0.093, 0.0935, 0.094, 0.0945, 0.095,
0.0955, 0.096, 0.0965, 0.097, 0.0975, 0.098, 0.0985, 0.099, 0.0995, 0.1, 0.1005,
0.101, 0.1015, 0.102, 0.1025, 0.103, 0.1035, 0.104, 0.1045, 0.105, 0.1055, 0.106,
0.1065, 0.107, 0.1075, 0.108, 0.1085, 0.109, 0.1095, 0.11, 0.1105, 0.111, 0.1115,
0.112, 0.1125, 0.113, 0.1135, 0.114, 0.1145, 0.115, 0.1155, 0.116, 0.1165, 0.117,
0.1175, 0.118, 0.1185, 0.119, 0.1195, 0.12, 0.1205, 0.121, 0.1215, 0.122, 0.1225,
0.123, 0.1235, 0.124, 0.1245, 0.125, 0.1255, 0.126, 0.1265, 0.127, 0.1275, 0.128,
0.1285, 0.129, 0.1295, 0.13, 0.1305, 0.131, 0.1315, 0.132, 0.1325, 0.133, 0.1335,
0.134, 0.1345, 0.135, 0.1355, 0.136, 0.1365, 0.137, 0.1375, 0.138, 0.1385, 0.139,
0.1395, 0.14, 0.1405, 0.141, 0.1415, 0.142, 0.1425, 0.143, 0.1435, 0.144, 0.1445,
0.145, 0.1455, 0.146, 0.1465, 0.147, 0.1475, 0.148, 0.1485, 0.149, 0.1495, 0.15,
0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,
0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45,
0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6

Table S3: Parameter spaces for composite likelihood calculations for independent sweep model simulations
when position of selected site varies

Position of selected site

0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16 0.18, 0.2, 0.22, 0.24, 0.26,

0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58,
0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9,
0.92, 0.94, 0.96, 0.98, 1

10~%, 5 x 10~ %, 0.001, 0.002, 0.004, 0.005, 0.006, 0.008, 0.01, 0.012, 0.014,
0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1, 0.11, 0.12, 0.14, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.5, 0.6
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Table S4: Parameter spaces for composite likelihood calculations for migration model simulations

Position of selected site

0

10~7, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011,
0.012, 0.013, 0.014, 0.015, 0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.028, 0.03,
0.032, 0.034, 0.036, 0.038, 0.04, 0.042, 0.044, 0.046, 0.048, 0.05, 0.052, 0.054,
0.056, 0.058, 0.06, 0.062, 0.064, 0.066, 0.068, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13,
0.14, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6

175, 8x107°,0°%12x10%14x10%1.6x10"% 1.8 x 10°%,
2x107%,22x 1074, 24 x 1074, 2.6 x 1074, 2.8 x 1074,

3x107%,3.2x107% 3.4 x 1074, 3.6 x 1074, 3.8 x 1074,

4 x107*, 8 x 10~%, 0.001, 0.0012, 0.0014, 0.0016, 0.0018, 0.002,

0.0022, 0.0024, 0.0026, 0.0028, 0.003, 0.0032, 0.0034, 0.0036, 0.0038, 0.004, 0.006,

0.196, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Migration source population | 2

Table S5: Parameter spaces for composite likelihood calculations for standing variation model simulations

Position of selected site

0

10~%, 0.0020, 0.0040, 0.0050, 0.0060, 0.0080, 0.0100, 0.0120, 0.0140,
0.0180, 0.0200, 0.0400, 0.0500, 0.0600, 0.0700, 0.0900, 0.1000, 0.1500, 0.2000, 0.3000,
0.4000 0.5000 0.6000

5, 5, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,

t 5500, 6000, 6500, 7000, 7500, 8000, 9000, 10000, 15000, 20000, 30000, 50000,
70000, 9000, 10°
g 1075,107°,107%, 1073, 102

Table S6: Neutral F matrix from 12 scaffolds with no strong signatures of selection in Mimulus guttatus pop-
ulations (Scaffold7 and regions adjacent to scaffolds 1, 4, 8, 47, 80, 84, 106, 115, 129, 148, 198). Populations
1 and 3 are copper tolerant.

Popl Pop2 Pop3 Pop4
Popl 0.1571 0.0266 0.0153 0.0356
Pop2 0.0266 0.1008 0.0000 0.0204
Pop3 0.0153 0.0000 0.1807 0.0179
Pop4 0.0356 0.0204 0.0179 0.1232
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Table S7: Parameter spaces for composite likelihood calculations for Mimulus

215100, 220938, 226775, 232613, 238451, 244289, 250126, 255964, 261802,
Position of selected site 267640, 273477, 279315, 285153, 290990, 296828, 302666, 308504, 309000,
314341, 320179, 326017, 331854, 337692, 343530, 349368, 355205, 361043
0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,

0.011, 0.014, 0.016, 0.019, 0.021, 0.024, 0.026, 0.029, 0.032, 0.034, 0.037
0.039, 0.042, 0.045, 0.047, 0.05, 0.052, 0.055, 0.057, 0.06, 0.08, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6

5, 10, 81, 151, 222, 293, 364, 434, 505, 576, 646, 717, 788, 859, 929, 1000,

¢ 1500, 1607, 1714, 1821, 1929, 2036, 2143, 2250, 2357, 2464, 2571, 2679, 2786,
2893, 3000

g 10-19, 1079, 1075, 107, 109, 107, 10~ %, 103, 102

m 1077, 10-%, 5%, 0.001, 0.005, 0.01, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Migration source population | 1, 3

Table S8: Neutral F matrix from four scaffolds with no strong signatures of selection in Fundulus heteroclitus
populations (Scaffold0, Scaffold1, Scaffold2, Scaffold3)

S1 T1 S2 T2 S3 T4 S5 T5
S1 0.339 0.292 0.315 0.332 0.179 0.229 0.022 0.003
T1 0.292 0372 0304 0.329 0.171 0.218 0.020 0.000
S2  0.315 0.304 0.381 0.384 0.213 0.263 0.053 0.034
T2 0332 0329 0.384 0.451 0.220 0.276 0.055 0.035
S3 0.179 0.171 0.213 0.220 0.198 0.192 0.058 0.044
T3 0.229 0.218 0.263 0.276 0.192 0.272 0.053 0.037
S4 0.022 0.020 0.053 0.055 0.058 0.053 0.142 0.093
T4 0.003 0.000 0.034 0.035 0.044 0.037 0.093 0.142

Table S9: Parameter spaces for composite likelihood calculations for Fundulus

1452, 86658, 171865, 257071, 342277, 427484, 512690, 597896, 683103,
Position of selected site | 768309, 853515, 938722, 1023928, 1109134, 1194341, 1279547, 1364754,
1449960, 1535166, 1620373, 1705579, 1790785, 1875992, 1961198, 2046404,
2131611, 2216817, 2302023, 2387230, 2472436

0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16,
0.18, 0.2, 0.3, 0.4, 0.5, 0.6

S

t 0, 5, 50, 100, 500, 1000, 5000, 107

g 10719, 107°,1078, 1077, 1079, 107°, 10~ %, 1073, 102
m 10~°,107%, 5-%, 0.001, 0.005, 0.01, 0.1, 0.3, 0.5, 0.9, 1
Source population T1, T2, T3, T4
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