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Abstract1

Geographically separated populations can convergently adapt to the same selection pressure. Convergent2

evolution at the level of a gene may arise via three distinct modes. The selected alleles can (1) have3

multiple independent mutational origins, (2) be shared due to shared ancestral standing variation, or (3)4

spread throughout subpopulations via gene flow. We present a model-based, statistical approach that utilizes5

genomic data to detect cases of convergent adaptation at the genetic level, identify the loci involved and6

distinguish among these modes. To understand the impact of convergent positive selection on neutral7

diversity at linked loci, we make use of the fact that hitchhiking can be modeled as an increase in the8

variance in neutral allele frequencies around a selected site within a population. We build on coalescent9

theory to show how shared hitchhiking events between subpopulations act to increase covariance in allele10

frequencies between subpopulations at loci near the selected site, and extend this theory under different11

models of migration and selection on the same standing variation. We incorporate this hitchhiking effect into12

a multivariate normal model of allele frequencies that also accounts for population structure. Based on this13

theory, we present a composite likelihood-based approach that utilizes genomic data to identify loci involved14

in convergence, and distinguishes among alternate modes of convergent adaptation. We illustrate our method15

on genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate16

the adaptation for copper toxicity tolerance in two populations of the common yellow monkeyflower, Mimulus17

guttatus. We show that selection has occurred on an allele that has been standing in these populations prior18

to the onset of copper mining in this region. Lastly, we apply our method to data from four populations19

of the killifish, Fundulus heteroclitus, that show very rapid convergent adaptation for tolerance to industrial20

pollutants. Here, we identify a single locus at which both independent mutation events and selection on very21

young standing variation play a role in adaptation across the species’ range.22

1 Introduction23

Convergent adaptive evolution, where selection independently drives the evolution of the same trait, demon-24

strates the impressive ability of natural selection to repeatedly shape phenotypic diversity (Losos, 2011).25

Many studies have revealed cases of repeated adaptation resulting from changes in the same molecular26

mechanisms across distinct lineages (Stern, 2013; Wood et al., 2005). Here, we use the term convergence to27

define all cases of repeated evolution of similar traits across independent lineages, and do not distinguish28

between convergent and parallel evolution (Arendt and Reznick, 2008). In some cases, these convergent29

adaptive changes are identical at the level of the same orthologous gene or nucleotide (Martin and Or-30

gogozo, 2013), suggesting adaptation may be more predictable and constrained than previously appreciated.31

Studying repeated evolution has long played a key role in evolutionary biology as a set of replicated natural32

experiments to help build comparative arguments for traits as adaptations, and to identify and understand33

the ecological and molecular basis of adaptive traits (Harvey and Pagel, 1991).34

While we often think of convergent evolution among long-separated species, populations of the same35

(or closely-related) species often repeatedly evolve similar traits in response to similar selective pressures36
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(Arendt and Reznick, 2008). Convergent adaptation at the genetic level among closely related populations37

may arise via multiple, distinct modes (see Stern, 2013, for a recent review). Selected alleles present at the38

same loci in multiple populations can have multiple independent mutational origins (e.g. Pearce et al., 2009;39

Chan et al., 2010; Tishkoff et al., 2007). Alternatively, adaptation in different populations could proceed40

by means of selection on the standing variation present in their ancestor (e.g. Colosimo et al., 2005; Roesti41

et al., 2014), or a single allele spread throughout the populations via gene flow (e.g. Heliconius Genome42

Consortium, 2012; Song et al., 2011). Understanding the source of convergent adaptation can aid in our43

understanding of fundamental questions about adaptation. Distinguishing among these modes may provide44

evidence for how restricted the paths adaptation can take are to pleiotropic constraints and if adaptation is45

limited by mutational input (Orr 2005, for review). Additionally, we can improve our understanding of the46

role of standing variation and gene flow in adaptation (Barrett and Schluter, 2008; Hedrick, 2013; Welch and47

Jiggins, 2014).48

With the advent of population genomic data, it is now possible to detect genomic regions putatively49

underlying recent convergent adaptations. A growing number of studies are sequencing population genomic50

data from closely related populations, in which some have potentially converged on an adaptive phenotype51

(e.g. Turner et al., 2010; Jones et al., 2012). Population genomic studies of convergent evolution often52

take a paired population design, sampling multiple pairs of populations that independently differ in the key53

phenotype or environment are sequenced. These studies are usually predicated on finding large effect loci54

which have rapidly increased from low frequency to identify the population genomic signal of selective sweeps55

shared across populations that independently share a selective pressure. Regions underlying convergent56

adaptations can potentially be identified by looking for genomic regions where multiple pairs of populations57

are strongly differentiated (e.g. using FST ) compared to the genomic background. Another broad set of58

approaches identify convergent loci by looking for genomic regions where the populations that share an59

environment cluster together phylogenetically in a way unpredicted by genome-wide patterns or geography60

(Pease et al., 2016; Jones et al., 2012). While these methods have proven useful in identifying loci involved61

in convergent adaptation, currently there are few model-based ways to identify the signal of convergence in62

population genomic data or to distinguish the different modes of convergent adaptation. In the case where63

an allele is shared due to adaptation from standing variation or migration, chunks of the haplotype on which64

the selected allele arose and swept on will also be shared among the populations (Slatkin and Wiehe, 1998;65

Bierne, 2010; Kim and Maruki, 2011; Roesti et al., 2014), providing a useful heuristic for these modes to66

be distinguished from convergent sweeps from independent mutations. We also note there are a variety of67

approaches to detect introgression (see Hedrick, 2013; Racimo et al., 2015; Rosenzweig et al., 2016, for recent68

reviews). However, these methods are not usually focused on detecting sweeps in both populations, but69

rather look for signatures of unusual amounts of shared ancestry between populations. Here, we present70

coalescent theory that leverages these signatures selection has on linked neutral variation in a model-based71

approach. We extend this to a statistical method that utilizes genomic data to identify loci involved in and72

distinguish between modes of genotypic convergence.73

Positive selection impacts neutral diversity at linked loci due to hitchhiking (Maynard Smith and Haigh,74

1974; Kaplan et al., 1989) and can be modeled as an increase in the variance in neutral allele frequencies75

around their ancestral frequencies. We develop coalescent theory to show how shared hitchhiking events76

between subpopulations act to increase covariance in allele frequencies around their ancestral frequencies77

at loci near the selected site, and extend this theory under different models of migration and selection78

on the same standing variation. We incorporate this hitchhiking effect into a multivariate normal model79

of allele frequencies that also accounts for population structure, allowing for the application to data from80

many populations with arbitrary relationships. Based on this theory we present a composite likelihood-based81

approach (Kim and Stephan, 2002; Nielsen et al., 2005; Chen et al., 2010; Racimo, 2016) that utilizes genomic82

single-nucleotide polymorphism (SNP) data to identify loci involved in convergence, and distinguishes among83

alternate modes of convergent adaptation. As these models are also specified by relevant parameters, it is84

possible to obtain estimates for parameters of interest such as the strength of selection, the minimum age85

and frequency of a standing variant, and the source population of the beneficial allele in cases of migration.86

This method should be of wide use with the increase in population genomic samples from across the87

geographic range of a species. Here, we illustrate the utility of our inference method by applying it to88

genome-wide polymorphism data from two distinct cases of convergent adaptation. First, we investigate the89

basis of the convergent adaptation observed across populations of the annual wildflower Mimulus guttatus to90
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copper contaminated soils from two populations sampled near Copperopolis, California (Wright et al., 2015).91

We find selection has been acting on standing variation shared between these populations for a tolerance92

allele present prior to the onset of copper mining in this region. To further exemplify the flexibility of our93

method, we study a more complex population scenario: the rapid adaptation of four populations of killifish94

(Fundulus heteroclitus) to high levels of pollution, sampled across the Eastern seaboard of the United States95

(Reid et al., 2016). We find that even at the level of a single gene, both selection on very young shared96

standing variation and convergent mutation have played a role in adaptation in this species.97

2 Models98

In the following section, we present models for the three modes of genotypic convergent adaptation: (1)99

multiple independent mutations at the same locus, (2) selection on shared ancestral standing variation, and100

(3) migration between populations spreading a beneficial allele. Throughout this section, we compare our101

derived expectations to coalescent simulations using mssel, a modified version of ms (Hudson, 2002) that102

allows for the incorporation of selection at a single site. This simulation program takes as input the frequency103

trajectory of the selected allele for each population. We specify stochastic trajectories of the selected allele104

in populations following our three modes of convergence (see Appendix A.2 for simulation details). We105

focus on a set of four populations as shown in Figure 1 where populations 2 and 3 are adapted to a shared106

novel selection pressure and populations 1 and 4 are in the ancestral environment. The average coancestry107

coefficient values across simulations, estimated as described in Appendix A.1, are plotted for 100 bins of108

recombination distance away from the selected site, which occurs at distance 0. The results for all three109

models are shown in dashed lines in Figure 3.110

2.1 Null Model111

We aim to model the variances and covariances of the neutral allele frequencies within and between popula-112

tions due to convergent sweeps. First, we must specify a null model that accounts for population structure.113

Populations will have some level of shared deviations away from an ancestral allele frequency, ε, due to shared114

genetic drift. Let xi represent the present day allele frequency in population i (Figure 1). We denote the115

deviation of this frequency from the ancestral frequency by ∆xi = xi−ε. Genetic drift, in expectation across116

loci, does not change the population allele frequencies (i.e. E[∆xi] = 0) as an allele increases or decreases117

in frequency with equal probability. Drift however does act to increase the variance in this deviation across118

loci, with this variance increasing as more time is allowed for drift. The variance in the change of neutral119

allele frequencies in population i is120

Var[∆xi] = E[∆x2
i ] = ε(1− ε)fii (1)

where fii can be thought of as the genetic drift branch length leading from the ancestral population to121

population i (Nicholson et al., 2002), specifying how much allele frequencies in population i deviate from122

their ancestral values (Figure 1). By rearranging Equation 1, fii can be interpreted as the population-specific123

FST for population i relative to the total population, here represented by the ancestral population (Wright,124

1943, 1951; Weir and Hill, 2002; Nicholson et al., 2002).125

Populations covary in their deviations from ε as some populations are more closely related due to shared126

genetic drift resulting from shared population history or gene flow. The covariance in this deviation between127

populations i and j is128

Cov[∆xi,∆xj ] = E[∆xixj ] = ε(1− ε)fij (2)

where fij is interpreted as the coancestry coefficient between populations i and j, and can be thought of as129

the shared branch length connecting i and j to the ancestral population (Figure 1).130

Other natural interpretations of fii and fij follow from these definitions. Specifically, these values are131

probabilities of a pair of lineages being identical by descent relative to the ancestral population, i.e. the132

probability two sampled lineages coalesce before reaching the ancestral population (see Thompson, 2013, for133

a recent review). We briefly review this coalescent interpretation in Appendix A.1. For fii these two lineages134

are sampled both from population i. For fij , one lineage is sampled from population i and the other from135

population j. We note that in practice we do not get to observe the ancestral frequency, nor may the history136
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of our populations be well represented by a tree-like structure. However, for the sake of clarity, we proceed137

with these assumptions and deal with these complications in the implementation of the method.138

Figure 1: Present day population allele frequencies at a given neutral locus (x1–x4 for populations 1–4,
respectively) are derived from ancestral allele frequency ε. Each population has a coancestry coefficient
proportional to the amount of drift experienced since the split from the ancestral population. f11 is shown
for population 1. Here, populations 1 and 2, and 3 and 4 share drift relative to the ancestral population and
have nonzero coancestry coefficients f12 and f34, respectively. Blue diamonds represent the novel selective
environment and red circles the ancestral environment.

We define a matrix, F, for K populations as a K ×K matrix of coancestry coefficients. For example, for
the four populations shown in Figure 1, this matrix takes the following form:

F =


f11 f12 0 0

f12 f22 0 0

0 0 f33 f34

0 0 f34 f44


Populations i and j that split after the ancestral population and share no additional drift (e.g. populations139

1 and 3) have fij = 0 by definition.140

2.2 Incorporating selection141

Positive selection impacts neutral diversity at linked loci due to hitchhiking. As the beneficial allele increases142

rapidly in frequency, so does the haplotype on which it arose. Neutral alleles further from the selected site143

may recombine off the selected background during the sweep, whose duration depends on the strength of144

selection. The effect of hitchhiking on the changes of linked neutral allele frequencies is similar to that of145

genetic drift. Hitchhiking does not alter the expected frequency change of linked neutral alleles across loci146

(i.e. E[∆xi] = 0) because the selected mutation arises on a random haplotypic background. Moreover,147

Hitchhiking increases the variance in the deviation in neutral allele frequencies away from their ancestral148

values (Var[∆xi]) at linked sites (Gillespie, 2000). Shared hitchhiking events between subpopulations will149

act to increase covariance in allele frequency deviations between subpopulations (Cov[∆xi, ∆xj ]) at loci150

near the selected site. This effect of hitchhiking on linked diversity,within and among populations gives us151

a way to distinguish among alternate modes of convergent adaptation.152

We define new matrices of coancestry coefficients that incorporate selection in addition to drift as F(S).153

In the following section, we use a coalescent approach to derive coancestry coefficients within and between154

populations, f
(S)
ii and f

(S)
ij , for the three modes of genotypic convergent adaptation (Figure 2). In Appendix155

A.5 we derive some of the same results forwards in time to help guide the reader’s intuition. Note that all156

our models of selection are phrased in terms of distortions to the neutral matrix F; therefore, the precise157

source of the neutral population structure (e.g. whether its due to shared population history or migration)158

is relatively unimportant to our approach. A deeper knowledge of the basis of this structure does add to the159

interpretation of the results, as we explain in the discussion.160
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(a) Independent mutations model (b) Standing variant model (c) Migration model

Figure 2: Trajectories of the beneficial allele (red) for the three modes of convergent adaptation. Populations
i and j are under selection with present-day allele frequencies xi and xj at a neutral locus, derived from an
ancestral population with allele frequency ε. The populations share some amount of drift proportional to fij
before reaching the ancestral population. (2a) Beneficial mutations, indicated by the orange triangles, occur
independently in the selected populations after they have become isolated. Selection begins, indicated by the
blue triangles, once the beneficial allele is present in the population. The beneficial allele sweep to fixation
in ts generations. (2b) The beneficial allele is standing at frequency g in the ancestral population. After the
selected populations split, it is still standing at frequency g for t generations prior to the onset of selection.
(2c) The beneficial allele arises in population i and begins sweeping in population i. Meanwhile, there is a
continuous low level of migration from population i into population j. The beneficial allele establishes in j
after δ generations, where it is swept to fixation in ts generations.

2.2.1 Independent mutation model161

We first consider the case when a beneficial allele arises independently via de novo mutations at the same162

locus, or tightly linked loci, in both of the selected populations. We expect hitchhiking to increase the163

variance in neutral allele frequency deviations around the selected site in both populations. However, as the164

sweeps are independent and there is no gene flow between populations during or after the sweep, we expect165

no covariance in the neutral allele frequency deviations between these populations, beyond that expected166

under neutrality due to shared population history prior to the introduction of the beneficial allele.167

Moving backward in time, sampled neutral lineages linked to the selected site will be forced to coalesce168

if both lineages do not recombine off the sweep. We define the probability that a single neutral allele fails to169

recombine off the background of the beneficial allele during the sweep phase as y, which we can approximate170

as171

y ≈ e−rts/2 (3)

where r is the recombination rate between the neutral locus and selected site, and ts is the amount of time172

the sweep phase takes (Figure 2a). When the beneficial allele arises from a new mutation and selection is173

additive, ts ≈ 2log(4Nes)/s, where s is the selection coefficient for the heterozygote, such that heterozygotes174

experience a selective advantage of s and homozygotes 2s (Gillespie, 2000; Barton, 1998). The factor of 4Nes175

is due to the fact that our new mutation, if it is to establish in the population, rapidly reaches frequency176

1/(4Nes) in the population and then increases deterministically from that frequency (Maynard Smith, 1971;177

Barton, 1998; Kim and Nielsen, 2004).178

The coancestry coefficient in population i that experiences a sweep, f
(S)
ii , is defined as the probability179

that two lineages sampled from population i coalesce either due to the sweep phase or neutrally before180

reaching the ancestral population. With probability y2, both lineages fail to recombine off the beneficial181

background during the sweep, and they will be forced to coalesce. If one or both lineages recombines off the182

sweep (with probability 1− y2), they can coalesce before reaching the ancestral population with probability183

fii. Combining these we find184

f
(S)
ii = y2 + (1− y2)fii (4)
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(a) Independent mutations model
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(b) Standing variant model
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(c) Migration model

Figure 3: We calculated the average coancestry co-
efficient values across 1000 runs of simulations for
each of 100 bins of distance away from the selected
site to compare our simulation results (dashed lines)
to our theoretical expectations (solid lines). (3a)
Average coancestry coefficients under the indepen-
dent mutations model (Ne = 100, 000) within a se-
lected population (population 2) with varying s. Also
shown is the coancestry coefficient between selected
populations which in this case is 0, the neutral ex-
pectation. (3b.) Coancestry coefficients under the
standing variation model between selected popula-
tions with varying amount of time beneficial allele
has been independently standing in populations (t).
The coancestry coefficient within a single population
is also shown for t = 50. For all, Ne = 10, 000,
g = 0.001, s = 0.01. (3c) Coancestry coefficients un-
der the migration model, within both selected popula-
tions (source population 2 and recipient population 3)
as well as between source and recipient (2,3) and be-
tween recipient and a non-selected population (1,3).
Here we are showing one set of parameters (s = 0.01,
m = 0.001, Ne = 10, 000) as estimates do not vary
dramatically with changing m (see Figure S2).
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For the coancestry coefficient between two selected populations i and j, we can calculate the probability185

two lineages, one sampled from population i and the other from population j, coalesce. When the sweeps186

are independent, the lineages can only coalesce with probability fij before reaching the ancestral population,187

as they have no probability of coalescing during the sweep phases which have independent origins. Thus,188

f
(S)
ij = fij (5)

Comparison to simulated data In Figure 3a we show the case of convergence due to independent189

origins of the beneficial allele. As we predicted there is no additional coancestry between the selected190

populations. Additionally, we show how the coancestry within a selected population decays with distance191

from the selected site for a range of values for the strength of selection. These coancestry values decay to the192

neutral expectation at other regions of the genome. With larger s, this decay is slower as the sweep occurs193

more rapidly and there are fewer chances for recombination to occur during this time.194

2.2.2 Standing variant model195

We turn now to the case of a sweep shared between populations i and j due to selection acting on shared196

ancestral variation (Figure 2b). Our model is appropriate for cases where the standing variation from which197

the sweep arises was previously neutral or was maintained in the population at some low frequency by198

balancing selection. Let the beneficial allele be standing at frequency g in the ancestral population. We199

assume that the beneficial allele frequency does not deviate much from that of the ancestral population such200

that it is still g in the daughter populations prior to selection. Selection favoring the beneficial alleles begins201

t generations after the populations split and the beneficial allele reaches fixation in both populations after202

ts generations (see Figure 2b).203

We first consider the coalescent process of two lineages within a single selected population. Again, y is204

the probability that a neutral lineage fails to recombine off the background of the beneficial allele during205

the sweep phase. Given that the beneficial allele is increasing from frequency g, y takes the same form as206

Equation3, where now ts ≈ 2 log(1/g)/s. If both lineages fail to recombine off the beneficial background207

during the sweep, there is a probability of coalescing during the standing phase that is higher than the208

probability of two neutral lineages randomly sampled from the population coalescing. Following from our209

assumptions during the standing phase, the rate at which two lineages coalesce within a population is210

1/(2Neg) per generation. Alternatively, a lineage can recombine off in the standing phase onto the other211

background with probability r(1− g) ≈ r per generation. As these are two competing exponential processes,212

the probability two lineages coalesce before either recombines off the beneficial background can be simplified213

to214

P(coalesce in standing phase) =
1

1 + 4Nerg
(6)

as described by Berg and Coop (2015). If either neutral lineage recombines off the beneficial background215

before they coalesce, the probability of coalescing with the other lineage before reaching the ancestral popu-216

lation can be treated as the coancestry coefficient associated with that particular portion of the population217

tree.218

Taking these approximations into account, we derive a coancestry coefficient for a neutral allele in pop-219

ulation i that experiences selection from standing variation as220

f
(S)
ii = y2

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fii

)
+ (1− y2)fii (7)

The first term corresponds to both lineages failing to recombine off the beneficial background during the221

sweep phase, which puts them both on the same background as the beneficial allele in the standing phase.222

Now, the two lineages can either coalesce in the standing phase or recombine off of the background of the223

beneficial allele where they can coalesce neutrally before they reach the ancestral population. Alternatively,224

one or both lineages can recombine off during the sweep phase and again they can coalesce neutrally.225

Populations that share a sweep due to shared standing ancestral variation will have increased covariance226

in the deviations of neutral allele frequencies around their ancestral means around the selected site since227

they will have a shared segment of the swept haplotype. From a coalescent perspective, this occurs because228
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two lineages sampled from each population have a higher probability of coalescing if they stay on the229

beneficial background during the sweep and standing phases than two lineages sampled randomly between230

the populations.231

The probability that a single lineage does not recombine off onto the non-beneficial background during232

the standing phase for t generations can be approximated as233

rt = (1− r(1− g))t ≈ e−rt (8)

The coancestry coefficient between populations i and j is now234

f
(S)
ij = y2

(
r2
t

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fij

)
+ (1− r2

t )fij

)
+ (1− y2)fij . (9)

This derivation follows from that of f
(S)
ii in Equation 7, but now incorporates the additional probability r2

t235

of both lineages failing to recombine off the beneficial background during their independent standing phases236

for time t.237

These results hold when we have a simple tree as in Figure 1. However, for more complex models, it238

is necessary to incorporate a model that has the standing allele spreading by migration from some source239

population to recipient populations t generations in the past. See A.3 for details. This model differs from the240

migration model presented in the next section in which we assume a continuous rate of migration throughout241

the duration of the sweep and that the variants sweep as soon as they are established in the population. In242

this standing case with a source of the standing variant, moving backwards in time we assume that the allele243

is standing for t generations in a population after the sweep and before the beneficial lineage migrates back244

instantly into a specified source population (see Figure 11). This is done to formally specify the changes245

in coancestries between selected and non-selected populations as well as between selected populations when246

there are multiple pairs to generate self-consistent covariance matrices. Biologically, it naturally captures247

the case where the allele is shared between the populations due to migration but is standing for sometime248

before it sweeps.249

Comparison to simulated data In Figure 3b we show comparisons of simulations to show the fit of250

our predictions to simulations with adaptation from standing variation. As the duration of the independent251

standing phases, t, increases, the coancestry at linked neutral alleles between selected populations decreases.252

Forward in time, this has the interpretation that the longer the beneficial allele is standing in the populations,253

the shorter the shared haplotype between the populations will be due to independent recombination events254

before selection begins. In the case that the beneficial allele has been standing for a very long time (t→∞)255

before selection occurs, this additional covariance will reduce to zero as in the independent sweeps case256

(Equation 5). Conversely, if the standing variant is very young (t → 0), the decay in covariance between257

populations takes the form of the variance within populations (Equation 7) which, as we will see in the next258

section, looks similar to the pattern generated under the migration model.259

2.2.3 Migration model260

We now consider the case where the selected allele is spread across sub-populations by migration. This261

scenario has been studied by a number of authors (Slatkin and Wiehe, 1998; Santiago and Caballero, 2005;262

Kim and Maruki, 2011), and our approach here follows similar lines to that of Kim and Maruki (2011). Let263

there be a single origin of the beneficial allele, which occurs in population i. We assume a low, continuous level264

of migration during the sweep, with a proportion m of individuals in population j coming from population265

i each generation. We say the sweep began in population j at time ts generations in the past and at time266

ts + δ for population i (Figure 2c). Kim and Maruki (2011) found that the mean delay time, δ, between the267

two sweeps can be approximated by268

δ ≈ 1

s
log
(

1 +
s

m

)
. (10)

The coancestry coefficient of the source population, f
(S)
ii , follows that of a population experiencing an269

independent sweep from new mutation (Equation 4). To derive the coancestry coefficient of the recipient270
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population, f
(S)
jj , we first need to consider the fate of two lineages sampled in population j at the selected271

site. Two events can occur if we trace the lineages of two beneficial alleles back in time: either the two272

lineages coalesce in population j and a single lineage migrates back into population i or the two lineages273

independently migrate back into the source population and coalesce there. We define the probability of these274

two events as Q and 1−Q, respectively. We use the approximation275

Q ≈ 1

1 + 4Nm
(11)

(see Pennings and Hermisson, 2006). Assuming m is small, such that a beneficial allele sampled at present276

day in population j migrates back into population i approximately ts generations in the past, the probability277

of a linked neutral allele recombining off during the sweep phase in population j can be approximated by y.278

If the lineage migrates back into population i before it recombines off the beneficial background, there is an279

additional time δ in population i for recombination to happen. So, there is an additional probability, e−rδ,280

of recombination of our linked neutral allele off the beneficial background.281

Thus, the coancestry coefficient for the recipient population is now282

f
(S)
jj = Q

(
y2 + (1− y2)fjj

)
+ (1−Q)

(
y2e−2rδ + y2(1− e−2rδ)fii + 2(1− y)yfij + (1− y)2fjj

)
(12)

The terms in this approximation correspond to the following coalescent scenarios: First, if two lineages283

sampled in population j coalesce before migrating (with probability Q), then linked neutral alleles can284

coalesce either during the sweep if neither lineage recombines off the beneficial background or neutrally if285

either lineage recombines off. Alternatively, if the two lineages fail to coalesce before one or both migrates286

(w.p. 1−Q), there are four ways linked neutral alleles can coalesce:287

1. Both lineages fail to recombine off the beneficial background during the sweep and are forced to288

coalesce during the sweep in population i. The factor e−2rδ represents the additional opportunity for289

recombination when both lineages have migrated back into population i.290

2. Both lineages stay on the beneficial background in population j (w.p. y2) but one or both lineages291

recombines off in population i (w.p. 1 − e−2rδ) and they coalesce neutrally in the source population292

with probability fii before reaching the ancestral population.293

3. Either lineage recombines off the beneficial background while it is still in population j and the two294

lineages coalesce neutrally in the shared drift phase of populations i and j, with probability fij before295

reaching the ancestral population.296

4. Both lineages recombine off during the sweep phase while they are still in population j and they coalesce297

neutrally with probability fjj .298

When a beneficial allele is shared between populations i and j via migration, there will be additional299

covariance in the deviations of linked neutral allele frequencies from their ancestral means. In this case,300

there are three ways a lineage sampled from population i and a lineage sampled from population j can301

coalesce. They are forced to coalesce during the sweep if both lineages fail to recombine off the background302

of the sweep, which occurs with probability y2e−rδ. Alternatively, the lineage sampled in population j can303

recombine off the beneficial background before it migrates back to source population i, in which case the304

lineages can coalesce neutrally before reaching the ancestral population in their shared drift phase, with305

probability fij . Lastly, if the lineage sampled in population j migrates back into population i then the306

two sampled neutral lineages can coalesce neutrally in population i with probability fii if the lineages don’t307

coalesce due to the sweep (i.e. either recombines off in time tS or δ). Thus, in the case of continuous308

migration the coancestry coefficient between the source and recipient population is309

f
(S)
ij = y2e−rδ + (1− y)fij + y(1− ye−rδ)fii (13)

To fully specify the coancestry matrix with selection, we need to take into account the effect migration310

has on non-selected populations. Specifically, the coancestry coefficients between recipient and non-selected311

populations are impacted since there is some probability linked neutral lineages will migrate from the recipient312
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population into the source population backwards in time. Let population k be a non-selected population.313

Now, the coancestry coefficient between populations j and k can be expressed as314

f
(S)
jk = (1− y)fjk + yfik (14)

This is informative about the direction of migration. First, there is no impact of selection on the re-315

lationship between the source and non-selected populations. Additionally, the sweep shared via migration316

will induce additional coancestry between j and k if k is more closely related to our source population (e.g.317

population 1 in Figure 1 if population 2 is the source). The opposite is true if k is more closely related to318

our recipient population (e.g. population 4). Now, there is a deficit in the background level of coancestry319

between populations j and k near the selected site.320

Comparison to simulated data In Figure 3c we show our results above compared to simulations with321

migration, for a single set of parameters (s = 0.01, m = 0.001). Here, we have migration occurring from322

population 2 into population 3. We show the four relevant coancestries as a function of distance from the323

selected site: the covariance within source (f
(S)
22 ), within recipient (f

(S)
33 ), between source and recipient (f

(S)
23 ),324

within recipient and a non-selected population (f
(S)
13 ). We see the coancestry within the recipient population325

decays more rapidly than coancestry within the source population. This fits our expectations as there326

is some probability a lineage will, backwards in time, migrate back to the source population, decreasing327

the probability of coalescing before reaching the ancestral population when m is small. As m increases,328

this relationship changes (Figure S2). We also see increased coancestry near the selected site between the329

selected populations. The pattern of decay varies from that observed in our standing variation model,330

except for when t is small. Additionally, we see increased coancestry between the recipient population and331

a non-selected population that decays with recombinational distance to their neutral expectation. Note,332

the reverse, coancestry recovering to the neutral expectation with recombinational distance is observed for333

populations that initially are more related to the recipient population (i.e. population 4), is also seen (Figure334

S3a). The coancestries between the source population and non-selected populations are unaffected (Figure335

S3b). Together, these observations using information from non-selected populations help distinguish possible336

source populations.337

3 Inference338

We have described how selection at linked loci affects the matrix of coancestry coefficients, allowing us to339

parameterize the variance and covariance in neutral allele frequency deviations within and between popu-340

lations. To estimate the likelihood of our data under convergent adaptation models, we need a probability341

model for how allele frequencies depend on these variances and covariances. Neutral allele frequencies across342

K populations can approximately be modeled jointly as a multivariate normal distribution around the an-343

cestral allele frequency, ε, with covariance proportional to the coancestry coefficients (Nicholson et al., 2002;344

Weir and Hill, 2002; Coop et al., 2010; Samanta et al., 2009). Specifically,345

~x ∼ N
(
ε~1, ε(1− ε)F

)
(15)

where ~x is a vector of population frequencies and F is the K by K matrix of coancestry coefficients without346

selection.347

Above we demonstrated that we can generate coancestry matrices F(S) to explain the coancestry between348

multiple populations due to neutral processes and various modes of convergent adaptation. F(S) is a function349

of the neutral coancestry, (F) the model of convergence (M) and its parameters (ΘM ), and the recombination350

distance a neutral site is away from a selected site (rl). Thus, modeling neutral allele frequencies as multi-351

variate normal with covariance proportional to this new coancestry matrix, we can calculate the likelihood352

of observed data a given distance away from the selected site under a specific model of convergence as353

P (~xl | rl, F, M, ΘM ) ≈ N
(
~xl | εl~1, εl(1− εl)F(S)(rl, F, M, ΘM )

)
(16)
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In practice, we do not know the true ancestral mean at a given locus, εl, so we use the mean of the354

present day population allele frequencies and calculate likelihoods of mean-centered allele frequencies and355

coancestry matrices (we account for this mean centering in appendix A.2.6). We also do not know the true356

neutral coancestry matrix, F, but estimate it from deviations of allele frequencies from sample means across357

the entire genome. We also incorporate the effects of sampling into this variance-covariance matrix. See358

appendix A.1 for details.359

3.1 Composite likelihood framework360

We calculate the likelihood of all data (D`) in a large window around the selected site (`) under a given361

model of convergent adaptation (M), with its associated parameters (ΘM ), as the product of the marginal362

likelihoods for sites all distances away from the selected site. This composite likelihood is used as an363

approximation to the total likelihood of all sites, but is not a proper likelihood as neighboring sites are364

correlated due to shared histories. Moving Lleft sites to the left of the proposed selected site and Lright sites365

to the right,366

LC(M, ΘM ; D`) =

Lleft∏
i=1

P (~xi |M,F
(S)
M (ri, F, M, ΘM ))

Lright∏
j=1

P (~xj | F(S)
M (rj , F, M, ΘM )) (17)

where ri is the genetic distance from site i to `, and similarly for rj . We can also obtain a composite367

likelihood of our data under a neutral model (N), LC(N ; D`), which is only parameterized by F. This368

framework enables us to:369

1. Identify the maximum likelihood location of the selected locus in a region by varying the location of the370

proposed selected site. For a given region and model of convergent adaptation we vary the location of371

the selected site, taking the maximum composite likelihood over a grid of parameters. We take as our372

best estimate of the location under a given model of convergence, the maximum composite likelihood373

location of the selected site
(̂̀= argmax

`, ΘM

LC(M, ΘM ; D`)
)
.374

2. Determine the parameter(s) which maximize our composite likelihood estimates under a given model375

at a given location of the selected site (`). We obtain these maximum composite likelihood estimate376

(MCLE) parameters by evaluating the composite likelihood across a grid of parameters for a given377

location of the selected site
(
Θ̂M = argmax

ΘM

LC(M, ΘM ; D`)
)
.378

3. Distinguish between modes of convergence, and neutrality, in a genomic region by comparing the379

maximum likelihood under various models of convergent evolution. At a given location of the se-380

lected site (`) we compare the maximum composite likelihood of each model to the neutral model381 (
log
(
LC(M, Θ̂M ; D`)

/
LC(N ; D`)

))
.382

This composite likelihood ignores the correlation in allele frequencies (linkage disequilibrium) between383

neutral sites so the composite likelihood surface will be too peaked. A number of authors have taken384

composite likelihood approaches to inferring a range of population genetic parameters (e.g. Hudson (2001);385

see Larribe and Fearnhead (2011); Varin et al. (2011) for a broader statistical views on composite likelihood).386

In the setting of inferring genome-wide parameters, e.g. parameters of neutral demographic models, the387

maximum composite likelihood parameter estimates are known to be consistent in the limit of many unlinked388

genomic regions (Wiuf, 2006). While in general composite likelihood methods perform well, in all of these389

settings typical measures of uncertainty of parameters (confidence intervals) and model choice methods (e.g.390

AIC) are undermined due to the over peakiness of the likelihood.391

Composite likelihood approaches have also been used in the context of selective sweeps, starting with392

Kim and Stephan (2002) who take a composite likelihood formed like Equation 17 of the product of marginal393

probabilities of allele frequencies within a single population moving away from a proposed selected site (an394

approach expanded on by Kim and Nielsen, 2004; Nielsen et al., 2005; Chen et al., 2010; DeGiorgio et al.,395

2014; Racimo, 2016). Our method is most closely related to that of Chen et al. (2010) and Racimo (2016)396

who look at allele frequencies across two or three populations respectively, and look for the signal of a sweep397
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in one of the populations (or in the case of Racimo, 2016, in the ancestor of a pair of populations). We note398

that we have a further layer of abstraction over these previous composite likelihood methods. Extending Kim399

and Stephan (2002), previous methods have calculated the likelihood of the sample frequency considering400

a binomial draw from some underlying population frequency, which is naturally modeled as being bounded401

between 0 and 1. We, however, use a multivariate normal likelihood to model our sample frequencies, which402

does not bound allele frequencies between 0 and 1. This further abstraction is justified by the fact that by403

using the multivariate normal approach we are able to handle arbitrarily large number of populations with404

arbitrary population structure and to flexibly model different forms of selection into an easily extendable405

form to the covariance matrix. Future work could potentially concentrate on hybrid approaches, combining406

the flexibility of our approach with the realism of previous approaches.407

3.2 Inference method on simulated data408

To test our method, we utilized the datasets generated using mssel (as discussed above with details in409

Appendix A.2) to see if we could recover the parameters and convergent mode used for simulation. The410

neutral coancestry matrix F was estimated using data from 1000 runs with no selection (as described in411

Appendix A.1). We assume that the model parametersNe and r are known and we set these at the values used412

to generate the simulations. We calculated the composite log-likelihoods for each of the simulated datasets413

under the following four models: neutral (no selection), independent sweep model, standing variation model,414

and migration model with the beneficial allele originating in population 2. We calculate the likelihoods415

under a dense grid of selection coefficients (s), migration rates (m), and standing times (t). In the standing416

variation model, the standing frequency (g) is held at 0.001. See Appendices A.2.4 and A.2.5 for details.417

We repeat this procedure for each of 100 runs of all simulated datasets. To compare between models, we418

calculate the composite log-likelihood differences between the true model and all other models including419

the neutral model, at the maximum composite likelihood parameter estimate (MCLE) obtained under each420

model.421

3.2.1 Parameter estimation422

Location of selected site To explore our method’s ability to localize the selected site, we vary the true423

location of the selected site simulating under the independent mutation model. We estimate the maximum424

composite likelihood location under the independent sweep model over a fine grid of locations and selection425

coefficients. The method is able to correctly identify the location of selection (Figure 4a), with higher426

accuracy when the true location of the site is in the middle of the window. The method does show an edge427

effect when the true location of the selected site is at the edge of the region of interest perhaps because we428

do not get to see the decay of coancestry on both sides of the selected site. Additionally, we are able to429

correctly estimate the strength of selection while allowing the location of the selected site to vary (Figure430

S1a) and there is no correlation between these joint parameter MLCEs (Figure S1b).431

Independent mutations model To verify our ability to recover the selection coefficient, we simulated432

under the independent mutation model for a range of values for s, holding the location of the selected site433

at its true value. We are able to recover the parameters used for simulation (Figure 4b). The ability to434

correctly estimate s breaks down for large enough s, given a fixed window-size around the selected site and435

rBP , since we will not observe the full decay in coancestry.436

Standing variant model To explore our inference using the standing variant model, we hold the location437

of the selected site at its true location and take as our estimate of s and t their values at the joint maximum438

composite likelihood. Under the standing variant model, we are again able to accurately estimate s (Figure439

S6). The inference of s and g simultaneously is somewhat more confounded (Figure 5). How the signal of440

the sweep within populations decays, as we move away from the selected site, is primarily determined by s441

and g (see Equation 7). While a higher frequency of the standing variant (g) can lead to a quicker decay,442

this can be partially compensated for the strength of the sweep being stronger (higher s, lower ts). This443

explains the J-shaped ridge in the likelihood surfaces for s and g, seen in Figure 5. Therefore, in practice444

we can often infer a lower bound s and an upper bound for g, but not find the precise values of each when445
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inference is performed under the standing variation model. We are able to accurately estimate the time the446

beneficial allele has been standing in the independent populations prior to selection, t, as shown in Figure447

4c. Our inference of t is relatively free of confounding with s and g, as t primarily governs the decays in448

coancestry between populations, making it separable from the scale of the sweep within populations.449

Migration model We explored our inference under the migration model of parameters m and s, again450

fixing the location of the selected site and taking the joint maximum composite likelihood estimate. We are451

able to correctly estimate s (Figure S4b). However, we obtain poor estimates of the rate of migration, m452

(Figure S4a). This is perhaps unsurprising as the coancestry coefficients under the migration model depend453

only weakly on m. We obtain fairly bimodal estimates of m that are usually either very low (10−5 to 10−3)454

or high (1). As the true value of m increases, we see fewer estimates of small m and more estimates of m = 1.455

These estimates of m seem to be a true reflection of the patterns in the simulated datasets. Specifically, this456

effect is mostly observed in the variance within the recipient population as Equation 12 depends on m in457

both Q and δ. High m estimates correspond to datasets with lower empirical levels of coancestry within the458

recipient than datasets where low estimates of m were obtained (Figure S5). We believe that the bimodality459

results from stochasicity in how many lineages ancestral to the sample migrate before they recombine off the460

sweep in the recipient population. While our estimates of m are noisy, the migration model does capture461

key features of the spread of adaptive alleles by migration, allowing it potentially to be distinguished from462

other modes of convergence. We now turn to the performance of the method in distinguishing modes of463

convergence.464
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Figure 4: Maximum composite likelihood parameter estimates calculated under model used for simula-
tion. We vary the true value of the parameter used for simulations along the x-axis and show the MCLE for
each of 100 simulations (points). Crossbars indicate first and third quartiles with second quartiles (medians)
as the horizontal line. The true values of the parameters are marked with dashed, black lines.
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Figure 5: Composite log-likelihood surface of the strength of selection (s) and the frequency of standing
variant (g) for three simulations (with Ne = 10,000, t = 500, g = 0.001, s = 0.01) to exemplify confounding
of s and g under the standing variant model. Blue diamond pluses represent the true location of the
parameters used for simulation. Blue circles represent MCLE.

3.2.2 Model comparison465

To test the ability of our method to distinguish between modes of convergence, we calculated the maximum466

composite log-likelihood of 100 simulations for each dataset generated under both the true model and all467

other models with a fixed, fine grid of parameter values. The location of the selected site is fixed at its true468

location. The results are summarized in Figure 6, which shows histograms of the difference in maximum469

composite log-likelihoods calculated under a given model relative to the true model used for simulation. For470

example, in evaluating the independent mutations model, we present the difference in the composite log-471

likelihoods calculated for data simulated under the independent mutations model for all other models and472

the composite log-likelihood calculated for the true independent mutations model. Thus, values less than473

zero indicate that the correct model has a higher maximum composite log-likelihood than the true model.474

Conversely, values greater than zero indicate the incorrect model of convergence has a higher composite475

log-likelihood than the true model. For inference under the migration model, we fix the source to be the476

true source of the selected allele when simulating under the migration model, and to an arbitrary one of the477

two selected populations when performing inference on simulations under other models.478

Neutral model We first compare the composite likelihoods calculated for data generated with no selection.479

For the selection models, we fix the location of the selected site. The distributions of the resulting composite480

log-likelihood ratios are shown in Figure 6a. As expected for a composite likelihood, the composite log-481

likelihood ratio between a convergent selection model and the neutral model with no selection are inflated482

compared to those expected under the usual asymptotic χ2 distribution. However, these likelihood ratio483

differences are relatively small compared to those we observed when simulating under alternative models.484

This is because when s→ 0 in all models with selection, the coancestries converge to our neutral expectations.485

Indeed when we look at the MCLE for the strength of selection (ŝ) under the incorrect models with selection,486

we see that for all nearly simulations ŝ is close to zero 0 (Figure 7a). Overall, this suggests that our null487

model is reasonably well calibrated, given the limitations of composite likelihood schemes.488

Independent mutations model As shown in Figure 6b, we are able to correctly distinguish between489

a neutral model of no selection and the true independent mutation model by at least 160 composite log-490

likelihood units even for relatively weak selection (s = 0.005). This difference increases as the true value of491

s increases. This same relationship is true when comparing the migration model to the true independent492
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mutation model. Therefore, we have good ability to distinguish the independent sweeps model from neutral493

and migration model over a range of selection coefficients.494

Our ability to distinguish between the standing variation model and the true independent mutation model495

is less clear. When the true s is small, the two models have comparable composite log-likelihoods, with496

differences ranging from -3 to 20. This difference decreases, with higher likelihood for the true independent497

mutation model more frequently, as s increases. This result makes sense when we look into the maximum498

likelihood estimate of the parameter t (Figure 7b). We obtain estimates of t approaching our highest499

value on the grid (106). Thus, we may not be able to distinguish between the cases where the origins of500

the beneficial allele are truly independent or whether selection has been on a single variant that has been501

standing independently for a long time as these two models converge for large t.502

Standing variant model Simulating under the standing variation model, the picture is more complicated.503

Like the other models, we can exclude the neutral model, although note that this would become challenging504

when the allele has been standing at high frequencies, g � 0 (Berg and Coop, 2015). When the independent505

standing time, t, is small, we see little difference in the composite log-likelihoods between the true standing506

model and the migration model. As t increases, we see a larger difference between these two models. However,507

as t increases, the composite log-likelihood difference between the independent mutation model and standing508

variation model tightens around 0. These results fit our expectations as we know the models look similar509

in the extreme values of t, the migration model when the standing time is small and independent mutation510

model when the standing time is large, respectively.511

Migration model We are able to distinguish the migration model from the neutral and independent512

sweeps model. However, the standing variation and true migration model are again somewhat confounded.513

The values of the composite log-likelihood differences range from -44 to 123 when m = 10−4 and this range514

narrows closer to 0 as m increases. These results fit our understanding when we again look at the MCLEs515

of t in the standing model. Now, the estimates are at t = 0 (Figure 7c) indicating it is hard to distinguish516

between convergence that is due to migration or selection on a shared standing variant that has only been517

standing for a very short time, as they result in similar patterns in decay of coancestries.518

Summary We can clearly distinguish the outcomes of the migration and independent sweeps models from519

each other. Both models are hard to distinguish from the standing variation case, but in very different520

regimes of the standing variation model. The estimated time the variant has been standing (t) for is a521

helpful indicator of the mode of convergence, with very low estimates meaning that the standing model522

is indistinguishable from the migration model, while very high estimates mean that the standing model is523

indistinguishable from the independent sweeps model. When data is simulated under the standing model524

with intermediate values of t, we can distinguish this from both independent sweeps and recent migration525

models. This is because an intermediate value of t generates a covariance pattern not well explained by either526

other model. Therefore, while comparing the maximum composite likelihoods between models is useful, the527

estimated value of t is useful in judging the different models.528
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(b) True model: independent mutations
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(c) True model: standing variant
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Figure 6: Histograms of the differences in max-
imum composite log-likelihoods calculated un-
der a given model relative to the true model used
for 100 simulations. Parameter values used to sim-
ulate are noted, varying along the vertical dimen-
sion. Values less than zero, marked with solid line,
indicate the true model has a higher maximum com-
posite likelihood than alternative model. Conversely,
values greater than zero indicate the alternative, in-
correct model of convergence has a higher compos-
ite log-likelihood than the true model. For (6b)
Ne = 100, 000, (6c)Ne = 10, 000, s = 0.01, g = 0.001,
(6d) Ne = 10, 000, s = 0.01.
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Figure 7: Histograms of MCLE for parameters estimated under incorrect models.

4 Applications529

4.1 Copper tolerance in Mimulus guttatus530

The study of adaptation to toxic mine tailings is a classic case of rapid local adaptation to human altered531

environments (MacNair et al., 1993). We apply our inference method to investigate the basis of the convergent532

adaptation seen between populations of the annual wildflower Mimulus guttatus to copper contaminated soils533

near Copperopolis, CA. Wright et al. (2015) sequenced pooled samples from 20-31 individuals from two mine534

and two off-mine populations from two distinct copper mines in close geographic proximity (all populations535

within 15 km of each other) to 34-72X genome-wide coverage for each population. They observed elevated536
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genome-wide estimates of genetic differentiation between mine and off-mine populations (FST M/OM= 0.07537

and 0.14), with similar levels of differentiation between the mine populations (FST MM= 0.13). Only a small538

number of regions had high levels of differentiation. Here, we focus on the region with the strongest signature539

of differentiation between the two mine/off-mine pairs found on Scaffold8 by Wright et al. (2015). They540

observed low genetic diversity within each mine population in this region compared to off-mine populations.541

When the mine populations are compared to each other, they have elevated differentiation in this region,542

except for in the center where they share a nearly identical core haplotype. This pattern suggests the sweeps543

may not have been independent within each mine population, and that the sweep is possibly shared either544

due to migration or selection of shared standing variation.545

We estimate the F matrix using SNPs from twelve scaffolds that showed no strong signals of selection546

(shown in Table S6). Using all SNPs in the 169.3 kb Scaffold8, we apply our inference framework to both547

identify the locus under selection and distinguish between modes of convergence between the two mine548

populations. We move the proposed selected site along this scaffold and calculate the composite likelihood549

under our three modes of convergent adaptation: (1) both mine populations have had independent mutations550

at the same locus, (2) the beneficial allele was standing in the ancestor of the two mine populations and551

selection occurred independently once the mine populations were isolated, and (3) the beneficial allele arose552

in one of the mine populations and spread to the other via migration. We estimate the maximum composite553

likelihood over a dense grid of parameters used to specify these models (Table S7). For the migration model,554

we allow both adapted populations to be possible sources. We use an Ne = 7.5 × 105, calculated from the555

observed pairwise diversity π = 4Neµ using a mutation rate of µ = 1.5× 10−8 and rBP = 4.72× 10−8 (Lee,556

2009).557

In Figure 8a, we summarize the results, showing the difference in maximum composite log-likelihoods558

between a given model of convergence and the neutral model of no selection as a function of the proposed559

selected sites along the scaffold. We see the three likelihoods peaking when the selected site is approximately560

at position 302665-308504 and that the model with the highest likelihood is selection on shared ancestral561

standing variation. Focusing on this model at the most likely selected site, we can obtain parameter estimates562

for the strength of selection (s), standing frequency of the beneficial allele (g), and the amount of time that563

the beneficial allele has been standing in both mine populations after they have been isolated but prior to564

selection (t). This time also has the interpretation of the minimum age of the standing variant as it has565

been standing for at least this amount of time and potentially longer in the ancestral population. We see the566

maximum composite log-likelihood is obtained when this time is approximately 430 generations (Figure 8b).567

As copper mining started in 1861 in this region (Aubury 1908), this suggests the tolerance allele was present568

prior to the onset of mining. The strength of selection and starting frequency of the allele are confounded569

(Figure 8c) as expected. Our maximum composite log-likelihood parameter estimates suggest selection was570

relatively strong (>0.02) and the allele was not standing at very high frequencies (< 10−3) when selection571

began.572

We also ran the standing variation model with one of the two copper-mines as the source (as detailed in573

Appendix A.3). The standing variant likelihood surfaces, over selected sites, using either copper population574

were identical to the case of the standing variant model with no source (see Figure S7a). Therefore, there is575

little information about the source of the standing variant. This is perhaps unsurprising as there is relatively576

little hierarchical structure among the populations. The composite maximum likelihood estimate of t is577

higher for the models of standing variation with a source, than the simple model of standing variation (see578

Figure S7b). This is likely because making one of the populations a source of the standing variant increases579

the covariance around the selected site among the selected populations, as described in Appendix A.3, and580

so the model compensates by increasing the rate of decay of this covariance.581
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Figure 8: Inference results
for Mimulus guttatus cop-
per tolerance adaptation on
Scaffold8. (a) Composite log-
likelihood ratio of given model
relative to neutral model of no
selection as a function of the pro-
posed selected site. (b, c) MCLE
of parameters in standing varia-
tion model with position 308503
as selected site. (b) Profile
composite log-likelihood surface
for minimum age of standing
variant, maximizing over other
parameters, with peak at 430
generations (c) Composite log-
likelihood surface for strength
of selection versus frequency of
standing variant. Blue circles
represents point estimate of joint
MCLE (ŝ = 0.024, ĝ = 10−4). t
is held constant at MCLE of 430
generations.
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4.2 Industrial pollutant tolerance in Fundulus heteroclitus582

We demonstrate how our method can be extended to more complex population scenarios. Populations of583

the Atlantic killifish, Fundulus heteroclitus, have repeatedly adapted to typically lethal levels of industrial584

pollutants (Nacci et al., 1999, 2010). Reid et al. (2016) have sequenced 43-50 individuals from four pairs of585

pollutant-tolerant and sensitive populations along the U.S. Atlantic coast (see Figure 9a), sequencing each586

individual to 0.6-7X depth. The southern pair of populations form a distinct clade relative to the northern587

populations, consistent with a phylogeographic break centered on New Jersey (Duvernell et al., 2008).588
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Reid et al. (2016) found that a number of the strongest signals of recent selection are shared between all589

tolerant populations, suggesting genotypic convergent adaptation. We focus our method on their strongest590

signal of selection, Scaffold9893 (GPS 009145616.1, the scaffold containing the AIP gene), where all four pairs591

of tolerant/sensitive populations sampled show high levels of differentiation. Here, we test the hypotheses592

that all four tolerant populations show convergent adaptation due to our three previous modes of independent593

mutation, migration, or selection on shared ancestral variation. For our standing variation model, we specified594

the source of the standing variant (as described in Appendix A.3). We also test the hypotheses that there595

is an independent mutation in the southern tolerant population while the three northern populations are596

sharing a sweep at this locus, either due to migration between populations or selection on variation present597

in the ancestor of the Northern populations. This latter set of hypotheses is consistent with the fact that598

Reid et al. (2016) detect a shared haplotype in the three northern tolerant populations while a different599

haplotype appears to have swept in the southern tolerant population. We estimated the F matrix from four600

scaffolds that show no strong signal of selection, and it is shown in Table S8. We use Ne = 8.3 × 106 and601

rBP = 2.17× 10−8 (N. Reid personal communication).602

The results are summarized in 9b. For the models where all four tolerant populations share the selected603

allele by either migration or standing variation, we plot the maximum composite log-ikelihood for the most604

likely source at each location of the selected site (to reduce the number of lines plotted, see Figure S8 for605

the full figure). We see the model with the highest composite log-likelihood is when convergence is due to606

selection on shared standing variation in the North and an independent mutation in the southern tolerant607

population. This occurs when the selected site is at approximately position 1960000 on the scaffold. This608

model has the highest composite log-likelihood when the source population of the standing variant is T3,609

southernmost population sampled in the North (composite log-likelihood = 547060), but this model may not610

be distinguishable from that where the source is T2 (545580). Under this model, we obtain the maximum611

composite log-likelihood estimate of the minimum age of the standing variant, t, of eight generations (Figure612

10a). This implies the beneficial allele has been standing for a negligible time independently in the northern613

populations prior to selection or that migration is assisting the spread of this allele as both scenarios lead614

to similar decays in shared coancestry as we move away from the selected site. Lastly, again, we see partial615

confounding of the strength of selection and the frequency of the standing variant (Figure 10b) but our616

results indicate selection has been very strong (>0.3) and the allele was initially at a very low frequency617

(< 10−6).618
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(a) Map of sampled killifish popula-
tions with phylogenetic tree, showing
that the southern pair (T4, S4) are more
distant than other populations. Tree
is estimated from genome-wide biallelic
SNP frequencies using Phylogeny Infer-
ence Package (PHYLIP) Gene Frequen-
cies and Continuous Characters Max-
imum Likelihood (CONTML) module
(see Reid et al. (2016) for more informa-
tion).
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(b) Composite log-likelihood ratio of given model relative to neutral
model of no selection as a function of the proposed selected site. Closed
points represent models where all four populations have same conver-
gent mode while open points represent Southern population (T4) hav-
ing an independent mutation at the proposed selected site. We show
likelihoods maximizing over possible sources, but all results can be
seen in Figure S8.
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Figure 9: Inference results for Fundulus heteroclitus pollutant tolerance adaptation on Scaffold9893
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(a) Profile composite log-likelihood surface for minimum
age of standing variant, maximizing over other param-
eters, showing the beneficial allele has been standing
for a very short amount of time in our three northern
populations (8 generations).
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(b) Composite log-likelihood surface for strength of se-
lection versus frequency of standing variant. Blue cir-
cle represents point estimate of joint MCLE (ŝ = 0.3,
ĝ = 10−8). t is held at MCLE of 8 generations.

Figure 10: The composite likelihood surfaces for the parameters for Fundulus heteroclitus convergent data in
combined standing variation and independent sweep model with position 1961198 on Scaffold9893 as selected
site and population T3 as source.

5 Discussion619

In this paper we have presented a novel approach to identify the loci involved in convergent adaptation and to620

distinguish among the three ways genotypic convergence can arise: selection on (1) independent mutations,621

(2) standing variation present in the ancestor of the selected populations, and (3) beneficial alleles introduced622

via migration. We leverage the effects selection has on linked neutral sites via a coalescent-based model623

approach that captures many of the heuristics that have been used in previous studies. This approach also624

allow us to potentially distinguish between more subtle models, such as the origin and the direction of gene625

flow of a beneficial allele, since they are explicitly modeled in our framework. Our approach takes advantage626

of information among all of the population samples simultaneously while accounting for population structure.627

Therefore, it naturally accommodates information from across multiple samples, rather than just pairs of628

populations, and thus offers a number of advantages in identifying the mode of convergence over other629

approaches. We provide the relevant R code for our approach in https://github.com/kristinmlee/630

dmc.631

Distinguishing among models We have demonstrated that our method is able to accurately distinguish632

among modes of convergent adaptation, across a relatively wide parameter space, in simulated data. However,633

we do see some confounding of models in particular regions of parameter space. In particular, we see the634

patterns generated from a model of selection on ancestral standing variation can look like our expectations for635

the other two modes of convergent adaptation for extreme values of the parameter t, the time the beneficial636

allele has been standing time independent in the selected populations. When t is small, we see confounding637

between the standing model and a model of convergence due to gene flow. The two models are very similar638

since in our standing variation model, as t→ 0, the covariance in the deviations of a neutral allele between639

selected populations approaches the variance within a selected population (the strong overlap in models is640

especially true when we have a source for the standing variant). Intuitively this indicates that the beneficial641
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allele is on a haplotype that is mostly shared among the selected populations. This can be due to a very642

young standing variant shared amongst very closely-related populations from an ancestral population, a643

standing variant that was shared by gene flow before selection, or by the selected haplotype quickly moving644

across populations by gene flow after selection began (which are all closely related models, see Welch and645

Jiggins, 2014, for additional discussion).646

To illustrate distinguishing between these possibilities we now revisit our applications. The Northern647

tolerant killifish populations, under a standing variation model, have a very low estimate of t. We can likely648

rule out the sweep occurring in an ancestor of the tolerant Northern populations, as both T1 and T2 are sister649

populations to different sensitive populations. We note that in cases where two populations that are sister650

share a sweep, we can extend our models to test if the sweep is ancestral or truly convergent. Furthermore,651

given the very low estimate of t the allele cannot have been standing since the common ancestral population652

of T1, T2, T3. Therefore, the allele must be shared by gene flow among the three populations and it seems653

likely that the migration of the allele occurred either after selection began in one of the populations or very654

shortly before. Interestedly, however, they find no other signals of admixture from migration elsewhere in the655

genome between Northern tolerant populations. The case for adaptation from ancestral standing variation656

is clearer for the Mimulus copper tolerance example. Here, the estimate of t is much greater than zero and657

indeed older than the putative selection pressure. Additionally, the standing variant model considerably658

outperforms the migration model (Figure 8a). That said, given that the level of neutral differentiation of the659

mine populations very likely reflects much more than 430 generations of drift, it seems likely that this allele660

is shared between the mine populations by gene flow but that the allele was standing in both populations for661

some time before selection began (as described by the standing model with a source model, see Appendix662

A.3 and Figure Figure S7a). Thus, distinguishing among these models is possible in some cases, but may663

require extra knowledge of population history.664

Conversely, when t is large, we see a collapse of our standing model onto a model of convergence due to665

independent mutations in our selected populations. This intuition holds forwards in time since as t → ∞666

generations, recombination in our isolated populations independently breaks down the similarity of the667

haplotypes carrying the beneficial mutation. Thus, when selection for the standing variant begins, even668

tightly-linked, hitchhiking neutral alleles will not be shared between populations more than expected by669

chance. This is also the case when beneficial alleles arise multiple times independently. For example, in the670

case of the killifish, it is formally possible that the signal of independent selection in the Southern tolerant671

population is actually due to a very old standing variant shared with the Northern populations where there672

is almost no overlap between the Southern and Northern tolerant populations in the haplotype the selected673

allele is present on, even close to the selected site. As the precise functional variant(s) in this swept region are674

currently unknown (Reid et al., 2016) it is hard to totally rule out this very old standing variant hypothesis.675

In other cases it may be possible to rule out the standing variant hypothesis with very large parameter676

estimates of t if we know more about the population histories (i.e. our selected populations split more677

recently than the standing time). Additionally, it may be possible to totally rule out the standing variant678

hypothesis in cases where if the functional variants can be tracked down to clearly independent genetic679

changes (e.g. Tishkoff et al., 2007). However that degree of certainty may be difficult to achieve in many680

cases.681

Extendibility and flexibility of our approach We show the applicability of our method on two em-682

pirical examples of convergent adaptation: the evolution of copper tolerance in Mimulus guttatus and of683

pollutant tolerance in Fundulus heteroclitus. The latter exemplifies the extendibility and flexibility of our684

approach. As the number of selected populations increase, our potential number of hypotheses grows since685

any grouping of two or more populations could share selection due to migration or standing variation. Ad-686

ditionally, with more populations, we have more potential sources of the beneficial allele in the migration687

model. Our model could also be extended to have selection occurring in some of the adapted populations688

and the neutral model in others, to identify genomic regions that are not experiencing convergent adaptation689

among all populations sharing the selected environment. These models are all relatively easy to implement690

into our framework; however, the sheer number of possible hypotheses as the number of populations grows691

will likely call for some more systematic way of implementing these models and exploring their relationships.692
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Caveats and possible extensions Studying repeated evolution has long played a key role in evolutionary693

biology as a tool to help identify the ecological and molecular basis of adaptation. It is worth noting with694

this approach, we are able to identify sweeps in the same region and whether they appear to be shared or695

independent. However, in the scale of an entire genome, it may be possible for two, unrelated sweeps to696

overlap. In the case of adaptation via independent mutations across multiple populations, it is especially697

hard to determine whether selection at the same site was acting on the same phenotype. It is potentially698

more plausible to claim that the phenotype and selection pressure are shared among populations in cases699

where the swept haplotype is shared. Ultimately, in demonstrating convergence, we will have to rely on700

a range of evidence. Shared sweeps can offer one substantial piece of evidence, particularly when we are701

studying recent adaptation to a strong selective pressure that is distinct to the adapted populations.702

We assume a single selected change underlies the sweep within a population, and that recombination is703

free to break down associations between neutral alleles and this selected variant. If, for instance, selection704

acts on an epistatic, haplotypic combination of allele that sweeps, a long haplotype could be shared between705

populations not due to recent migration but because selection acts against recombinants breaking up the706

haplotype (Kelly and Wade, 2000). Convergent adaptations due to shared inversions also violate the as-707

sumptions of our method. Inversions can repress recombination across the entire inversion (see Kirkpatrick,708

2010, for a recent review). Inversions significantly alter both neutral and selective model expectations (e.g.709

Guerrero et al., 2012) and could lead to long shared haplotypes among populations even if the shared inver-710

sion is old. It may be possible to use our approach to model the decay in coancestries outside of the inverted711

region, but this requires knowledge of the inversion and its break points a priori and a detailed knowledge712

of recombination rates surrounding the inversion.713

Additionally, our framework could be extended in various ways to both leverage more information and714

model more biologically relevant or interesting scenarios. There is more information to be gained from715

haplotypes and associations between sites that we fail to include in our composite likelihood when we sum716

across information from individual sites. Additionally, models of migration that include selection against717

maladaptive migrants (Barton and Bengtsson, 1986; Charlesworth et al., 1997; Roesti et al., 2014) will be718

important to consider.719

Finally, here we use this approach to analyze genomic regions that we a priori assume to be under720

convergent selection. We are currently working on ways to efficiently extend this approach to the application721

of genome-wide data to scan for genomic regions exhibiting convergence.722

Final thoughts With the falling cost of population genomic sequencing, it is increasingly easier to obtain723

genome-wide polymorphism data from across many populations showing an adaptation to the same selective724

pressure. We hope that with the advent of these data in a wide range of systems and methods like those725

outlined here, we can gain insights into fundamental questions regarding the nature of adaptation and726

convergence.727
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A Appendix735

A.1 Coalescent intepretation of covariances and F-matrix estimation736

Let xil be the allele frequency of allele 1 in population i at locus l, and that the frequency of this allele in
the ancestral population is εl. Consider the covariance Cov(∆xil,∆xjl) over replicates of the drift processes
at locus l. We can write

Cov[(xilεl), (xil − εl)] = E[(xil − εl)(xjl − εl)] (A.1)

= E[xilxjl]− ε2l (A.2)

which follows from the fact that E[xil] = E[xjl] = εl. We can interpret E[xilxjl] as the probability that we737

sample a single allele in i and an allele in j and that they both are of type 1. Taking that interpretation,738

assuming that there is no mutation, E[xilxjl] is the probability that, tracing back a coalescent lineage from739

i and a lineage from j, both lineages trace back to type 1 alleles in the ancestral population. Let our pair740

of lineages drawn from i and j coalesce with probability fij . If our lineages coalesce before reaching the741

ancestral population then they will be identical by descent, and share the ancestral choice of allele. Therefore,742

we can write743

E[xilxjl] = (1− fij)ε2l + fijεl (A.3)

Then we can rewrite the covariance744

Cov(∆xil,∆xjl) = fijεl(1− εl), (A.4)

and for the variance we set i = j. Thus, under a model of genetic drift alone, we can intepret the entries of745

our covariance matrix as expressions of the underlying coalescent probabilities.746

Estimating F In the main text we assume that we have estimates of our neutral coancestry matrix F. We747

now describe how we obtain these. From above, Equation A.3, the expectation of xilxjl across loci is748

El[xilxjl] = El[(1− fij)ε2l + fijεl] (A.5)

Therefore we can write estimate fij as749

fij =
El[xilxjl]− El[ε2l ]

El[εl(1− εl)]
(A.6)

We can obtain an unbiased estimate of El[ε2l ] and El[εl(1− εl)] using the sample allele frequencies from two750

populations on either side of the root of the population phylogeny (see Supplement of Lipson et al., 2013).751

Let i′ and j′ be a pair of populations that span the root of the population tree, then we can use the estimate752

El[εl(1− εl)] = El[
1

2
xi′l(1− xj′l) +

1

2
(1− xi′l)(xj′l)] (A.7)

Likewise, we use the estimate753

El[ε2l ] = El[
1

2
xi′l(xj′l) +

1

2
(1− xi′l)(1− xj′l)] (A.8)

An estimate of the term El[xilxjl] can be obtained by using the sample frequency of allele 1 in populations754

i and j. However, as we only have a sample from the population frequency we need to account for the finite755

sampling bias within populations (i = j). Let n be the sample size in population i, then756

fii =
El[x2

il]
n
n−1 − El[xil] 1

n−1 − El[ε2l ]
El[εl(1− εl)]

(A.9)

where our x are now sample frequencies. There is no finite-sample size correction for fij , i 6= j and Equation757

A.6 can be used directly.758

In our simulations to show the effect of selection on the coancestry coefficients (Figure 3), we estimate fij759

in bins of fixed genetic size moving away from the selected site. We do this by approximating the expectations760

in the numerator and denominators in Equations A.6 and A.9 by the average of the expression over all of761

the SNPs that fall in a given genetic distance bin over all of the relevant simulations. To account for biases762

induced by defining the allele of interest, we randomize the reference allele at each SNP.763
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A.2 Simulation implementation details764

We perform coalescent simulations using mssel, a modified version of ms (Hudson, 2002) that allows765

for the incorporation of selection at single site (the code for this is provided in https://github.com/766

kristinmlee/dmc). The program allows the user to specify the frequency trajectory of the selected allele767

through time across populations, this trajectory is then used to simulate genetic data under the coalescent768

model conditioning on this trajectory (using the sub-divided coalescent model Hudson and Kaplan (1988);769

Kaplan et al. (1991)). We generate stochastic trajectories for the selected allele across populations and770

describe the simulation process below. We simulate multiple instances of the stochastic trajectories and771

average our results across datasets generated for these trajectories. We focus on a set of four populations772

with relationships as shown in Figure 1. Populations 2 and 3 are adapted to a shared novel selection pressure773

and populations 1 and 4 are in the ancestral environment.774

The original implementation of mssel assumes only a single origin of the selected allele, which occurs775

moving backward in time when the frequency of the derived allele goes to zero in the final population it776

segregates in. We modified the mssel source code directly to accommodate multiple origins of the selected777

allele as is necessary in the independent sweep model. We do so by allowing an independent origin of the778

selected allele in any population where the frequency of the derived selected allele goes to zero, if that779

population currently has a migration rate of zero to any other population containing the selected allele.780

A.2.1 Generating stochastic trajectories for the selected allele781

We generate stochastic trajectories for the selected allele to be used as input for mssel to generate sequence782

data for given convergent adaptation scenarios. We simulate the allele frequency trajectory for the selected783

allele forward in time using a normal deviate approximation to the simulation the Wright-Fisher diffusion.784

Specifically, given the frequency of the beneficial allele at time t, X(t), we simulate its frequency at time785

t+ ∆t according to786

X(t+ ∆t) ∼ N(µS(X(t))∆t, σ2(X(t))∆t) (A.10)

where µS( ) and σ2( ) are the infinitesimal mean and variance of the Wright-Fisher diffusion. We set787

∆t = 1/(2N), representing one Wright-Fisher generation on the diffusion time-scale (2N generations). We788

set X(0) = g, the initial frequency of the beneficial allele. When selection starts from a new mutation,789

g = 1/(2N).790

For all our models, the infinitesimal variance is791

σ2(X(t)) = X(t)(1−X(t)), (A.11)

representing the effect of genetic drift.792

For populations not impacted by migration, we condition our trajectory on the beneficial allele going to793

fixation forward in time. To do this we use the conditional infinitesimal mean794

µS(X(t)) =
2NsX(t)(1−X(t))

tanh(2NsX(t))
(A.12)

(see Przeworski et al., 2005; Berg and Coop, 2015, for previous applications). We simulate this process795

forward in time till fixation is reached.796

Migration model In the case of our migration model, there is one way migration from population i into j.797

The trajectory of Xi is simulated first forwards in time, conditioning on fixation, using the above approach.798

We then simulate the frequency in population j starting from Xj(0) = 0, with the infinitesimal mean799

µS(Xj(t)) = 2NsXj(t)(1−Xj(t)) + 2Nm(Xi(t)−Xj(t)) (A.13)

(expanded from Ewens, 2004). We simulate the process forward in time until the selected allele reaches800

fixation in both populations. The first population to reach fixation is held at frequency 1 until the other801

population fixes for the beneficial allele.802
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Standing variation model. We define the standing variation trajectory as having three phases, the803

neutral phase, the standing phase, and the selected phase. To specify a trajectory in which the beneficial804

allele has been standing at frequency g for time t, we simply hold the allele frequency constant for this805

amount of time. We simulate a stochastic neutral trajectory of our beneficial allele from frequency g to 0806

backwards in time according to807

X(t−∆t) ∼ N(µN (X(t))∆t, σ(X(t))∆t) (A.14)

using the infinitismal mean conditional of the neutral allele going to loss808

µN (X(t)) = −X(t) (A.15)

(see Przeworski et al., 2005; Berg and Coop, 2015, for previous applications). We simulate the selection809

phase forward in time for 2 log(1/g)/s generations. If the beneficial allele has reached fixation before this810

time, it is held constant at frequency 1 for the remaining time. If not, the trajectory is simply stopped at811

this time. This allows for the interpretation of the standing time and the time of the onset of selection to812

be the same throughout simulations. For the whole trajectory of a beneficial allele, we paste together these813

three components: neutral increase of allele from frequency 0 to g, the standing phase at frequency g for814

time t generations, and the selective phase. For populations not experiencing selection, the beneficial allele815

is kept at frequency g for the entire length of the trajectory.816

A.2.2 Details of coalescent simulations817

In this section we give the details of the coalescent simulations, including the mssel command lines. The818

mssel input can be interpreted as follows,819

./mssel nsam_tot nreps nsam_anc nsam_der trajFile locSelSite -t θ -r ρ nsites820

-I npops nAnc_pop1 nDerv_pop1 ... nAnc_popi nDerv_popi821

For all of the simulations we generate neutral allele frequency data for 10 samples from each of 4 popula-822

tions. The populations are related to each other as shown in Figure 1. Note, we did 1000 replications of the823

simulations for parameters used to generate comparisons of average simulations coancestry coefficients com-824

pared to theoretical expectations. 100 replications were done for simulations used for parameter estimates825

and model comparisons. For simulations used for both, the first 100 runs were used.826

Independent sweep model. We generated beneficial allele frequency trajectories under four different827

selection coefficients: s = [0.005, 0.01, 0.05, 0.1] under the independent sweep model with Ne = 100, 000. We828

set r, the per generation probability of cross-over between ends of the simulated locus, to 0.005. The neutral829

mutation rate, µ, for the entire locus is the same as r. mssel input for all independent sweep model is of the830

following form with different trajectory files for each s,831

./mssel 40 1000 20 20 ind_sel0.1_stochastic.traj 0 -t 2000 -r 2000 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.05 3 4 -ej 0.05 2 1 -ej 0.07 4 1

We also simulate the same population structure with no selection to generate data to estimate the neutral832

coancestry matrix, F, using ms as follows833

./ms 40 1000 -t 200 -r 2000 1000 -I 4 10 10 10 10 -ej 0.05 3 4 -ej 0.05 2 1 -ej 0.07 4 1834

Standing variation model. With s = 0.01 and g = 0.001, we generated beneficial allele frequency835

trajectories for standing times t = [50, 250, 500, 1000, 5000] generations under the standing variation model836

with Ne = 10, 000. Our t references the time that the populations have been independent. Therefore,837

we adjusted the split times to ensure that the t of interest corresponded to the duration of time that the838

selected populations had the standing variant prior the populations joining in the ancestral population. The839

population split times were determined to ensure selection started after the populations were completely840

isolated and to maintain a similar ratio of time for 4 independent populations to 2 ancestral populations.841

We again set r = µ = 0.005. The ms input was as follows,842
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./mssel 40 1000 20 20 sv_sel0.01_g0.001_t50_stochastic.traj 0 -t 200 -r 120 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.0346 2 1 -ej 0.0346 3 4 -ej 0.03575 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t250_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.039 3 4 -ej 0.039 2 1 -ej 0.0408 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 2 1 -ej 0.04 3 4 -ej 0.047 4 1

./mssel 40 100 20 20 sv_sel0.01_g0.001_t1000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.04 3 4 -ej 0.04 2 1 -ej 0.0595 4 1

./mssel 40 1000 20 20 sv_sel0.01_g0.001_t5000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.135 2 1 -ej 0.135 3 4 -ej 0.1595 4 1

We also simulated under two additional selection coefficients, s = [0.001, 0.05], keeping t = 500 and843

g = 0.001.844

./mssel 40 100 20 20 sv_sel0.001_g0.001_t500_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.3455 3 4 -ej 0.3455 2 1 -ej 0.3578 4 1

./mssel 40 100 20 20 sv_sel0.05_g0.001_t500_Ne10000_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.00695 3 4 -ej 0.00695 2 1 -ej 0.01935 4 1

Again, neutral regions were simulated in ms using the same population structure (i.e. each parameter845

set had its own neutral data generated).846

Migration model. Lastly, we simulated under the migration model with m = [0.0001, 0.001, 0.01, 0.1],847

holding s = 0.01 for Ne = 10, 000. Again, we simulated 10 samples from 4 populations related to each other848

as specified in Figure 1. Now, in mssel, we specify migration to start just prior to origin of the beneficial allele849

in the source population. We set population 2 to be the source and have 4Nem migrants from population 2850

into population 3 each generation. We again set r = µ = 0.005. Thus,851

./mssel 40 1000 20 20 mig_sel0.01_mig1e-04_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 4

./mssel 40 1000 20 20 mig_sel0.01_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 40

./mssel 40 1000 20 20 mig_sel0.01_mig0.01_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 400

./mssel 40 1000 20 20 mig_sel0.01_mig0.1_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.07 2 1 -ej 0.07 3 4 -ej 0.1 4 1
-em 0.059 3 2 0 -em 0 3 2 4000

We also simulated under two additional selection coefficients, s = [0.005, 0.05], keeping m = 0.001.852

./mssel 40 100 20 20 mig_sel0.05_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.021 2 1 -ej 0.021 3 4 -ej 0.03 4 1
-em 0.014 3 2 0 -em 0 3 2 40

./mssel 40 100 20 20 mig_sel0.005_mig0.001_stochastic.traj 0 -t 200 -r 200 10000
-I 4 10 0 0 10 0 10 10 0 -ej 0.12 2 1 -ej 0.12 3 4 -ej 0.17 4 1
-em 0.11 3 2 0 -em 0 3 2 40

Neutral regions were again simulated using ms. Each set of parameters has its own neutral data generated853

as the migration rate impacts neutral coancestry as well.854

A.2.3 Interpretating mssel output855

The output from mssel and ms is in the form of haplotypes for each of the sampled chromosomes at polymor-856

phic sites in addition to their positions on a scale of (0, 1). We use this to calculate sample allele frequencies857
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at each site for each population. Prior to performing further estimations or analyses with these neutral allele858

frequencies, we randomize the reference allele so that there is no bias resulting from which allele was called859

ancestral or derived. We exclude sites where the average allele frequencies across populations are less than860

5% or greater than 95%.861

A.2.4 Composite likelihoods of simulated data under all models details862

We calculated the composite log-likelihoods of each the simulated datasets under all models, including the863

neutral model, with the same parameter space shown in Table S1.864

A.2.5 Maximum likelihood estimate of parameters from simulated data under correct model865

We also calculated the composite log-likelihoods of each the simulated datasets under the correct model used866

to generate the data now with a more dense grid of parameters to obtain better estimates of the MCLE of867

each parameter. We allowed g to vary in the calculations of the MCLEs under the standing variation model.868

See Table S2, Table S4, Table S5.869

A.2.6 Inference details: mean-centering allele frequencies and covariances, sample size cor-870

rection, and speed-ups871

Given that we do not know the true ancestral mean at locus l, εl, we use the mean of the present-day sample872

allele frequencies at this locus, x̄l = 1
k

∑K
i=1 xi,l. When mean-centering, we lose a degree of freedom so in873

calculating the likelihood it is necessary to drop information from one population. Since the information874

from the dropped population is incorporated in the mean, the choice of the dropped population is arbitrary.875

In matrix form, the mean-centered allele frequencies with one dropped population can be expressed as876

~x′i = T~xi (A.16)

where T is an K − 1 by K matrix with K−1
K on the main diagonal and − 1

K elsewhere. Prior to mean-877

centering, we randomize the reference allele at each SNP to account for biases induced by defining the allele878

of interest.879

Now, we model the mean-centered allele frequencies as multivariate normal around mean zero with880

covariance proportional to a mean-centered parameterized covariance matrix (F(S)′) as881

~xl
′ ∼ N

(
~0, x̄l(1− x̄l)F(S)′

)
(A.17)

where we use the average present day allele frequency across populations at the locus, x̄l, as an estimate of εl882

in the site-specific term in the covariance. We note that x̄l(1− x̄l) is a slightly downwardly biased estimate883

of ε(1− ε), but for our purposes it seems sufficient to include this term as a locus-specific adjustment to the884

expected covariance.885

To obtain the corresponding mean-centered covariance matrix, dropping the same population, we can886

apply the following matrix operations,887

F(S)′ = TF(S)T>. (A.18)

this new matrix is K − 1 by K − 1 and full rank.888

Before mean-centering, F(S), we apply a sample size correction to correct for the finite sampling bias.889

We add 1/ni to the diagonal where ni is the sample size in population i. We take twice the number of890

diploid individuals sampled in population i as ni for data applications. In simulations, we use the number of891

chromosomes sampled in population i as ni. Note that both this mean-centering and sample size correction892

is also preformed on the neutral matrix, F before likelihood calculations under a neutral model with no893

selection.894

To decrease some of the computational time involved in our likelihood calculations, we precompute the895

mean-centered covariance matrices with selection, F(S)′, for given bins of distance away from a putative896

selected site. We first divide our distances in our window into 1000 bins and take the midpoint of the897

distances in these bins to calculate F(S)′ as this matrix is a function of distance. To avoid the costly step898

of recomputing the corresponding inverses and determinants needed for likelihood calculations, we do this899
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step first and use these values for all SNPs in a given bin, and store them and reuse them over all locations900

of the selected site.901

Thus, we calculate the likelihood of mean-centered allele frequencies, ~xl
′, given our model M and its902

parameters ΘM , a given locus l as903

P (~x′l | F
(S)′ (rl,M,ΘM ) =

exp(− 1
2 ~xl
′>(F(S)′)−1(x̄l(1− x̄l))−1 ~xl

′)√
2πk(x̄l(1− x̄l))k det F(S)′

(A.19)

where k = K − 1, the rank of matrix F(S)′.904

A.3 Standing variant model with a source population905

When there are multiple selected populations and they do not follow a bifurcating tree structure, it is906

necessary to incorporate a model that has a source population for the standing variant to have self-consistent907

mean-centered covariance matrices.908

Let population l be a selected population and the source of the beneficial allele. In all other populations,909

the beneficial allele is standing for time t generations at frequency g before the lineage returns to the910

source population where it still standing at frequency g (see Figure 11). We can define pairwise coancestry911

coefficients for all pairs of populations under this model. Let populations i and j represent populations that912

experience selection and population k be any unselected population.913

Figure 11: Trajectories of the beneficial allele (red) for the standing variant model with a source population.
Populations l and i are under selection with present-day allele frequencies xl and xi at a neutral locus,
derived from an ancestral population with allele frequency ε. The populations share some amount of drift
proportional to fil before reaching the ancestral population. The beneficial allele is standing at frequency
g in the source population, l. It migrates into population i from l,where it is standing at frequency g for t
generations prior to the onset of selection, indicated by the blue triangles.

Since population l is the source, its variance follows the same form as Equation 7.914

f
(S)
ll = y2

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− y2)fll (A.20)

All other selected populations have a modified variance since lineages that fail to recombine off the915

beneficial background during the sweep and fail to coalesce or recombine during the standing phase return916
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to the source population. Thus,917

f
(S)
ii = (1− y)2fii + 2y(1− y)(rtfil + (1− rt)fii) + y2

(
e−t(2r+

1
2Neg )

( 1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− e−t(2r+

1
2Neg ))

1

1 + 4Nerg
+
(

(1− e−t(2r+
1

2Neg ))
4Nerg

1 + 4Nerg
− (1− e−t(r+

1
2Neg ))

4Nerg

1 + 2Nerg
rt

)
fii

+ (1− e−t(r+
1

2Neg ))
4Nerg

1 + 2Nerg
rtfil

)
(A.21)

There is additional coancestry between pairs of selected populations. This takes a different form than918

Equation 9 as there since if either lineage fails to recombines off the beneficial background during the sweep919

or standing phase, the lineage will be in population l. For selected populations i and j, now920

f
(S)
ij = (1− y)2fij + y2

(
r2
t

(
1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll

)
+ (1− rt)2fij + rt(1− rt)(fil + fjl)

)
+ y(1− y)

(
2(1− rt)fij + rt(fil + fjl)

) (A.22)

If either population is the source, l this reduces to921

f
(S)
il = yrt

(
yrt(

1

1 + 4Nerg
+

4Nerg

1 + 4Nerg
fll) + (1− yrt)fll

)
+ (1− yrt)fil (A.23)

since if the lineage fails to recombines off the beneficial background in population i, it is back in population l.922

If the lineage in l is still on the beneficial background after the sweep and the initial t generations of standing,923

they can coalesce during the standing phase in population l. Else, the lineages will coalesce neutrally in924

population l. However, if the lineage sampled in population i does not return to the source population (i.e.925

it recombines during the sweep or standing phase of t generations), the lineages can coalesce with neutral926

probability fil.927

Lastly, we must incorporate the impact linked selection has on the coancestry between lineages sampled928

from any pair of non-source selected population i and non-selected population k.929

f
(S)
ik = y

(
rtfkl + (1− rt)fik

)
+ (1− y)fik (A.24)

Since lineages that do not recombine off the beneficial background in population i go back into the source930

population l, non-selected populations may now have more or less coancestry with population i depending931

on whether l is neutrally has more or less coancestry with population l, respectively.932

933

A.4 Migration model extensions934

A.4.1 Single pulses of migration935

We also considered models of a single pulse of migration. We solve for f
(S)
ii and f

(S)
ij for the bounds on936

the time during which the beneficial allele could migrate: (1) “instantly” after the beneficial allele arises in937

population i and (2) after the beneficial allele reaches fixation in the population i.938

Beneficial allele migrates instantly after it arises in population i. In this case, we are specifying939

the pulse of migration from population i into population j occurs sufficiently soon enough after the sweep940

began such that the entire haplotype the beneficial mutation arises on in population i migrates to population941

j (i.e. there is no time for recombination to occur). This case gives us results for an extreme of a single942

pulse of migration may not be particularly relevant as the spread of the beneficial allele into population j943

will likely only occur after it has reached a sufficiently high frequency in population i as it may be lost due944

to drift. However, these results aid in our intuition of this model.945
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As the beneficial allele originates in population i, again,946

f
(S)
ii = (fii + y2(1− fii)). (A.25)

The probability of two lineages in the recipient population, j, coalescing before reaching the ancestral947

population is now948

f
(S)
jj = y2 + 2y(1− y)fij + (1− y)2fjj (A.26)

Here, both lineages can not recombine off the sweep (w.p. y2) and therefore coalesce with probability 1.949

Exactly one lineage can recombine off the sweep (w.p. 2y(1 − y)) and therefore the two lineages can only950

coalesce in the shared drift phase (w.p. fij) as the lineage that does not recombine off the sweep migrates951

into population i. Both lineages can recombine off the sweep (w.p. (1 − y)2) and then can coalesce in952

population j before they reach the ancestral population.953

954

The probability of two lineages drawn from each population coalescing before reaching the ancestral955

population is956

f
(S)
ij = (1− y)fij + y(y + (1− y)fii) (A.27)

In this case, if the lineage in population j recombines off the sweep (w.p. 1 − y) , the two lineages can957

only coalesce in the shared drift phase (w.p. fij) before reaching the ancestral population. If the lineage in958

population j fails to recombine off the sweep (w.p. y), it migrates back to population i and will be forced959

to coalesce with the lineage in population i if it also failed to recombine, else they will coalesce neutrally in960

population i.961

Beneficial allele migrates after it reaches fixation in population i. For the coancestry coefficient962

for population j, the logic follows from that of when the pulse of migration happens instantly. However963

in deriving the coancestry coefficient between populations i and j, in the case where the lineage sampled964

from population j fails to recombine off the sweep and migrates back to population i, which happens with965

probability y, it is like we have two lineages sampled in population i. Now, both could either fail to966

recombine off the sweep and coalesce with probability 1 or one or both could recombine off the sweep and967

coalesce neutrally in population i. This can be written as968

f
(S)
ij = (1− y)fij + y(y2 + (1− y2)fii (A.28)

Together, these results characterize the other end point of a single pulse of migration spreading the969

beneficial allele to the recipient population.970

A.5 Forward in time derivation examples971

For the forward in time results we utilize Gillespie’s (2000) psuedohittchiking approximation with the incor-972

poration of recombination to model the variance in the change in neutral allele frequencies due to a selective973

sweep (∆Sxi for population i). A new beneficial mutation will arise on the same background as a neutral974

allele with probability equal to its frequency in the population, x. In the case no crossing over occurs and975

the new mutation sweeps to fixation, the neutral allele frequency after the hitchhiking event, x′, will either976

be 1 with probability x or 0 with probability 1− x. Therefore,977

∆Sx =

{
(1− x) with probability x

−x with probability (1− x)
(A.29)

thus E[∆Sx] = 0 and Var[∆Sx] = x(1− x).978

979

Recombination can be incorporated into this model, allowing the neutral allele stop hitchhiking before980

it reaches fixation. The frequency of the haplotype on which the favorable mutation arises will increase to981

y and all other alleles will have their frequencies reduced by 1 − y. So, if the favorable allele appears on982

33

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2017. ; https://doi.org/10.1101/119578doi: bioRxiv preprint 

https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/


the same background of our neutral allele, which happens with probability x, x′ = (1− y)x+ y. Else, with983

probability 1− x, x′ = (1− y)x. Therefore,984

∆Sx =

{
y(1− x) with probability x

−yx with probability (1− x)
(A.30)

thus with recombination, E[∆Sx] = 0 and Var[∆Sx] = y2x(1− x).985

986

We can break down the changes in allele frequencies in the two populations from the ancestral allele987

frequency ε into three components if we assume the independent drift in each population after the sweep988

is negligible: the change due to (1) shared drift between populations i and j before they split (∆Nxij),989

(2) independent drift in each population before the sweep (∆Nxi and ∆Nxj), and (3) the selective sweep990

occurring in each population (∆Sxi and ∆Sxj).991

Define E[∆Nx
2
ij ] = ε(1 − ε)fij and E[∆Nx

2
i ] = ε(1 − ε)fi for population i. The total amount of vari-992

ance in a neutral allele frequency for the ith population is defined as ε(1 − ε)fii which we approximate as993

ε(1 − ε)(fij + fi). This only holds if we assume the time intervals are short relative to drift so that these994

terms act additively. If this is not the case, the E[∆Nx
2
i ] is no longer the probability that two alleles drawn995

from population i before the sweep begins are identical by descent with reference to the ancestral population996

with neutral allele frequency ε, but rather with reference to the population before the split into populations997

i and j with neutral allele frequency xij . A more careful treatment of these parameters could be done to998

relax this assumption, and follows naturally in a coalescent setting.999

1000

From a forward in time perspective, we can solve for Var[∆xi], Var[∆xj ], and Cov[∆xi,∆xj ] with ∆xi =1001

∆Nxij + ∆Nxi + ∆Sxi. Assuming drift terms are independent of each other, we are left with the following1002

expressions1003

Var[∆xi] = ε(1− ε)fii + E[∆sx
2
i ] + 2E[∆Nxij ·∆Sxi] + 2E[∆Nxi ·∆Sxi] (A.31)

and1004

Cov[∆xi,∆xj ] = ε(1− ε)fij +E[∆Nxij ·∆Sxi]+E[∆Nxij ·∆Sxj ]+E[∆Nxi ·∆Sxj ]+E[∆Sxi ·∆Sxj ] (A.32)

A.5.1 Independent sweep model1005

In the case of independent sweeps where there is no gene flow between populations, many terms in Equations
A.31 and A.32 equal zero since the sweeps are independent. For the variances, we are left with

Var[∆xi] = ε(1− ε)fii + E[∆sx
2
i ]

= ε(1− ε)(fii + y2(1− fii)) (A.33)

The covariance in allele frequencies between populations i and j, is simply what we would expect under1006

neutrality.1007

Cov[∆x1,∆x2] = ε(1− ε)fij (A.34)

A.5.2 Shared sweeps via migration1008

The migration models better exemplifies these forward in time calculations. We demonstrate the calculations1009

of Var[∆xj ] and Cov[∆xi,∆xj ] for pulse of migration models specified in A.4.1010

Beneficial allele migrates instantly after it arises in population i. The background on which1011

the beneficial mutation arises depends on the neutral allele frequency in population i before the sweep, xi.1012

We are specifying the pulse of migration from population i into population j occurs sufficiently soon enough1013

after the sweep began such that the entire haplotype the beneficial mutation arises on in population i mi-1014

grates to population j (i.e. there is no time for recombination to occur). Now ∆Sxj depends on the neutral1015
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allele frequency in population i before the sweep.1016

1017

∆Sxj =

{
y(1− (ε+ ∆Nxij + ∆Nxj)) with probability ε+ ∆Nxij + ∆Nxi

−y(ε+ ∆Nxij + ∆Nxj) with probability (1− (ε+ ∆Nxij + ∆Nxi))
(A.35)

1018

1019

As the beneficial allele originates in population i, again,1020

Var[∆xi] = ε(1− ε)(fii + y2(1− fii)). (A.36)

1021

1022

Now ∆Sxj depends on xi, E[∆Nxi ·∆Sxj ], E[∆Sxi ·∆Sxj ], and E[∆Nxij ·∆Sxj ] are no longer zero. So,

Var[∆xj ] = ε(1− ε)fjj + 2E[∆Nxij ·∆Sxj ] + E[∆Sx
2
j ]

= ε(1− ε)(fjj − 2yfj + y2(1 + fj − fij)) (A.37)

and

Cov[∆xi,∆xj ] = ε(1− ε)fij + E[∆Nxi ·∆Sxi] + E[∆Sxi ·∆Sxj ]

= ε(1− ε)(fij + yfi + y2(1− fi − fij)). (A.38)

This result is the same as Equation A.27 if the assumption about drift being additive holds such that1023

fii = fi + fij .1024

Beneficial allele migrates after it reaches fixation in population i. Now, the frequency of a1025

neutral allele in population i after the sweep has occurred is1026

xi′ =

{
y + (1− y)xi with probability xi

(1− y)xi with probability (1− xi)

Fixing that the migration from population i into j occurs after the sweep has finished in population i,1027

∆Sxj =

{
y(1− (ε+ ∆Nxij + ∆Nxj)) with probability ε+ ∆Nxij + ∆Nxi + ∆Sxi

−y(ε+ ∆Nxij + ∆Nxj) with probability (1− (ε+ ∆Nxij + ∆Nxi −∆Sxi))
(A.39)

This can also be written as1028

∆Sxj =


y(1− xj) with probability xi(y + (1− y)xi)

y(1− xj) with probability (1− xi)(1− y)xi

−yxj with probability xi(1− y − (1− y)xi)

−yxj with probability (1− xi)(1− (1− y)xi)

(A.40)

Here, the first case is that the beneficial allele arises on the same background as our neutral allele in1029

population i and then is the haplotype that migrates into population j. The probability of the haplotype1030

migrating is equal to its frequency in the population. The third case also includes the beneficial allele arising1031

on the same background as our neutral allele, but the other haplotype migrates. The second and fourth cases1032

are when the beneficial mutation arises on the other background as our neutral allele. In the second case,1033

the haplotype containing our neutral allele migrates after the sweep and in the fourth, the other haplotype1034

migrates.1035

1036

The variance within population i and population j are the same as in the case of the beneficial allele1037

migrating instantly. The only term changed by specifying that the pulse of migration happens after the1038

sweep is E[∆Sxi ·∆Sxj ] which is now ε(1− ε)y3(1− fjj). So,1039

Cov[∆xi,∆xj ] = ε(1− ε)(fij + yfj + y3(1− fj − fij)) (A.41)
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Figure S1: MCLE of parameters for independent mutation simulations allowing selected site to
vary.
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Figure S2: Average coancestry coefficient values for migration simulations with various m, across 100 runs of
simulations for each of 100 bins of distance away from the selected site, showing the migration rate parameter
does not have a large effect on both expectations (solid lines) and simulation results (dashed lines). For all
simulations, s = 0.01, Ne = 10, 000, and the source of the beneficial allele is population 2.

40

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 22, 2017. ; https://doi.org/10.1101/119578doi: bioRxiv preprint 

https://doi.org/10.1101/119578
http://creativecommons.org/licenses/by/4.0/


0.000 0.001 0.002 0.003 0.004 0.005

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

0.
15

Recombination distance from selected site

C
oa

nc
es

tr
y 

co
ef

fic
ie

nt

f13
(s), s = 0.01, m = 0.0001

f34
(s), s = 0.01, m = 0.0001

(a) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
recipient population (3) and non-selected populations (1
and 4).
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(b) Average coancestry coefficient values for migration
simulations across 100 runs of simulations for each of
100 bins of distance away from the selected site, between
source population (2) and non-selected populations (1
and 4).

Figure S3: Average coancestry coefficient values for migration simulations across 100 runs of simulations
for each of 100 bins of distance away from the selected site, between source and recipient populations and
non-selected populations (s = 0.01, m = 0.001, Ne = 10,000).
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(b) MCLE of selection coefficients for 100 simula-
tions under migration model (10 chromosomes per
population, Ne = 10,000, m = 0.001)

Figure S4: MCLE of parameters for migration model simulations. We vary the true value of the
parameter used for simulations along the x-axis and show the MCLE for each of 100 simulations (points).
Crossbars indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true
values of the parameters are marked with dashed, black lines.
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Figure S5: Coancestry coefficient for the recipient population as a function of recombination distance from
the selected site, partitioned into simulations with MCLE for m = 1 and m < 1 (s = 0.01, m = 0.001, Ne
= 10,000).
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Figure S6: MCLE of selection coefficients for 100 simulations under standing variant model (10
chromosomes per population, Ne = 10,000, t = 500, g = 0.001). We vary the true value of the parameter
used for simulations along the x-axis and show the MCLE for each of 100 simulations (points). Crossbars
indicate first and third quartiles with second quartiles (medians) as the horizontal line. The true values of
the parameters are marked with dashed, black lines.
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(a) Composite log-likelihood for standing variation model with
no source specified and both selected populations as potential
sources, as a function of the proposed selected site.
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(b) Profile composite log-likelihood of the min-
imum age of the standing variant for stand-
ing variant model with no source specified and
both selected populations as potential sources.

Figure S7: Inference results for standing variant model applied to Mimulus data using both original standing
variant model and more complex model where a source population is specified. In this case, the composite
log-likelihoods do not change, but the parameter estimates do. We obtain higher MCLE for t when a source
is specified (646 generations) compared to the original no source model (434 generations). This fits our
expectation as t has slightly different interpretations under the two models.
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Figure S8: Composite log-likelihood for Fundulus heteroclitus pollutant tolerance adaptation on Scaf-
fold9893, showing all possible sources for models with migration and standing variant model, as a function
of the proposed selected site.

Table S1: Parameter spaces for composite likelihood calculations for simulated datasets

Position of selected site 0

s
10−4, 5× 10−4, 10−3, 2× 10−3, 4× 10−3, 5× 10−3, 6× 10−3, 8× 10−3,
0.01, 0.012, 0.014, 0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1,
0.11, 0.12, 0.14, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 0.6

t

0, 5, 15, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500,
550, 600, 650, 700, 750, 800, 900, 1000, 1200, 1500, 1800, 2000, 2500,
3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 9000,
104, 1.5× 105, 2× 105, 3× 105, 5× 105, 7× 105, 9× 105, 105, 106

g 10−3

m 10−5, 10−4, 5× 10−4, 10−3, 5× 10−3, 0.01, 0.2, 0.5, 0.9, 1
Migration source population 2
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Table S2: Parameter spaces for composite likelihood calculations for independent sweep model simulations

Position of selected site 0

s

10−4 2× 10−4, 3× 10−4, 4× 10−4, 5× 10−4, 6× 10−4, 7× 10−4, 8× 10−4, 9× 10−4,
0.001, 0.0015, 0.002, 0.0025, 0.003, 0.0035, 0.004, 0.0045, 0.005, 0.0055, 0.006, 0.0065,
0.007, 0.0075, 0.008, 0.0085, 0.009, 0.0095, 0.01, 0.0105, 0.011, 0.0115, 0.012, 0.0125,
0.013, 0.0135, 0.014, 0.0145, 0.015, 0.0155, 0.016, 0.0165, 0.017, 0.0175, 0.018,
0.0185, 0.019, 0.0195, 0.02, 0.0205, 0.021, 0.0215, 0.022, 0.0225, 0.023, 0.0235,
0.024, 0.0245, 0.025, 0.0255, 0.026, 0.0265, 0.027, 0.0275, 0.028, 0.0285, 0.029,
0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.0325, 0.033, 0.0335, 0.034, 0.0345,
0.035, 0.0355, 0.036, 0.0365, 0.037, 0.0375, 0.038, 0.0385, 0.039, 0.0395, 0.04,
0.0405, 0.041, 0.0415, 0.042, 0.0425, 0.043, 0.0435, 0.044, 0.0445, 0.045, 0.0455,
0.046, 0.0465, 0.047, 0.0475, 0.048, 0.0485, 0.049, 0.0495, 0.05, 0.0505, 0.051,
0.0515, 0.052, 0.0525, 0.053, 0.0535, 0.054, 0.0545, 0.055, 0.0555, 0.056, 0.0565,
0.057, 0.0575, 0.058, 0.0585, 0.059, 0.0595, 0.06, 0.0605, 0.061, 0.0615, 0.062,
0.0625, 0.063, 0.0635, 0.064, 0.0645, 0.065, 0.0655, 0.066, 0.0665, 0.067, 0.0675,
0.068, 0.0685, 0.069, 0.0695, 0.07, 0.0705, 0.071, 0.0715, 0.072, 0.0725, 0.073,
0.0735, 0.074, 0.0745, 0.075, 0.0755, 0.076, 0.0765, 0.077, 0.0775, 0.078, 0.0785,
0.079, 0.0795, 0.08, 0.0805, 0.081, 0.0815, 0.082, 0.0825, 0.083, 0.0835, 0.084,
0.0845, 0.085, 0.0855, 0.086, 0.0865, 0.087, 0.0875, 0.088, 0.0885, 0.089, 0.0895,
0.09, 0.0905, 0.091, 0.0915, 0.092, 0.0925, 0.093, 0.0935, 0.094, 0.0945, 0.095,
0.0955, 0.096, 0.0965, 0.097, 0.0975, 0.098, 0.0985, 0.099, 0.0995, 0.1, 0.1005,
0.101, 0.1015, 0.102, 0.1025, 0.103, 0.1035, 0.104, 0.1045, 0.105, 0.1055, 0.106,
0.1065, 0.107, 0.1075, 0.108, 0.1085, 0.109, 0.1095, 0.11, 0.1105, 0.111, 0.1115,
0.112, 0.1125, 0.113, 0.1135, 0.114, 0.1145, 0.115, 0.1155, 0.116, 0.1165, 0.117,
0.1175, 0.118, 0.1185, 0.119, 0.1195, 0.12, 0.1205, 0.121, 0.1215, 0.122, 0.1225,
0.123, 0.1235, 0.124, 0.1245, 0.125, 0.1255, 0.126, 0.1265, 0.127, 0.1275, 0.128,
0.1285, 0.129, 0.1295, 0.13, 0.1305, 0.131, 0.1315, 0.132, 0.1325, 0.133, 0.1335,
0.134, 0.1345, 0.135, 0.1355, 0.136, 0.1365, 0.137, 0.1375, 0.138, 0.1385, 0.139,
0.1395, 0.14, 0.1405, 0.141, 0.1415, 0.142, 0.1425, 0.143, 0.1435, 0.144, 0.1445,
0.145, 0.1455, 0.146, 0.1465, 0.147, 0.1475, 0.148, 0.1485, 0.149, 0.1495, 0.15,
0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3,
0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45,
0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6

Table S3: Parameter spaces for composite likelihood calculations for independent sweep model simulations
when position of selected site varies

Position of selected site

0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16 0.18, 0.2, 0.22, 0.24, 0.26,
0.28, 0.3, 0.32, 0.34, 0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58,
0.6, 0.62, 0.64, 0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9,
0.92, 0.94, 0.96, 0.98, 1

s
10−4, 5× 10−4, 0.001, 0.002, 0.004, 0.005, 0.006, 0.008, 0.01, 0.012, 0.014,
0.018, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.09, 0.1, 0.11, 0.12, 0.14, 0.15, 0.2, 0.25,
0.3, 0.35, 0.4, 0.5, 0.6
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Table S4: Parameter spaces for composite likelihood calculations for migration model simulations

Position of selected site 0

s

10−4, 0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011,
0.012, 0.013, 0.014, 0.015, 0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.028, 0.03,
0.032, 0.034, 0.036, 0.038, 0.04, 0.042, 0.044, 0.046, 0.048, 0.05, 0.052, 0.054,
0.056, 0.058, 0.06, 0.062, 0.064, 0.066, 0.068, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13,
0.14, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6

m

1−5, 8× 10−5, 0−4, 1.2× 10−4, 1.4× 10−4 1.6× 10−4, 1.8× 10−4,
2× 10−4, 2.2× 10−4, 2.4× 10−4, 2.6× 10−4, 2.8× 10−4,
3× 10−4, 3.2× 10−4, 3.4× 10−4, 3.6× 10−4, 3.8× 10−4,
4× 10−4, 8× 10−4, 0.001, 0.0012, 0.0014, 0.0016, 0.0018, 0.002,
0.0022, 0.0024, 0.0026, 0.0028, 0.003, 0.0032, 0.0034, 0.0036, 0.0038, 0.004, 0.006,
0.008, 0.01, 0.012, 0.014, 0.016, 0.036, 0.056, 0.076, 0.096, 0.116, 0.136, 0.156, 0.176,
0.196, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

Migration source population 2

Table S5: Parameter spaces for composite likelihood calculations for standing variation model simulations

Position of selected site 0

s
10−4, 0.0020, 0.0040, 0.0050, 0.0060, 0.0080, 0.0100, 0.0120, 0.0140,
0.0180, 0.0200, 0.0400, 0.0500, 0.0600, 0.0700, 0.0900, 0.1000, 0.1500, 0.2000, 0.3000,
0.4000 0.5000 0.6000

t

5, 5, 25, 40, 50, 60, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600,
650, 700, 750, 800, 900, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000,
5500, 6000, 6500, 7000, 7500, 8000, 9000, 10000, 15000, 20000, 30000, 50000,
70000, 9000, 105

g 10−6, 10−5, 10−4, 10−3, 10−2

Table S6: Neutral F matrix from 12 scaffolds with no strong signatures of selection in Mimulus guttatus pop-
ulations (Scaffold7 and regions adjacent to scaffolds 1, 4, 8, 47, 80, 84, 106, 115, 129, 148, 198). Populations
1 and 3 are copper tolerant.

Pop1 Pop2 Pop3 Pop4
Pop1 0.1571 0.0266 0.0153 0.0356
Pop2 0.0266 0.1008 0.0000 0.0204
Pop3 0.0153 0.0000 0.1807 0.0179
Pop4 0.0356 0.0204 0.0179 0.1232
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Table S7: Parameter spaces for composite likelihood calculations for Mimulus

Position of selected site
215100, 220938, 226775, 232613, 238451, 244289, 250126, 255964, 261802,
267640, 273477, 279315, 285153, 290990, 296828, 302666, 308504, 309000,
314341, 320179, 326017, 331854, 337692, 343530, 349368, 355205, 361043

s

0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01,
0.011, 0.014, 0.016, 0.019, 0.021, 0.024, 0.026, 0.029, 0.032, 0.034, 0.037
0.039, 0.042, 0.045, 0.047, 0.05, 0.052, 0.055, 0.057, 0.06, 0.08, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6

t
5, 10, 81, 151, 222, 293, 364, 434, 505, 576, 646, 717, 788, 859, 929, 1000,
1500, 1607, 1714, 1821, 1929, 2036, 2143, 2250, 2357, 2464, 2571, 2679, 2786,
2893, 3000

g 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

m 10−5, 10−4, 5−4, 0.001, 0.005, 0.01, 0.1, 0.2 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
Migration source population 1, 3

Table S8: Neutral F matrix from four scaffolds with no strong signatures of selection in Fundulus heteroclitus
populations (Scaffold0, Scaffold1, Scaffold2, Scaffold3)

S1 T1 S2 T2 S3 T4 S5 T5
S1 0.339 0.292 0.315 0.332 0.179 0.229 0.022 0.003
T1 0.292 0.372 0.304 0.329 0.171 0.218 0.020 0.000
S2 0.315 0.304 0.381 0.384 0.213 0.263 0.053 0.034
T2 0.332 0.329 0.384 0.451 0.220 0.276 0.055 0.035
S3 0.179 0.171 0.213 0.220 0.198 0.192 0.058 0.044
T3 0.229 0.218 0.263 0.276 0.192 0.272 0.053 0.037
S4 0.022 0.020 0.053 0.055 0.058 0.053 0.142 0.093
T4 0.003 0.000 0.034 0.035 0.044 0.037 0.093 0.142

Table S9: Parameter spaces for composite likelihood calculations for Fundulus

Position of selected site
1452, 86658, 171865, 257071, 342277, 427484, 512690, 597896, 683103,
768309, 853515, 938722, 1023928, 1109134, 1194341, 1279547, 1364754,
1449960, 1535166, 1620373, 1705579, 1790785, 1875992, 1961198, 2046404,
2131611, 2216817, 2302023, 2387230, 2472436

s
0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16,
0.18, 0.2, 0.3, 0.4, 0.5, 0.6

t 0, 5, 50, 100, 500, 1000, 5000, 107

g 10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

m 10−5, 10−4, 5−4, 0.001, 0.005, 0.01, 0.1, 0.3, 0.5, 0.9, 1
Source population T1, T2, T3, T4
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