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Abstract 1 
Balancing selection maintains advantageous diversity in populations through various mechanisms. While 2 
extensively explored from a theoretical perspective, an empirical understanding of its prevalence and targets 3 
lags behind our knowledge of positive selection. Here we describe the Non-Central Deviation (NCD), a 4 
simple yet powerful statistic to detect long-term balancing selection (LTBS) which quantifies how close 5 
frequencies are to expectations under LTBS, and provides the basis for a neutrality test. NCD can be applied 6 
to single loci or genomic data, to populations with or without known demographic history, and can be 7 
implemented considering only polymorphisms (NCD1) or also considering fixed differences (NCD2). Both 8 
statistics have very high power to detect LTBS in humans under different frequencies of the balanced 9 
allele(s), with NCD2 having the highest power. Applied to genome-wide data from African and European 10 
human populations NCD2 shows that, albeit not prevalent, LTBS affects a sizable portion of the genome: 11 
about 0.6% of analyzed genomic windows and 0.8% of analyzed positions. These windows overlap about 8% 12 
of the protein-coding genes, which interestingly have larger number of transcripts than expected by chance. 13 
Significant windows contain 1.6% of the SNPs in the genome, which disproportionally overlap sites within 14 
exons and that alter protein sequence, but not putatively regulatory sites. Our catalog of candidates includes 15 
known targets of LTBS, but a majority of them are novel. As expected, immune-related genes are among 16 
those with the strongest signatures, although most candidates are involved in other biological functions, 17 
suggesting that LTBS potentially influences diverse human phenotypes.  18 
 19 

Introduction                                                20 

Balancing selection refers to a class of selective mechanisms that maintains advantageous genetic diversity in 21 
populations. Decades of research have established HLA genes as a prime example of balancing selection 22 
(Meyer and Thomson 2001; Spurgin and Richardson 2010), with thousands of alleles segregating in humans 23 
(Robinson et al. 2013), extensive support for functional effects of these polymorphisms (e.g. Hedrick et al. 24 
1991; Prugnolle et al. 2005), and various well-documented cases of association between selected alleles and 25 
disease susceptibility (e.g. Raychaudhuri et al. 2012; Howell 2014). The catalog of well-understood non-HLA 26 
targets of balancing selection in humans remains small, but includes genes associated to phenotypes such as 27 
auto-immune diseases (Ferrer-Admetlla et al. 2008; Sironi and Clerici 2010), resistance to malaria (Malaria 28 
Genomic Epidemiology Network 2015), HIV  infection (Biasin et al. 2007) or susceptibility to polycystic 29 
ovary syndrome (Day et al. 2015). Thus, besides historically influencing individual fitness, balanced 30 
polymorphisms shape current phenotypic diversity and susceptibility to disease.    31 
 Balancing selection encompasses several mechanisms (reviewed in Andrés 2011; Key, Teixeira, et al. 32 
2014; Fijarczyk and Babik 2015). These include heterozygote advantage (or overdominance), frequency-33 
dependent selection (Clarke 1962; Charlesworth and Charlesworth 2010), selective pressures that fluctuate in 34 
time (Muehlenbachs et al. 2008; Bergland et al. 2014) or in space in panmitic populations (Charlesworth et al. 35 
1997; Charlesworth 2006), and some cases of pleiotropy (Johnston et al. 2013). For overdominance, 36 
pleiotropy, and some instances of spatially variable selection, a stable equilibrium can be reached 37 
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(Charlesworth and Charlesworth 2010). For other mechanisms, the frequency of the selected allele can change 1 
in time without reaching a stable equilibrium. Regardless of the mechanism, long-term balancing selection 2 
(LTBS) has the potential to leave identifiable signatures in genomic data. These include a local site-frequency 3 
spectrum (SFS) with an excess of alleles at intermediate frequencies and, when selection started far in the 4 
past, an excess of polymorphisms relative to substitutions (reviewed in Key, Teixeira, et al. 2014). In some 5 
cases, very ancient balancing selection can maintain trans-species polymorphisms in sister species (Leffler et 6 
al. 2013; Teixeira et al. 2015). On the other hand, when balancing selection is very recent or transient (Sellis 7 
et al. 2011), signatures are difficult to distinguish from incomplete, recent selective sweeps (Key, Teixeira, et 8 
al. 2014).              9 
 While balancing selection has been extensively explored from a theoretical perspective, an empirical 10 
understanding of its prevalence lags behind our knowledge of positive selection. This stems from technical 11 
difficulties in detecting balancing selection, as well as the perception that it may be a rare selective process 12 
(Hedrick 2012). In fact, few methods have been developed to identify its targets, and only a handful of studies 13 
have sought to uncover them genome-wide in humans (Asthana et al. 2005; Bubb et al. 2006; Alonso et al. 14 
2008; Andrés et al. 2009; Leffler et al. 2013; DeGiorgio et al. 2014; Rasmussen et al. 2014; Teixeira et al. 15 
2015). Different approaches have been used to identify genes (Andrés et al. 2009) or genomic regions 16 
(DeGiorgio et al. 2014) with an excess of polymorphisms and intermediate frequency alleles, while other 17 
studies have identified trans-species polymorphisms between humans and their closest living relatives 18 
(chimpanzees and bonobos) (Leffler et al. 2013; Teixeira et al. 2015). Overall, these studies suggested that 19 
balancing selection may act on a small portion of the genome, although the limited extent of data available 20 
(e.g. exome data (DeGiorgio et al. 2014), small sample size (Andrés et al. 2009)), and stringency of the 21 
criteria (e.g. balanced polymorphisms predating human-chimpanzee divergence (Leffler et al. 2013; Teixeira 22 
et al. 2015)) may underlie the paucity of detected regions.        23 
 Here, we developed two statistics that summarize, directly and in a simple way, the degree to which 24 
allele frequencies of SNPs in a genomic region deviate from those expected under balancing selection. We use 25 
these statistics to test the null hypothesis of neutral evolution. We showed, through simulations, that one of 26 
our statistics outperforms existing methods under a realistic demographic scenario for human populations. We 27 
applied this statistic to genome-wide data from four human populations and used both outlier and simulation-28 
based approaches to identify genomic regions bearing signatures of LTBS.  29 

 30 

Results 31 

 32 
The Non-Central Deviation (NCD) statistic 33 
Background. Owing to linkage, the signature of long-term balancing selection extends to the genetic 34 
neighborhood of the selected variant(s); therefore, patterns of polymorphism and divergence in a genomic 35 
region can be used to infer whether it evolved under LTBS (Charlesworth 2006; Andrés 2011). LTBS leaves 36 
two distinctive signatures in linked variation, when compared with neutral expectations. The first is an 37 
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increase in the ratio of polymorphic to divergent sites: by reducing the probability of fixation of a variant, 1 
balancing selection increases the local time to the most recent common ancestor (Hudson and Kaplan 1988). 2 
The HKA test is commonly used to detect this signature (Hudson et al. 1987). The second signature is an 3 
excess of alleles segregating at intermediate frequencies. In humans, the folded SFS – the frequency 4 
distribution of minor allele frequencies (MAF) — is typically L-shaped, showing an excess of low-frequency 5 
alleles when compared to expectations under neutrality and demographic equilibrium. The abundance of rare 6 
alleles is further increased by recent population expansions (Coventry et al. 2010), purifying selection and 7 
recent selective sweeps (Fu and Akey 2013). Regions under LTBS, on the other hand, can show a markedly 8 
different SFS, with proportionally more alleles at intermediate frequency (fig. 1A-B). Such a deviation in the 9 
SFS is identified by classical neutrality tests such as Tajima’s D (TajD) and newer statistics such as MWU-10 
high (Nielsen et al. 2009). 11 

With heterozygote advantage, the frequency equilibrium (feq) depends on the relative fitness of each 12 
genotype (Charlesworth and Charlesworth 2010): when the two types of homozygotes have the same fitness 13 
(symmetric overdominance), feq = 0.5; when the fitness of the two homozygotes is different (asymmetric 14 
overdominance), feq ≠ 0.5 (suppl. information S1). Under frequency-dependent selection and fluctuating 15 
selection, while an equilibrium may not be reached (suppl. information S1), feq can be thought of as the 16 
frequency of the balanced polymorphism at the time of sampling. Here we focus on overdominance, as 17 
comparing different mechanisms of balancing selection falls outside of the scope of the paper. 18 

 19 
NCD statistic. In the tradition of neutrality tests analyzing the SFS directly (e.g. Nielsen et al. 2005; 20 
Williamson et al. 2007; Nielsen et al. 2009), we propose and define the statistic “Non-Central Deviation” 21 
(NCD) which measures the degree to which the local SFS deviates from a pre-specified allele frequency (the 22 
target frequency, tf) in a genomic region. Under a model of balancing selection, tf can be thought of as the 23 
expected frequency of a balanced allele, with the NCD statistic quantifying how far the sampled SNP 24 
frequencies are from it. Because bi-allelic loci have complementary allele frequencies, and there is no prior 25 
expectation regarding whether ancestral or derived alleles should be maintained at higher frequency, we use 26 
the folded SFS (fig. 1B). NCD is defined as:  27 

𝑁𝐶𝐷(𝑡𝑓) =
(𝑝* − 𝑡𝑓),-

*./
𝑛

			(1) 28 

where i is the i-th informative site in a locus, pi is the MAF for the i-th informative site, n is the number of 29 
informative sites, and tf is the target frequency with respect to which the deviations of the observed alleles 30 
frequencies are computed. Thus, NCD is a type of standard deviation that quantifies the dispersion of allelic 31 
frequencies from tf, rather than from the mean of the distribution. Low NCD values reflect a low deviation of 32 
the SFS from a pre-defined tf, as expected under LTBS (fig. 1C; suppl. information S1). Of course, a priori tf 33 
is typically unknown, so we propose below a practical approach to deal with this uncertainty. 34 

We propose two NCD implementations. NCD1 uses only polymorphic sites, and NCD2 also includes 35 
the number of fixed differences (FDs) relative to an outgroup species (i.e, all informative sites, ISs = SNPs + 36 
FDs, are used to compute the statistic). In NCD2, FDs are considered ISs with MAF = 0; thus, the greater the 37 
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number of FDs, the larger the NCD2 and the weaker the support for LTBS. From equation 1 it follows that the 1 
maximum value for NCD2(tf) is the tf itself (for tf ³ 0.25, suppl. information S1), which occurs when there are 2 

no SNPs and the number of FDs ³ 1. The maximum NCD1 value approaches – but never reaches – tf when all 3 
SNPs are singletons. The minimum value for both NCD1 and NCD2 is 0, when all SNPs segregate at tf and, in 4 
the case of NCD2, the number of FDs = 0 (suppl. figs. S1 and S2).  5 
 6 
Power of NCD to detect LTBS 7 
We evaluated the sensitivity and specificity of NCD1 and NCD2 by benchmarking their performance using 8 
simulations. Specifically, we considered demographic scenarios inferred for African, European, and Asian 9 
human populations, and simulated sequences evolving both under neutrality and LTBS using an 10 
overdominance model. We explored the influence of parameters that can affect the power of NCD statistics: 11 
time since onset of balancing selection (Tbs), frequency equilibrium defined by selection coefficients (feq), 12 
demographic history of the sampled population, tf used in NCD calculation, length of the genomic region 13 
analyzed (L) and implementation (NCD1 or NCD2). Box 1 summarizes nomenclature used throughout the 14 
text.   15 

For simplicity, we averaged power estimates across NCD implementations (NCD being the average of 16 
NCD1 and NCD2), African and European demographic models (Asian populations were not considered, see 17 
below and suppl. information S2), L and Tbs (Methods). These averages are helpful in that they reflect the 18 
general changes in power driven by individual parameters. Nevertheless, because they often include 19 
conditions for which power is low, they underestimate the power the test can reach under each condition. The 20 
complete set of power results is presented in suppl. table S1 and some key points are discussed below. 21 
 22 
Time since the onset of balancing selection (Tbs) and sequence length. Signatures of LTBS are expected to 23 
be stronger for longer Tbs, because time to the most recent common ancestor is older and there will have been 24 
more time for linked mutations to accumulate and reach intermediate frequencies. We simulated sequences 25 
with variable Tbs (1, 3, 5 million years, mya). For simplicity, we only discuss cases where tf = feq, although 26 
this condition is relaxed in later sections. Power to detect LTBS with Tbs = 1 mya is low (NCD(0.5) = 0.32, 27 
averaged across populations and L values), and high for 3 (0.74) and 5 mya (0.83) (suppl. figs. S3-S8, suppl. 28 
table S1), suggesting that NCD statistics are well powered to detect LTBS starting at least 3 mya. We thus 29 
focus subsequent power analyses exclusively on this timescale (3 and 5 mya).  30 

In the absence of epistasis, the long-term effects of recombination result in narrower signatures when 31 
Tbs is larger (Leffler et al. 2013; Teixeira et al. 2015). Accordingly, we find that, for example, power for 32 
NCD(0.5) (Tbs = 5 mya) is on average 10% higher for 3,000 bp loci than for 12,0000 bp loci (suppl. figs. S3-33 
S8, suppl. table S1). In brief, our simulations show power is highest for windows of 3 kb centered on the 34 
selected site (suppl. information S2), and we report power results for this length henceforth.  35 

 36 
Demography and sample size. Power is similar for samples simulated under African and European 37 
demographic histories for NCD2 (table 1) and NCD1 (suppl. information S2, suppl. table S1), but 38 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2017. ; https://doi.org/10.1101/119529doi: bioRxiv preprint 

https://doi.org/10.1101/119529


 6 

considerably lower under the Asian one (suppl. table S1, suppl. figs. S3-S8), possibly due to lower Ne (suppl. 1 
information S2). While power estimates may be influenced by the particular demographic model used, we 2 
nevertheless focus on African and European populations, which by showing similar power allow fair 3 
comparisons between them. Sample size has a modest effect in power, which was similar for samples of 30 or 4 
50 individuals and only lower for samples of 10 individuals (slight reduction for NCD2, marked reduction for 5 
NCD1; suppl. table S1, suppl. information S2).  6 
 7 
Simulated and target frequencies. So far, we have only discussed cases where tf = feq, which is expected to 8 
favor the performance of NCD. Accordingly, under this condition NCD has high power: 0.91, 0.85, and 0.79 9 
on average for feq = 0.5, 0.4, and 0.3, respectively (averaged across Tbs and populations, table 1). However, 10 
since in practice there is no prior knowledge about the feq of balanced polymorphisms, we evaluate the power 11 
of NCD when tf differs from the feq. When feq = 0.5, average power is high for tf = 0.5 or 0.4 (above 0.85), but 12 
lower for tf = 0.3 (0.50, table 1). Similar patterns are observed for other simulated feq (table 1) and sample 13 
sizes (suppl. table S1, suppl. information S2). Therefore, NCD statistics are overall well-powered both when 14 
the feq is the same as tf, but also in some instances of feq ≠ tf. In any case, the closest tf is to feq, the higher the 15 
power, so when possible, it is desirable to perform tests across a range of tf.  16 
 17 
NCD implementations and comparison to other methods. Power for NCD2 is greater than for NCD1 for all 18 
tf: feq = 0.5 (average power of 0.94 for NCD2(0.5) vs. 0.88 for NCD1(0.5), averaged across populations and 19 
Tbs; table 1), feq = 0.4 (0.90 for NCD2(0.4) vs. 0.80 for NCD1(0.4)) and feq = 0.3 (0.86 for NCD2(0.3) vs. 0.73 20 
for NCD1(0.3)) (table 1, fig. 2). This illustrates the gain in power by incorporating FDs in the NCD statistic, 21 
which is also more powerful than combining NCD1 and HKA (suppl. table S1).  22 

We compared the power of NCD to two statistics commonly used to detect balancing selection (TajD 23 
and HKA), a composite statistic of NCD1 and HKA (with the goal of quantifying the contribution of FDs to 24 
NCD power), and a pair of model-based composite likelihood-based measures, T1 and T2 (DeGiorgio et al. 25 
2014). The T2 statistic, similarly to NCD2, considers both the SFS and the ratio of SNPs to FDs. Power results 26 
are summarized in fig. 2. When feq = 0.5, NCD2(0.5) has the highest power: for example, in Africa (Tbs = 5 27 
mya, and 3 kb) NCD2(0.5) power is 0.96 (the highest among other tests is 0.94, for T2) but the difference in 28 
power is highest when feq departs from 0.5. For feq = 0.4, NCD2(0.4) power is 0.93 (compared to 0.90 for TajD 29 
and T2, and lower for the other tests). For feq = 0.3, NCD2(0.3) power is 0.93 (compared to 0.89 for T2 and 30 
lower for the other tests). These patterns are consistent in the African and European simulations (fig. 2, suppl. 31 
fig. S10), where NCD2 has greater or comparable power to detect LTBS than other available methods. When 32 
focusing on the tests that use only polymorphic sites, NCD1 has similar power to TajD when feq = 0.5, and it 33 
outperforms it when feq departs from 0.5 (suppl. table S1). Altogether, the advantage of NCD2 over classic 34 
neutrality tests is its high power, especially when feq departs from 0.5; the main advantage over T2 is simplicity 35 
of implementation. We note also that NCD can be computed for particular loci, even in the absence of 36 
genome-wide data or a demographic model.  37 

 38 
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Recommendations based on power analyses. Overall, NCD performs very well in regions of 3 kb, and 1 
similarly in European and African demographic scenarios (table 1, fig. 2). We favor windows of a given 2 
length rather than number of informative sites because the density of SNPs is part of NCD2’s signature. 3 
Further, depending on sample size, fixing the number of SNPs or informative sites may result in shorter 4 
widows in regions under balancing selection than in regions under neutrality, which we consider undesirable 5 
for NCD1 and NCD2 analyses. However, the ideal window size will vary depending on species demographic 6 
properties and sampling. Here we use sliding windows to ensure overlap with the narrow signatures of 7 
balancing selection, but alternative approaches such as windows centered on each IS are also possible. 8 

NCD2 is simple to implement and fast to run, yet it performs slightly or substantially better than all 9 
other methods tested (fig. 2, suppl. fig. S10), reaching very high power when tf = feq (always > 0.89 for 10 
selection with an onset of 5 mya and always > 0.79 for 3 mya). While the feq of a putatively balanced allele is 11 
unknown, the simplicity of the NCD statistics makes it trivial to run for several tf values, allowing detection of 12 
balancing selection for a range of equilibrium frequencies. Because NCD2 outperforms NCD1, we used it for 13 
our scan of human populations; NCD1 is nevertheless a good choice when outgroup data is lacking.  14 

 15 
Identifying signatures of LTBS  16 
We aimed to identify regions of the human genome under LTBS. We chose NCD2(0.5), NCD2(0.4) and 17 
NCD2(0.3), which provide sets of candidate windows that are not fully overlapping (table 1). We calculated 18 
the statistics for 3 kb windows (1.5 kb step size) and tested for significance using two complementary 19 
approaches: one testing all windows with respect to neutral expectations, and one identifying outlier windows 20 
in the empirical genomic distribution. We analyzed genome-wide data from two African (YRI: Yoruba in 21 
Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya) and two European populations (GBR: British, England and 22 
Scotland; TSI: Toscani, Italy) (Abecasis et al. 2012). We filtered the data for orthology with the chimpanzee 23 
genome (used as the outgroup) and implemented five additional filters to avoid technical artifacts (suppl. fig. 24 
S13). Finally, we excluded windows with less than 10 IS in any of the populations since these showed a high 25 
variance in NCD2 due to noisy SFS that increases the rate of false positives (see empirical patterns in suppl. 26 
fig. S17 and neutral simulation patterns in suppl. fig. S11, for the choice of 10 IS as cutoff).  27 
 28 
Simulation and empirical-based sets of windows. After all filters were implemented, we analyzed 29 
1,657,989 windows (~ 81% of the autosomal genome; suppl. fig. S13), overlapping 18,633 protein-coding 30 
genes. For each analysis – NCD2(0.5), NCD2(0.4) and NCD2(0.3) –, we defined a p-value for each window 31 
as the quantile of its NCD2 value when compared to those from 10,000 neutral simulations under the inferred 32 
demographic history of each population and conditioned on the same number of IS. Depending on the 33 
population, between 6,226 and 6,854 (0.37-0.41%) of the scanned windows have a lower NCD2(0.5) value 34 
than any of the 10,000 neutral simulations (p < 0.0001), which was our criterion for significance. The 35 
proportions are similar for NCD2(0.4) (0.40-0.45%) and NCD2(0.3) (0.33-0.38%) (table 2). We refer to these 36 
sets, whose patterns cannot be explained by the neutral model, as the significant windows. In each population, 37 
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the union of significant windows considering all tf values spans, on average, 0.6% of the windows (table 2) 1 
and 0.77% of the base pairs. The coordinates for these windows are provided in suppl. table S5. 2 

Due to our criterion, all significant windows had simulation-based p < 0.0001. In order to quantify 3 
how far the NCD2 value of each window is from neutral expectations, we defined Ztf-IS (Equation 2, see 4 
Methods) as the number of standard deviations a window’s NCD2 value lies from the mean of the simulated 5 
distribution under neutrality. We defined as outlier windows for each tf those with the most extreme 6 
signatures of LTBS (in the 0.05% lower tail of the respective Ztf-IS distribution). This more conservative set 7 
contains 829 outlier windows for each population and tf value (table 2), which cover only ~ 0.09% of the base 8 
pairs analyzed and are largely included in the set of significant windows. Significant and outlier windows are 9 
collectively referred to as candidate windows. 10 
 11 
Reliability of candidate windows. Significant windows are enriched both in polymorphic sites (fig. 3A-B) 12 
and intermediate-frequency alleles (fig. 3C-D), and the SFS shape reflects the tf for which they are significant 13 
(fig. 3C-D). Although expected, because these were the patterns used to identify these windows, this shows 14 
that significant windows are unusual in both signatures. Also, as expected with balancing selection, the 15 
significant windows are largely shared across populations (see below). The striking differences of significant 16 
windows with respect to the background distribution in fig. 3, combined with the fact that neutral simulations 17 
do not have NCD2 values as low as those of the significant windows, precludes relaxation of selective 18 
constraint as a an alternative explanation to their signatures (Andrés et al. 2009). 19 

To avoid technical artifacts among significant windows we filtered out regions that are prone to 20 
mapping errors (suppl. fig. S13). Also, we find that significant windows have similar coverage to the rest of 21 
the genome, i.e, they are not enriched in unannotated, polymorphic duplications (suppl. fig. S14). We also 22 
examined whether these signatures could be driven by two biological mechanisms other than LTBS: archaic 23 
introgression into modern humans and ectopic gene conversion (among paralogs). These mechanisms can 24 
increase the number of polymorphic sites and (in some cases) shift the SFS towards intermediate frequency 25 
alleles (suppl. information S5). We find introgression is an unlikely confounding mechanism, since candidate 26 
windows are depleted in SNPs introgressed from Neanderthals (suppl. fig. S16, suppl. table S4, suppl. 27 
information S5). Also, genes overlapped by significant windows are not predicted to be affected by ectopic 28 
gene conversion with neighboring paralogs to an unusually high degree, with the exception of olfactory 29 
receptor genes (suppl. fig. S15, suppl. information S5). Thus, candidate windows represent a catalog of strong 30 
candidate targets of LTBS in human populations. 31 
 32 
Assigned tf values 33 
Many windows were significant for more than one tf. For these cases, we used the Ztf-IS statistic (suppl. 34 
information S3) to identify which tf provides the strongest support for LTBS (i.e., for which tf the departure 35 
from neutral expectations was greatest). In this way, we could assign a tf to each significant window. On 36 
average ~53% of the candidate windows are assigned to tf = 0.3, 27% to tf = 0.4 and 20% to tf = 0.5 (suppl. 37 
table S3).  38 
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Non-random distribution across chromosomes. Candidate windows are not randomly distributed across the 1 
genome. Chromosome 6 is the most enriched for signatures of LTBS, contributing, for example, 10.2% of 2 
significant and 25% of outlier windows genome-wide for LWK while having only 6.4% of analyzed windows 3 
(suppl. fig. S12, with qualitatively similar results for the other populations). This is explained by the MHC 4 
region (fig. 4A), rich in genes with well-supported evidence for LTBS. Specifically, 10 HLA genes are among 5 
the strongest candidates for balancing selection in all four populations, most of which have prior evidence of 6 
balancing selection (suppl. table S4, suppl. information S4 and S6): HLA-B, HLA-C, HLA-DPA1, HLA-DPB1, 7 
HLA-DQA1, HLA-DQB1, HLA-DQB2, HLA-DRB1, HLA-DRB5, HLA-G (Tan et al. 2005; Liu et al. 2006; 8 
Meyer et al. 2006; Sanchez-Mazas 2007; Solberg et al. 2008; DeGiorgio et al. 2014; Teixeira et al. 2015). 9 
 10 
Biological pathways influenced by LTBS 11 
To gain insight on the biological pathways influenced by LTBS, we focused on protein-coding genes 12 
containing at least one candidate window (222-249 outlier and 1,404-1,616 significant genes per population), 13 
and investigated their annotations.  14 

Regarding functional categories, significant genes are overrepresented in 28 GO categories, 24 of 15 
which are shared by at least two populations and 18 by four populations. Thirteen categories are immune-16 
related according to a list of 386 immune-related keywords from ImmPort (Methods). The more stringent sets 17 
of outlier genes are enriched for 28 GO categories (21 shared by all four populations), 18 of which are 18 
immune-related. Furthermore, in both sets several of the remaining enriched categories are directly related to 19 
antigen presentation although not classified as immune-related (e.g. “ER to golgi transport vesicle 20 
membrane”, “integral to membrane”). Among the non immune-related categories are “sarcolemma”, 21 
“epidermis development”, “keratin filament” and “negative regulation of blood coagulation” (suppl. table S2). 22 

When classical HLA genes are removed from the analyses, only two categories remain enriched: 23 
“sarcolemma” (in YRI) and “epidermis development” (GBR), but the small set of genes per population 24 
hampers power.  For the significant windows, “antigen processing and presentation of endogenous peptide 25 
antigen via MHC class I” remains significantly enriched (driven by TAP1, TAP2, ERAP1 and ERAP2; suppl. 26 
table S2). Also, significant windows are still enriched in categories related to the extracellular space – 27 
“extracellular regions”, “integral to membrane” – as in other studies (Andrés et al. 2009; DeGiorgio et al. 28 
2014; Key, Teixeira, et al. 2014) – and “keratin filament”. These categories are not immune-related per se, but 29 
they represent physical barriers to the invasion by pathogens. This indicates that LTBS maintains 30 
advantageous diversity in numerous defense-related genes other than classical HLA genes.  31 

Overall, 33% of the outlier (and 31% of the significant) genes have at least one immune-related 32 
associated GO category, while only 24% of scanned genes do (see Methods). These results collectively 33 
suggest that immunity and defense are frequent targets of LTBS, although a large fraction of the candidates 34 
for LTBS have non-immune related functions or indirect connections with immunity hitherto unknown.  35 

 36 
 37 
Functional annotation of SNPs in candidate windows 38 
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We next tested whether LTBS preferentially maintains SNPs at particular types of functional sites. To do so 1 
we investigated the overlap of candidate windows with different classes of functional annotations in the 2 
human genome, and tested the hypothesis of enrichment of certain classes of sites within our sets of candidate 3 
windows, when compared to sets of randomly sampled windows from the genome (suppl. table S5 and fig. 5). 4 

SNPs in outlier windows overlap disproportionally with protein-coding exons in all the populations (p 5 
≤ 0.001, one-tail test; fig. 5). The protein-coding enrichment is even stronger when considering only SNPs 6 
within genes, which both in outlier (p < 0.001) and significant windows (p ≤ 0.003) are strongly enriched in 7 
protein-coding exons (fig. 5). Within the protein-coding exons, outlier windows in Africa (p ≤ 0.022) and 8 
significant windows in all populations (p ≤ 0.037) are enriched in non-synonymous SNPs (fig. 5). These 9 
observations show that our candidate targets of LTBS tend to be enriched in exonic and potentially functional 10 
(amino-acid altering) SNPs.  11 

Conversely, outlier and significant windows have no excess of SNPs annotated as regulatory (p ≥ 12 
0.458 in all populations, fig. 5). When we explicitly compared protein-coding exons vs. regulatory sites by 13 
restricting our analysis to sites in these two categories, outlier windows have an excess of exonic SNPs (p ≤ 14 
0.003). The same is true for significant windows (p ≤ 0.016; fig. 5). When only nonsynonymous and 15 
regulatory sites are considered, we see enrichment for LWK and YRI for the outlier windows (p ≤ 0.036, fig. 16 
5) but not for the significant windows (p ≥ 0.458 for all populations, fig. 5), although the two analyses that 17 
consider nonsynonymous SNPs are likely underpowered due to low SNP counts (suppl. table S5). Finally, 18 
results using more detailed RegulomeDB annotations generally agree with the observation of lack of 19 
enrichment of regulatory sites in our candidate windows (p ≥ 0.121 for a one tail test for enrichment for 20 
RegulomeDB1+3 for SNPs with MAF ≥ 0.2) (suppl. information S6, suppl. table S5). 21 

Although perhaps limited by the quality of the annotation of regulatory sites and the low power 22 
associated to small SNP counts for nonsynonymous variants, we do not have strong evidence that LTBS in 23 
human populations has preferentially shaped variation at sites with a role in gene expression regulation. These 24 
results suggest that LTBS preferentially affects exons and non-synonymous mutations.  25 
  26 
Overlap across populations  27 
On average 86% of outlier windows in a given population are shared with another population (79% for 28 
significant windows), and 77% with another population within the same continent (66% for significant ones) 29 
(suppl. fig. S18). The sharing is similar when tf are considered separately (suppl. figs. S19 and S20). 30 
Consequently, there is also considerable overlap of candidate protein-coding genes across populations: e.g. in 31 
LWK (tf = 0.5), 76.6% of outlier genes are shared with any other population, and 66% are shared with YRI 32 
(89% and 77% for significant genes; fig. 4B). In fact, on average 44% of outlier genes for a given population 33 
are shared across all populations and 78.7% are shared by a same-continent population (50% and 77% for 34 
significant genes; suppl. fig. S21). 35 
 36 
Candidate genes in more than one population. Instances where signatures of LTBS are not shared between 37 
populations may result from changes in selective pressure, which may be important during fast, local 38 
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adaptation (de Filippo et al. 2016). Still, loci with signatures of LTBS across human populations are more 1 
likely to represent stable selection. We considered as “shared” those candidate protein-coding genes (from the 2 
union of candidate windows for all tf) that are shared by all populations (suppl. table S4). For the rest, we 3 
considered as “African” those shared between YRI and LWK (but neither or only one European population), 4 
and “European” those shared between GBR and TSI (but neither or only one African population). We note 5 
that these designations do not imply that genes referred to as “African” or “European” are putative targets of 6 
LTBS for only one continent (partially because there are some power differences between Africa and Europe, 7 
table 1). The 79 African, 84 European and 102 shared outlier genes add up to 265 genes in total (~1.4% of all 8 
queried genes) and the 458 African, 400 European, and 736 shared significant genes add up to 1,594 (~8.5% 9 
of all queried genes; suppl. table S4). Several of them have been detected in other studies, but the vast 10 
majority are novel candidates (suppl. information S4). 11 
 12 
Expression of candidate genes 13 
Candidate genes are disproportionally expressed in a number of tissues: lung, adipose tissue, adrenal tissue, 14 
kidney, and prostate (suppl. table S2). Also, candidate genes have an unusually large number of different 15 
transcripts. For example, the set of outlier genes shared by at least two populations have on average 8.69 16 
(compared to 7 in controls) and the respective set of significant genes 8.73 (7.1 in controls). These are both 17 
significantly higher than controls even after controlling for gene length (p < 0.001 in both cases for a one-tail 18 
test). 19 
 Genes with mono-allelic expression (MAE) – i.e, the random and mitotically stable choice of an active 20 
allele for a given locus – were enriched among the small set os genes previously reported to be under LTBS 21 
(Savova et al. 2016). Our observations are in agreement with these findings, with 64% and 62% of the sets of 22 
outlier and significant genes shared by at least two populations having MAE status (Savova et al. 2016), 23 
compared to only 41% for genes without signatures of LTBS (p < 1.12-6 Fisher Exact Test, one-sided). 24 
 25 

Discussion 26 

 27 

Limitations of NCD statistics  28 
LTBS produces signatures that are unexpected under neutrality and for most demographic scenarios, including 29 
those inferred for the human populations we studied. Still, all tests for balancing selection are affected by 30 
strong population substructure, which can result in an excess of polymorphism that, in certain cases (e.g. with 31 
similar contribution of the two subpopulations, or with positive selection) may be at intermediate frequencies. 32 
Some types of migration and introgression can also result in genome-wide or local excess of diversity and, 33 
under positive selection, also intermediate frequencies. Here we benefit from the extensive prior work on the 34 
1000 Genomes populations showing absence of substructure in the populations we studied. Also, we show 35 
that Neanderthal introgression has a minimal effect on our inferences of LTBS. However, as with any 36 
neutrality test, applying NCD to other species requires consideration of the demographic history of the 37 
population.                                                                                                     Certain selective regimes can 38 
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also generate signatures that are similar to those of LTBS. For example, incomplete or soft sweeps can 1 
produce an excess of intermediate frequency variants (Hermisson and Pennings 2017) that could be mistaken 2 
as evidence for balancing selection when only polymorphisms are used (e.g. with NCD1). Still, because none 3 
of these events should increase the time to the most recent common ancestor and density of polymorphisms, 4 
they do not confound NCD2. As mentioned above, recent balancing selection is difficult to distinguish from 5 
those two selective scenarios, which is one of the reasons why we focused on LTBS here.                                                              6 
 Per definition NCD requires pre-defining a tf, which in practice is typically unknown; this can be 7 
easily addressed by running the test with different tf and combining results. Also, as with most neutrality tests, 8 
it is necessary to pre-define the length of the analyzed region. For NCD we favor a fixed length over a fixed 9 
number of IS, but this condition can be modified as needed.  Despite these limitations, we show that 10 
NCD is a powerful, simple and fast method to identify the signatures of LTBS in polymorphism data, which 11 
we expect will be used in model and non-model organisms and that we used to uncover novel targets of LTBS 12 
in humans. 13 
 14 
The targets of LTSB in the human genome 15 
Using simulation-based and empirical outlier approaches, we uncovered windows with signatures of LTBS in 16 
humans. We showed that these windows are unlikely to be affected by technical artifacts or confounding 17 
biological processes other than LTBS, such as introgression from archaic hominins. On average, across 18 
populations, 0.6% of the windows in a population meet our criterion of significance (we never observe 19 
comparable or more extreme signatures of LTBS in 10,000 neutral simulations). These windows contain on 20 
average 0.77% of the base-pairs and 1.6% of the SNPs in the analyzed genome per population, and although 21 
they amount to a low proportion of the genome, on average 7.9% of the protein-coding genes in a population 22 
contain at least one significant window (considering UTRs, introns and protein coding exons). For the outlier 23 
windows (those within the 0.05% most extreme for NCD2), on average 1.2% of genes in each population 24 
show some evidence of selection. These proportions are similar to the ones found when requiring that a 25 
significant or outlier windows be shared by at least two same-continent populations (8.5% and 1.4%, 26 
respectively). We note that although these sets probably include some false positives, our method is only 27 
sensitive to very old balancing selection, so in practice we are likely underestimating the total influence of 28 
balancing selection in human genomes.  29 

In both sets, we identified many previously known targets of LTBS, but also many new ones. For 30 
example, almost 70% of the outlier genes shared at least by same-continent populations (and 90% of the 31 
significant ones) are novel. Many of these candidate genes show strongest evidence for LTBS at tf values 32 
different from 0.5. This is expected, for instance, under asymmetric overdominance, and highlights the 33 
importance of considering selective regimes with different frequencies of the balanced polymorphism.  34 
 35 
Functional properties of SNPs in candidate windows 36 
In this study, we confirm cases where protein-coding regions are the likely target of selection, such as HLA-B 37 
and HLA-C (Hughes and Nei 1988),  as well as cases where regulatory regions are probably targeted, such as 38 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2017. ; https://doi.org/10.1101/119529doi: bioRxiv preprint 

https://doi.org/10.1101/119529


 13 

HLA-G, UGT2B4, TRIM5 (Tan et al. 2005; R Cagliani et al. 2010; Sun et al. 2011). Overall, we found a 1 
strong enrichment of exonic, and a weaker enrichment of aminoacid-altering SNPs in the candidate windows, 2 
suggesting an abundance of potentially functional SNPs within selected regions.  3 

While LTBS has been proposed to play an important role in maintaining genetic diversity that affects 4 
gene expression (Leffler et al. 2013; Savova et al. 2016), we find that regulatory SNPs are underrepresented 5 
within the candidate regions. This does not imply that there are no regulatory SNPs under balancing selection, 6 
but rather that with existing annotations (which are less precise for regulatory than protein-coding sites) they 7 
are not enriched within candidate targets. Overall, we show that LTBS plays an important role in maintaining 8 
diversity at the level of protein sequence. This is compatible with two scenarios: (a) direct selection on 9 
protein-coding sites or (b) accumulation of functional (including slightly deleterious) variants as a bi-product 10 
of balancing selection. Importantly, we show that significant windows are also extreme in their high density of 11 
polymorphisms and have a SFS that is markedly different from neutral expectations, suggesting that 12 
relaxation of purifying selection and background selection are unlikely to generate their signatures.  13 
 14 
Overlap with previous studies  15 
Whereas positive selection scans show a remarkably low overlap with respect to the genes they identify, with 16 
as few as 14% of protein-coding loci appearing in more than a single study (Akey 2009),  34% of our outlier 17 
genes (11% of significant ones) had evidence of LTBS in at least one previous study (Andrés et al. 2009; 18 
Leffler et al. 2013; DeGiorgio et al. 2014). Remarkably, 47% of the shared outliers across all four populations 19 
(17% of the shared significant ones) have been detected in at least one previous study, and the proportions are 20 
similar even when classical HLA genes are removed (39 and 16% overlap, respectively). This is a high degree 21 
of overlap, considering the differences in methods and datasets across studies. 22 
 23 
Properties of candidate genes  24 
Below we briefly discuss the outlier genes (suppl. table 6), highlighting the variety of biological functions and 25 
known genetic associations potentially shaped by LTBS in humans.  26 
 27 
Gene expression. Candidate genes have on average a larger number of transcripts than other genes. As 28 
examples, CLDN11, ROBO2, ESR1 or PRKCE (discussed below) have 10-15 different transcripts, a higher 29 
number than at least 75% of scanned genes. It is possible that these genes benefit from overall high levels of 30 
diversity, contributed both by genetic diversity and transcript diversity. Also in agreement with previous 31 
findings we find a significant excess of MAE genes among targets of balancing selection.  This excess is not 32 
driven by HLA genes, which were filtered out in the study originally reporting MAE genes and supports the 33 
claim for a biological link between MAE and balancing selection (Savova et al. 2016). Heterozygosity in a 34 
MAE gene could lead to cell-to-cell heterogeneity within same-cell clusters, which could in turn be potentially 35 
advantageous (Savova et al. 2016; Sung et al. 2016)), particularly in the case of cell-surface proteins. Some of 36 
these MAE genes found in our study, and not previously detected in scans for balancing selection, are 37 
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involved in immunity/defense barriers (e.g. IL1RL1, IL18R1, FAM114A1, EDARADD, SIRPA, TAS2R14), 1 
oxygen transport and hypoxia (e.g. PRKCE, HBE1, HBG2, EGLN3), or reproduction (e.g. CLDN11).  2 
 3 
Oxygen transport and response to hypoxia. Among the outlier genes with MAE we find members of the 4 
beta-globin cluster (HBE1 and HBG2, in the same window) that are involved in oxygen transport and have 5 
strong associations to hemoglobin levels and beta thalassemia (Danjou et al. 2015), and EGLN3, a regulator of 6 
the NF-kß pathway that is significantly upregulated under hypoxia in anti-inflammatory macrophages 7 
(Escribese et al. 2012) and also plays a role in skeletal muscle differentiation (Fu et al. 2007). The encoded 8 
protein hydroxylates the product of EPAS1, a gene shown to harbor variants responsible for human adaptation 9 
to high altitude in Tibet (Yi et al. 2013). Interestingly, in addition to having strong signatures of LTBS in all 10 
populations we analyzed, they also have evidence for recent positive selection in Andean (HBE1, HBG2) or 11 
Tibetan (HBG2) populations (Bigham et al. 2010; Rottgardt et al. 2010; Yi et al. 2010). It is plausible that 12 
these genes have been under LTBS, and have undergone a shift in selective pressures in high-altitude 13 
populations (as in de Filippo et al. 2016), but further analyses are required to confirm this possibility. Another 14 
outlier gene, PRKCE, is also strongly associated to hemoglobin levels and red blood cell traits.  15 
 16 
Immunological function and defense barriers.  It has long been argued that genes of immune function are 17 
prime candidates for balancing selection. As expected, we detect several classical HLA with known signatures 18 
of LTBS. However, many non-HLA candidates from our set of outlier genes have immunological functions. 19 
For example, we confirm signatures of LTBS in the ABO locus (suppl. information S4), a well-known case of 20 
LTBS in humans (Ségurel et al. 2012), and TRIM5, a gene with important antiviral function (R Cagliani et al. 21 
2010).  22 

Among novel candidates of balancing selection, we find several genes involved in auto-immune 23 
disease. For example, IL1RL1-IL18R1 have strong associations to celiac disease and atopic dermatitis, an 24 
auto-immune disease (Hirota et al. 2012). HLA-DQB2 mediates superantigen activation of T cells (Lenormand 25 
et al. 2012) and is associated both to infectious (hepatitis B) and autoimmune diseases (e.g. Lee et al. 2012; 26 
Jiang et al. 2015). Two other significant genes for which there is prior evidence for LTBS, ERAP1 and ERAP2 27 
(Andrés et al. 2010; Rachele Cagliani et al. 2010), are associated with ankylosing spondylitis and psoriasis 28 
(e.g. Strange et al. 2010; Evans et al. 2011; Robinson et al. 2015). Finally, there are several associations to 29 
autoimmune disease and susceptibility to infections in the classical HLA genes that we identify. In brief, our 30 
results are consistent with the hypothesis that auto-immune disease is linked to natural selection favoring 31 
effective immune response against pathogens (Corona et al. 2010; Sironi and Clerici 2010). 32 

Another important aspect of defense is the avoidance of poisonous substances. As suggested 33 
previously by studies on polymorphism in PTC receptors (Wooding et al. 2004; Wooding et al. 2006), 34 
avoidance of bitterness might have been adaptive throughout human evolutionary history because several 35 
potentially harmful substances are bitter. The TAS2R14 gene encodes for a bitter taste receptor, and in humans 36 
it has strong associations to taste perception of quinine and caffeine (Ledda et al. 2014), is considered a 37 
promiscuous receptor (Meyerhof et al. 2010; Thalmann et al. 2013; Karaman et al. 2016), and is one of the 38 
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few bitter taste receptors that binds a vast array of compounds, and for which no common structure has been 1 
found (Behrens et al. 2004; Meyerhof et al. 2010). This entails diversity in the antigen binding portions of the 2 
receptors, which may be enhanced by balancing selection. Indeed, an elevated dN/dS ratio was reported for a 3 
cluster of bitter taste receptors which includes TAS2R14 (Kosiol et al. 2008). To our knowledge, our study is 4 
the first in detecting signatures of LTBS in this gene.  5 

 6 
Cognition. Interestingly, several candidate genes are involved in cognitive abilities, or their variation is 7 
associated with diversity in related phenotypes. The KL (life extension factor klotho) is a gene that has been 8 
associated to human longevity (Arking et al. 2002) and for which signatures of LTBS have been previously 9 
reported (DeGiorgio et al. 2014). In mice, decreased levels of klotho shorten lifespan (reviewed in Welberg 10 
2014). In humans, heterozygotes for the KL-VS variant show higher levels of serum klotho and enhanced 11 
cognition, independent of sex and age, than wild-type homozygotes. On the other hand, KL-VS homozygotes 12 
show decreased lifespan and reduced cognition (Dubal et al. 2014). If higher cognition is advantageous, 13 
overdominance for this phenotype can explain the signatures of balancing selection we observe (although 14 
klotho’s effect in lifespan could also influence). 15 

PDGFD encodes a growth factor that plays an essential role in wound healing and angiogenesis. A 16 
human-mice comparison revealed that the PDGFD-induced signaling is crucial for human (but not mouse) 17 
proliferation of the neocortex due to neural stem-cell proliferation (Lui et al. 2014), a trait that underlies 18 
human cognition capacities (Rakic 2009). This gene has strong associations to coronary artery disease and 19 
myocardial infarction, which are related to aging. 20 

Also, among our outliers, a gene with a cognitive-related genetic association is ROBO2, a 21 
transmembrane receptor involved in axon guidance. Associations with vocabulary growth have been reported 22 
for variants in its vicinity (St Pourcain et al. 2014). ROBO2 has signatures of ancient selective sweeps in 23 
modern humans after the split with Neanderthals and Denisova (Peyrégne et al. forthcoming) on a portion of 24 
the gene (chr3:77027850-77034264) almost 40kb apart from the one for which we identified a signature of 25 
LTBS (chr3:76985072-76988072). The occurrence of both these signatures highlights the complex 26 
evolutionary relevance of this gene.  27 

Associations of candidate genes with cognition are also exemplified by case-control and cohort studies 28 
linking polymorphisms in the estrogen receptor alpha (ER-α) gene, ESR1, to dementia and cognitive decline. 29 
Links between ER-α variants and anxiety and depression in women have been proposed but lack confirmation 30 
(reviewed in Sundermann et al. 2010). Interestingly, three other of our candidate genes (PDLIM1,GRIP1, 31 
SMYD3) interact with ER-α at the protein level (Szklarczyk et al. 2015), and two have strong association with 32 
suicide risk (PDLIM1,GRIP1) (Perlis et al. 2010; Mullins et al. 2014). 33 

In genes like KL, where heterozygotes show higher cognitive abilities than homozygotes, cognition may 34 
be a driving selective force. This is a possible scenario in other genes, too. Still, given the complexity of brain 35 
development and function, it is also possible that cognitive effects of this variation are a byproduct of 36 
diversity maintained for other phenotypes. For example, MHC proteins and other immune effectors are 37 
believed to affect connectivity and function of the brain (reviewed in (Shatz 2009; Needleman and McAllister 38 
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2012), with certain alleles being clearly associated with autism disorder (Careaga et al. 2010; Needleman and 1 
McAllister 2012; Torres et al. 2012).  2 
 3 
Reproduction. Among candidate genes, there is an enrichment for preferential expression in the prostate. 4 
There are also a number of outlier genes involved in the formation of the sperm. For example, CLDN11 5 
encodes a tight-junction protein expressed in several tissues and crucial for spermatogenesis. Knockout mice 6 
for the murine homologue show both neurological and reproductive impairment, i.e, mutations have 7 
pleiotropic effects (Gow et al. 1999; Wu et al. 2012). In humans, variants in the gene are strongly associated 8 
to prostate cancer. 9 

ESR1, mentioned above, encodes an estrogen-activated transcription factor and leads to abnormal 10 
secondary sexual characteristics in females when defective (Quaynor et al. 2013). ER-α interacts directly with 11 
the product of BRCA1 and has strong associations to breast cancer (Michailidou et al. 2013), breast size 12 
(Eriksson et al. 2012) and menarche (age at onset). In males, it is involved in gonadal development and 13 
differentiation,  and lack of estrogen and/or ER-α in males can lead to poor sperm viability (reviewed in 14 
Lazari et al. 2009). Strikingly, this gene also has SNPs strongly associated to a diverse array of phenotypes, 15 
including height, bone mineral density (spine and hip), and sudden cardiac arrest (Rivadeneira et al. 2009; 16 
Aouizerat et al. 2011; Wood et al. 2014). Two other genes among our candidates are also part of the estrogen 17 
signaling pathway: PLCB4 and ADCY5 (which is strongly associated to birth weight). Estrogens are not only 18 
involved in reproductive functions (both in male and females), but also in several processes of neural (see 19 
above), muscular or immune nature, and the ER-α-estrogen complex can act directly on promoter regions of 20 
other genes, or interact with transcription factors of genes without estrogen-sensitive promotor regions 21 
(Heldring et al. 2007). In this case, balancing selection could be explained by the high level of pleiotropy (if 22 
different alleles are beneficial for different functions), including the function in male and female reproduction 23 
(if different alleles are beneficial in males than females). 24 
 25 

Conclusions  26 

We present two new summary statistics, NCD1 and NCD2, which are both simple and fast to implement on 27 
large datasets to identify genomic regions with signatures of LTBS. They have a high degree of sensitivity for 28 
different equilibrium frequencies of the balanced polymorphism and, unlike classical statistics such as 29 
Tajima’s D or the Mann-Whitney U (Andrés et al. 2009; Nielsen et al. 2009), allow an exploration of the most 30 
likely frequencies at which balancing selection maintains the polymorphisms. This property is shared with the 31 
likelihood-based T1 and T2 tests (DeGiorgio et al. 2014). We show that the NCD statistics are well-powered to 32 
detect LTBS within a complex demographic scenario, such as that of human populations. They can be applied 33 
to either single loci or the whole-genome, in species with or without detailed demographic information, and 34 
both in the presence and absence of an appropriate outgroup.  35 

More than 85% of our outlier windows are shared across populations, raising the possibility that long-36 
term selective pressures have been maintained after human populations colonized new areas of the globe. 37 
Still, about 15% of outlier windows show signatures exclusively in one sampled population and a few of these 38 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 24, 2017. ; https://doi.org/10.1101/119529doi: bioRxiv preprint 

https://doi.org/10.1101/119529


 17 

show opposing signatures of selective regimes between human groups; they are of particular relevance to 1 
understand how recent human demography might impact loci evolving under LTBS for millions of years or 2 
subsequent local adaptations through selective pressure shifts (e.g. de Filippo et al. 2016).  3 

Our analyses indicate that, in humans, LTBS may be shaping variation in less than 2 % of variable 4 
genomic positions, but that these on average overlap with about 8% of all protein-coding genes. Although 5 
immune-related genes represent a substantial proportion of them, almost 70% of the candidate genes shared 6 
by at least same-continent populations cannot be ascribed to immune-related functions, suggesting that diverse 7 
biological functions, and the corresponding phenotypes, contain advantageous genetic diversity. 8 
 9 

Methods 10 

 11 
Simulations and power analyses 12 
NCD performance was evaluated by simulations with MSMS (Ewing and Hermisson 2010) following the 13 
demographic model and parameter values described in Gravel et al. (2011) for African, European, and East 14 
Asian human populations (fig. 2). To obtain the neutral distribution for the NCD statistics, we simulated 15 
sequence data under the following demographic model: generation time of 25 years, mutation rate of 2.5 x 10-16 
8 per site, recombination rate of 1 x 10-8, and a human-chimpanzee split at 6.5 mya was added to the model. 17 
For simulations with selection, a balanced polymorphism was added to the center of the simulated sequence 18 
and modeled to achieve a pre-specified frequency equilibrium (feq = 0.3, 0.4, 0.5) following an overdominant 19 
model (suppl. information S2).  Simulations with and without selection were run for different sequence 20 
lengths (3, 6, 12 kb) and times of onset of balancing selection (1, 3, 5 mya). For each combination of 21 
parameters, 1,000 simulations, with and without selection, were used to compare the relationship between true 22 
(TPR, the power of the statistic) and false (FPR) positive rates for the NCD statistics, represented by ROC 23 
curves. For performance comparisons, we used FPR = 0.05. When comparing performance under a given 24 
condition, power was averaged across NCD implementations, demographic scenarios, L, and Tbs. When 25 
comparing NCD performance to other methods (TajD, HKA, and a combined NCD1+HKA test), we 26 
simulated under NCD optimal conditions: L = 3 kb and Tbs = 5 mya (suppl. table S1, where other conditions 27 
are also shown). T1 and T2 require longer genomic regions to identify the signature of balancing selection 28 
(DeGiorgio et al. 2014), so power is reported based on windows of 100 informative sites ( ~ 14 kb for YRI 29 
and CEU) up and downstream of the target site, following BALLET’s original publication (DeGiorgio et al. 30 
2014). We simulated 15 kb windows and calculated T1 and T2 with BALLET (DeGiorgio et al. 2014) for 31 
windows of 100 IS and selected the highest T1 or T2 value from each simulation to obtain their power for the 32 
same set of parameters used for the other simulations. Our power for T1 and T2 is extremely similar to the one 33 
originally reported by DeGiorgio et al. (2014), and our power for  TajD is substantially higher than in 34 
DeGiorgio et al. (2014) (probably due to the choice of window size and different models). Reported power 35 
values are for a sample size of 50 diploid individuals, but sample sizes of 30 and 10 individuals were also 36 
explored (suppl. information S2). 37 
 38 
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Human population genetic data  1 
We analyzed genome-wide data from the 1000 Genomes (1000G) Project phase I (Abecasis et al. 2012), 2 
excluding SNPs only detected in the high coverage exome sequencing in order to avoid SNP density 3 
differences between coding and non-coding regions. We queried genomes of individuals from two African 4 
(YRI, LWK) and two European populations (GBR, TSI). We did not consider Asian populations due to lower 5 
NCD performance for these populations according to our simulations (suppl. table S1, suppl. figs. S7-8). To 6 
equalize sample size, we randomly sampled 50 unrelated individuals from each population (as in (Key, Peter, 7 
et al. 2014)). We dedicated extensive efforts to obtain an unbiased dataset by extensive filtering in order to 8 
avoid the inclusion of errors that may bias results. We kept positions that passed mappability (50mer CRG, 2 9 
mismatches (Thomas Derrien et al. 2012)), segmental duplication (Cheng et al. 2005; Alkan et al. 2009) and 10 
tandem repeats filters (Benson 1999), as well as the requirement of orthology to chimp (suppl. fig. S13) 11 
because NCD2 requires divergence information (Equation 1). Further, we excluded 3 kb windows: with less 12 
than 10 IS in any population (~2% of scanned windows) and less than 500 bp of positions with orthology in 13 
chimp (1.6%); the two criteria combined resulted in the exclusion of 2.2% of scanned windows. 14 
 15 
Identifying signatures of LTBS  16 
After applying all filters and requiring the presence of at least one informative site, NCD2 was computed for 17 
1,695,655 windows per population. Because in simulations 3kb windows yielded the highest power for NCD2 18 
(table 1; suppl. figs. S3-S6), we queried the 1000G data with sliding windows of 3 kb (1.5 kb step size). 19 
Windows were defined in physical distance since the presence of LTBS may affect the population-based 20 
estimates of recombination rate. For each window in each population we calculated NCD2 for three tf values 21 
(0.3-0.5). In neutral simulations these three measures are, as expected, highly correlated (suppl. fig. S9).  22 
 23 
Filtering and correction for number of informative sites. Genome-wide studies of natural selection 24 
typically place a threshold on the minimum number of IS necessary (e.g. at least 10 IS in (Andrés et al. 2009), 25 
or 100 IS in (DeGiorgio et al. 2014)). We observe considerable variance in the number of IS per 3 kb window 26 
in the 1000G data; also, NCD2 has high variance when the number of IS is low in neutral simulations (suppl. 27 
figs. S11 and S17). We thus excluded windows with less than 10 IS in a given population because, for higher 28 
values of IS, NCD2 stabilizes. We then analyzed the 1,657,989 windows that remained in all populations, 29 
covering 2,145,937,383 base pairs (suppl. fig. S13). Neutral simulations with different mutation rates were 30 
performed in order to retrieve 10,000 simulations for each value of IS (suppl. fig. S17, and Methods). NCD2 31 
(tf = 0.3, 0.4, 0.5) was calculated for all simulations, allowing the assignment of significant windows and the 32 
calculation of Ztf-IS (Equation 2 below). 33 
 34 
Significant and outlier windows. We defined two sets of windows with signatures of LTBS: the significant 35 
(based on neutral simulations) and outlier windows (based on the empirical distribution of Ztf-IS, see below). 36 
When referring to both sets, we use the term candidate windows. Significant windows were defined as those 37 
fulfilling the criterion whereby the observed NCD2 value is lower than all values obtained from 10,000 38 
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simulations with the same number of IS. Thus, all significant windows have the same p-value (p < 0.0001). In 1 
order to rank the windows and define outliers, we used a standardized distance measure between the observed 2 
NCD2 (for a queried window) and the mean of the NCD2 values for the 10,000 simulations with the matching 3 
number of IS:  4 

Ztf −IS =
NCD2tf −NCD2tf −IS

sdtf −IS
 (2) 

, where Ztf-IS is the standardized NCD2, conditional on the value of IS, NCD2tf is the NCD2 value with a given 5 

tf for the n-th empirical window, 		NCD2tf −IS  is the mean NCD2 for 10,000 neutral simulations for the 6 

corresponding value of IS, and sdtf-IS is the standard deviation for 10,000 NCD2 values from simulations with 7 
matching IS. Ztf-IS allows the ranking of windows for a given tf, while taking into account the residual effect of 8 
IS number on NCD2tf, as well as a comparison between the rankings of a window considering different tf 9 
values. An empirical p-value was attributed to each window based on the Ztf-IS values for each tf. Windows 10 
with empirical p-value < 0.0005 (829 windows) were defined as the outlier windows. Outlier windows are 11 
essentially a subset of significant windows (except for 5 windows in LWK, 1 window in YRI, 3 windows in 12 
GBR, and 4 windows in TSI). Significant and outlier windows for multiple tf values had an assigned tf value, 13 
defined as the one that minimizes the empirical p-value for a given window (suppl. information S3). 14 
 15 
Coverage as a proxy for undetected short duplication. To test whether the signatures of LTBS are driven 16 
by undetected short duplications, which can produce mapping and SNP call errors, we analyzed an alternative 17 
modern human genome-wide dataset, sequenced to an average coverage of 20x-30x per individual (Meyer et 18 
al. 2012; Prüfer et al. 2013). We used an independent data set because read coverage data is low and cryptic in 19 
the 1000G, and putative duplications affecting the SFS must be at appreciable frequency and should be 20 
present in other data sets. We considered 2 genomes from each of the following populations: Yoruba, San, 21 
French, Sardinian, Dai, and Han Chinese. For each sample, we retrieved positions above the 97.5% quantile of 22 
the coverage distribution for that sample (“high coverage” positions). For each window with signatures of 23 
LTBS, we calculated the proportion of the 3kb window having high coverage in at least two samples and 24 
plotted the distributions for different NCD2 Ztf-IS p-values. Extreme NCD windows are not enriched in high-25 
coverage regions; in fact, they are depleted of them in some cases (suppl. fig. S14) (Mann-Whitney U two-tail 26 
test; p < 0.02 for tf = 0.5 and tf = 0.4 for GBR and TSI). 27 
 28 
Enrichment Analyses 29 
Gene ontology (GO) and tissue-specific expression. We analyzed protein-coding genes overlapped by one 30 
or more candidate windows. GO and tissue of expression enrichment analyses were performed using 31 
GOWINDA (Kofler and Schlötterer 2012), which corrects for gene length-related biases and/or gene 32 
clustering (suppl. information S6). GO accession terms were downloaded from the GO Consortium 33 
(http://geneontology.org). We ran analyses in mode:gene  (which assumes that all SNPs in a gene are 34 
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completely linked) and performed 100,000 simulations for FDR (false discovery rate) estimation. Significant 1 
GO and tissue-specific categories were defined for a FDR ≤ 0.05. A minimum of three genes in the enriched 2 
category was required.  3 
 For tissue-specific expression analysis we used Illumina BodyMap 2.0 (T. Derrien et al. 2012) 4 
expression data for 16 tissues, and considered genes significantly highly expressed in a particular tissue when 5 
compared to the remaining 15 tissues using the DESeq package (Anders and Huber 2010), as done in 6 
Sankararaman et al. (2014). GO and tissue-specific expression analyses were performed for each population 7 
and set of genes: outliers or significant; different tf values (or union of tf); with or without classical HLA 8 
genes (suppl. information S6).  9 
 10 
Archaic introgression and ectopic gene conversion. We evaluated two potentially confounding biological 11 
factors: ectopic gene conversion and archaic introgression. We verified the proportion of European SNPs in 12 
candidate windows that are potentially of archaic origin, and whether candidate genes tend to have elevated 13 
number of paralogs in the same chromosome. Details in suppl. information S5. 14 

 15 
SNP annotations and re-sampling procedure. Functional annotations for SNPs were obtained from 16 
ENSEMBL-based annotations on the 1000G data (http://www.ensembl.org/info/genome/ 17 
variation/predicted_data.html). Specifically, we categorized SNPs as: intergenic, genic, exonic, regulatory, 18 
synonymous, and non-synonymous. Details on which annotations were allocated to each of these broad 19 
categories are presented in suppl. information S6.  Within each category, each SNP was only considered when 20 
variable in the population under analysis (suppl. information S6). For each candidate window, we sum the 21 
number of SNPs with each score, and then sum across candidate windows. To compare with non-candidate 22 
windows, we performed 1,000 re-samplings of the number of candidate windows (which were merged in case 23 
of overlap) from the set of background windows (all windows scanned). For each re-sampled set, we summed 24 
the number of SNPs in a particular category and then computed the ratios in suppl. table S5 and fig. 5. We 25 
therefore obtained ratios for each re-sampling set, to which we compared the values from candidate windows 26 
to obtain empirical p-values. Because we considered the sum of scores across windows, and counted each 27 
SNP only once, results should be insensitive to window length (as overlapping candidate windows were 28 
merged). As before, we performed these analyses for each population and sets of windows: outliers or 29 
significant, considering the union of all tf.  30 
 31 
Splicing variants, monoallelic expression (MAE), immune-related genes. Candidate genes have a larger 32 
number of transcripts than controls. To test if this is a significant difference, while controlling for gene length, 33 
we: 1) divided candidate genes into quantiles of gene length; 2) sampled a set of genes (265 or 1594) 34 
matching candidate genes in quantile bin; 3) calculated the mean and median number of transcripts for each 35 
set; 4) repeated this process 1,000 times and calculated the empirical one-tailed p-value (based on where the 36 
candidate sets’ values fall in the distributions based on re-sampling). The number of transcripts per gene was 37 
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obtained from Ensembl Biomart. For this analysis and to reduce complexity we used the set of candidate 1 
genes (outliers, or siginificant) that are shared by same continent populations. 2 
  To test for enrichment for genes with MAE, we quantified the number of outlier and significant genes 3 
with MAE and the number that have bi-allelic expression as described in (Savova et al. 2016). We compared 4 
these proportions to those observed for all scanned genes (one-tailed Fisher’s test.) The same procedure was 5 
adopted to test for enrichment of immune-related genes among our sets: we used a list of 386 keywords from 6 
the Comprehensive List of Immune Related Genes 7 
(https://immport.niaid.nih.gov/immportWeb/queryref/immportgene/immportGeneList.do) and queried how 8 
many of the outlier protein-coding genes (402 genes in total across populations and tf, of which 378 had at 9 
least one associated GO term) had at least one immune-related associated GO category. 10 

All statistical analyses and figures were performed in R (Development Core Team 2009) (scripts 11 
available on https://github.com/bbitarello/NCV_dir_package and NCD code available in 12 
https://github.com/bbitarello/NCD-Statistics). Gene Cards (www.genecards.org) and Enrichr (Kuleshov et al. 13 
2016) were used to obtain basic functional information about genes and STRING v10 (Szklarczyk et al. 2015) 14 
was used to obtain information for interactions between genes for the discussion. The GWAS catalog (Welter 15 
et al. 2014) was used to search for associations included in the discussion (we only report “strong 16 
associations”, i.e, when there is at least one SNP with p < 10-8). 17 

 18 
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Tables 26 

Table 1. Power for simulations under the African and European demographic models 27 
 28 

	 	 Africa	 Europe	
	 	 NCD2	 NCD1	 NCD2	 NCD1	
Tbs	 feq	 tf	 tf	 tf	 tf	
	 	 0.5	 0.4	 0.3	 0.5	 0.4	 0.3	 0.5	 0.4	 0.3	 0.5	 0.4	 0.3	
5	 0.5	 0.96	 0.94	 0.84	 0.93	 0.91	 0.39	 0.97	 0.95	 0.84	 0.92	 0.85	 0.20	
5	 0.4	 0.94	 0.94	 0.89	 0.89	 0.89	 0.67	 0.95	 0.94	 0.91	 0.85	 0.84	 0.60	
5	 0.3	 0.90	 0.91	 0.93	 0.72	 0.80	 0.84	 0.84	 0.86	 0.89	 0.47	 0.57	 0.74	
3	 0.5	 0.91	 0.88	 0.68	 0.86	 0.80	 0.24	 0.93	 0.89	 0.68	 0.81	 0.69	 0.15	
3	 0.4	 0.88	 0.86	 0.76	 0.78	 0.78	 0.56	 0.89	 0.88	 0.79	 0.74	 0.71	 0.46	
3	 0.3	 0.75	 0.77	 0.81	 0.56	 0.64	 0.71	 0.73	 0.76	 0.80	 0.39	 0.48	 0.63	

Power at false positive rate (FPR) = 5%. Simulations with L = 3 kb. Tbs, time in mya since onset of balancing 29 
selection; feq, equilibrium frequency in the simulations. Power on additional conditions is presented on suppl. 30 
table S1. 31 
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 30 

Table 2. Candidate windows and protein-coding genes across populations 1 

Note. – Significant and outlier genes and windows, see main text. U, union of windows considering three tf 2 
values. Total number of queried windows per population is 1,657,989. Union of all candidate genes is 2,348 3 
(significant) and 402 (outlier). 4 
 5 

Figure Captions 6 

Fig. 1. A schematic representation of site frequency spectra (SFS) under neutrality and selection, which 7 
motivates the NCD statistic. (A) Unfolded SFS (ranging from 0 to 1) of derived allele frequencies (DAF) for 8 
loci under neutrality (grey) or containing one site under balancing selection with frequency equilibrium (feq) of 9 
0.5 (blue), 0.4 (orange) and 0.3 (pink). (B) Folded SFS (ranging from 0 to 0.5) for minor allele frequencies 10 
(MAF). Colors as in A. (C) Distribution of NCD (Non-Central Deviation) expected under neutrality (grey) 11 
and under selection assuming tf = feq. Colors as in A. x-axis shows minimum and maximum values that NCD 12 
can have for a given tf .  13 
 14 
Fig. 2.  Power to detect balancing selection for NCD(0.5) and other tests. The ROC curves summarize the 15 
power (in function of the false positive rate) to detect LTBS for simulations where the balanced 16 
polymorphism was modeled to achieve feq of (A) 0.3, (B) 0.4, and (C) 0.5. Plotted values are for the African 17 
demography, Tbs = 5 mya. L = 3 kb, except for T1 and T2 where L = 100 ISs, following (DeGiorgio et al. 18 
2014) (see Methods). For NCD calculations, tf = feq. European demography yields similar results (suppl. fig. 19 
S10). 20 
 21 
Fig. 3. Polymorphism-to-divergence and SFS. (A,B) SNP/(FD+1) for LWK (A) and GBR (B) populations. 22 
SNP/(FD+1) measures the proportion of polymorphic-to-divergent sites for the union of significant windows 23 
for all tf (purple, green) compared to all scanned windows (gray). (C-D) SFS in LWK (C) and GBR (D) of all 24 
scanned windows in chr1 (gray), significant windows for NCD2(0.5) (blue), NCD2(0.4) (orange), NCD2(0.3) 25 
(pink). DAF, derived allele frequency. 26 

Population	 	LWK	 																													YRI	 GBR	 TSI	

tf	 0.3	 0.4	 0.5	 U	 0.3	 0.4	 0.5	 U	 0.3	 0.4	 0.5	 U	 0.3	 0.4	 0.5	 U	

Significant	
windows	 7,364	 6,841	 6,226	 10,072	 8,098	 7,420	 6,854	 10,997	 6,173	 6,858	 6,519	 9,521	 5,998	 6,661	 6,403	 9,282	

Outlier	
windows	 829	 829	 829	 1,248	 829	 829	 829	 1,230	 829	 829	 829	 1,251	 829	 829	 829	 1,270	

Significant	
genes	 1,182	 1,099	 1,026	 1,457	 1,326	 1,187	 1,110	 1,616	 1,026	 1,094	 1,051	 1,414	 1,039	 1,091	 1,056	 1,414	

Outlier	
genes	 151	 158	 167	 249	 142	 151	 157	 232	 140	 157	 159	 222	 143	 157	 166	 231	
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 31 

Fig. 4.   Manhattan plot and population sharing. (A) Manhattan plot of all scanned windows, for one 1 
analysis (NCD2(0.5) and LWK).  y-axis, p-value (log-scale) based on Ztf-IS. x-axis, ordered location of 2 
analyzed windows on the genome. Each point is a scanned (grey and black), significant (blue) or outlier (pink) 3 
window. Names of outlier protein-coding genes are provided, sorted by name. We note that significant 4 
windows were defined based of simulations, not on Ztf-IS. (Ztf-IS is used to rank even those with p < 0.0001) (B) 5 
Venn diagram showing the overlap in signatures of the 167 outlier genes annotated in (A) with other 6 
populations. 7 
 8 
Fig. 5. Enrichment of classes of sites amongst candidate windows. Dashed lines mark the p = 0.975 9 
(bottom) and p = 0.025 (top) thresholds for the one-tailed p-values (hypothesis: enrichment). NSyn, 10 
nonsynonymous; all, Genic plus Intergenic plus Regulatory. The annotation is based on Ensembl variant 11 
predictor (suppl. information S6). p< 0.001 was treated as 0.001 to avoid infinite values. 12 
 13 
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