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Abstract.

Excitatory and inhibitory neurons in the mammalian sensory cortex form interconnected circuits
controlling cortical stimulus selectivity, but their relation to sensory acuity remains unknown. Here we
show that the behavioral alteration of frequency discrimination acuity in mice due to optogenetic
activation and suppression of auditory cortex (AC) neurons varies from animal to animal in both
magnitude and sign. We used Fisher information based on recordings from AC neural populations to
estimate the behavioral discrimination acuity under different optogenetic conditions, and showed that
the changes in population tuning consistently predict the changes in behavior for each individual
separately. The strong correlation between cortical and behavioral changes demonstrates that AC
facilitates frequency discrimination in a manner predicted by optimal decoding from cortical neurons.
This suggests that diversity in auditory behavior may be partly explained by variations in the circuit
properties of AC, consistent with theoretical prediction for balanced excitatory-inhibitory networks.
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Introduction.

Individual differences give rise to diversity—an essential feature of the success of many species.
Uncovering how differences in neural activity lead to differences in behavior is crucial to developing
an understanding of brain function that applies to a population with diverse behaviors. We noted from
previous studies that individual mice vary markedly in their ability to discriminate nearby tones (Kurt
and Ehret, 2010; Aizenberg and Geffen, 2013; Aizenberg et al., 2015; Mwilambwe-Tshilobo et al.,
2015). This acuity should rely on frequency tuning of neurons in the auditory pathway. It is known
that frequency tuning in auditory cortex (AC) is determined by interactions in the excitatory-inhibitory
network (Chen and Jen, 2000; Wang et al., 2000; Wang et al., 2002a; Wehr and Zador, 2003; Oswald
et al., 2006; Wu et al., 2008; Tan and Wehr, 2009; Seybold et al., 2015; Phillips and Hasenstaub,
2016). Theoretical work on balanced excitatory-inhibitory networks has shown that driving inputs to
inhibitory units can lead to either a decrease or an increase of excitatory responses, depending on
the specifics of excitatory and inhibitory recurrent connections or the strength of inhibitory
manipulations (Tsodyks et al., 1997). We hypothesized that changes in cortical circuit interactions
could underlie changes in tone discrimination behavior, and that variation in these interactions could
be the locus of differences in frequency discrimination behavior among individuals. To test these
hypotheses, we manipulated activity of excitatory and inhibitory neurons in AC optogenetically, and
showed that differences in behavioral frequency discrimination across mice during optogenetic
manipulations are predicted by changes in the tone responses of neurons.

Recent experiments support the view that the auditory cortex plays a causally modulatory function
in frequency discrimination. Neurons in the AC exhibit selectivity for the frequency of a stimulus,
which can be changed by learning (Recanzone et al., 1992; Kilgard and Merzenich, 2002; Fritz et al.,
2003; Fritz et al., 2005; Polley et al., 2006; Froemke et al., 2013; Znamenskiy and Zador, 2013).
Pharmacological suppression of the auditory cortex (Talwar and Gerstein, 2001) and lesions of AC in
humans patients (Tramo et al., 2002) can impair frequency discrimination, although other
lesioning(Ohl et al., 1999) and pharmacological (Gimenez et al., 2015) studies have only shown small
effects. Recently, we found that pharmacological suppression of neural activity in AC abolished
learning-driven changes in frequency discrimination acuity (Aizenberg and Geffen, 2013). In addition,
optogenetic activation of spiking activity of parvalbumin-positive inhibitory neurons (PVs) on average
improved behavioral frequency discrimination acuity, while optogenetic suppression impaired it
(Aizenberg et al., 2015). Taken together, these recent studies suggest that while AC may not be
necessary for frequency discrimination, it plays an important modulatory role.

Here, to quantify the role of AC in frequency discrimination, we recorded tone-evoked responses

from populations of cortical neurons in mice and measured their frequency discrimination acuity, while
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manipulating activity of excitatory or inhibitory neuronal populations in AC. We developed a novel
method using Fisher Information to obtain a neurometric estimate for the tone discrimination
threshold from the recorded neurons. Cortical recordings necessarily sub-sample the population of
neurons. So rather than trying to explain the absolute discrimination threshold, we made a differential
measurement to ask whether changes in the neurometric threshold upon optogenetic manipulation
predicted changes in the behavioral threshold. We used three different manipulations (activation of
pyramidal cells, and activation or suppression of PV interneurons) to compare changes in the
animal’s behavior to changes in neuronal activity. These differences may arise from intrinsic
differences in cortical circuitry or from variable strength of the optogenetic manipulation across
animals. Strikingly, the same manipulation sometimes produced opposite changes in the behavior of
individuals. The optogenetic interventions also led to changes in tone-evoked responses of recorded
neurons. Computational analysis predicted consequent changes in the discrimination thresholds,
which explained the measured behavioral changes, including cases where individuals responded
oppositely.

Our results support the view that the spectral representation in AC modulates frequency
discrimination acuity, and suggests that diversity in auditory behavior partly stems from variations in
the excitatory-inhibitory interactions in the auditory cortex.

Results.

Measuring frequency discrimination acuity.

To measure frequency discrimination acuity, we used a procedure based on pre-pulse inhibition of
the acoustic startle reflex (Figure 1A, B). Like other mammals, mice startle to loud noise. The startle
response, as measured by the change in pressure exerted by the subject on a balance platform, is
typically decreased when the startle noise is preceded by a brief tone that mice can detect — a
phenomenon termed pre-pulse inhibition (PPl). We presented mice with a continuous tone at one
frequency, which was stepped to a tone of a different frequency just prior to the startle noise. The
startle response was attenuated as the frequency difference between background and pre-pulse
tones increased (Figure 1B, C). This attenuation reflects the ability of the mouse to detect frequency
differences (Aizenberg and Geffen, 2013; Aizenberg et al., 2015). We characterized frequency
discrimination acuity in terms of a behavioral threshold — the frequency difference that produced 50%
of the maximum PPI (Figure 1 C).
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Figure 1: Measurement of behavioral frequency discrimination acuity.

A. Schematic of measurement of frequency discrimination acuity in mouse. Left: Startle response is
measured as pressure the subject exerts on a platform. Right: Sound stimulus time course: an
ongoing background tone (light gray, f) is followed by a brief pre-pulse tone of different frequency
(dark grey band, f;)) and then by a startle noise (thin black band, SN).

B. Normalized time course of platform pressure during the startle response to noise for different pre-
pulse tones for an exemplar mouse.

C. Pre-pulse inhibition measured as reduction in the acoustic startle response as a function of the
frequency shift (Af) between the background and pre-pulse tones (see Methods for definition) of an
exemplar mouse. Dots: data, solid line: fit.

Neurometric discrimination thresholds from Fisher Information

Next, we recorded the activity of putative excitatory cells (Methods) in AC, while presenting the
awake head-fixed mouse with a random tone pip stimulus (50 ms tone pips presented every 500 ms,
frequency changed at random, Figure 2A). For each frequency-tuned neuron, we measured
frequency response curves (mean firing rate as a function of tone frequency, Methods and Figure
2B). To estimate a discrimination threshold from the frequency-tuned neural population recorded in
each mouse we used Fisher Information analysis. To do so, we fit Gaussian functions to the response
curve of each neuron, and assumed that neurons responded independently and with Poisson

variability. Standard methods then provided the Fisher information for frequency discrimination based
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on the population response (Methods; Figure 2C) (Cover and Thomas, 1991). Fisher information
quantifies the amount of information that neural responses provide to distinguish nearby frequencies.
Decoding sensitivity increases with Fisher information. Since this information is large when the
neural response changes quickly as a function of frequency, it is higher on the slopes of the tuning
curves than in the center.

The inverse square root of the Fisher Information bounds the accuracy with which nearby
frequencies can be distinguished based on population activity. This quantity is by definition the
neurometric threshold, and gives the frequency difference that can be discriminated with 70%
accuracy. Figure 2D shows the neurometric thresholds determined in an individual mouse on the
basis of the neural population recorded in its cortex.

A direct comparison of the neurometric threshold with behavior faces three challenges: (a)
Discrimination accuracy need not translate linearly into thresholds determined from the pre-pulse
inhibition of the acoustic startle response measured here, (b) Cortical recordings inevitably sub-
sample the population of responsive neurons, and (c) Frequency discrimination is supported by
multiple pathways, some of which may not involve the auditory cortex. In general, we expect the
neurometric thresholds computed here to be higher than the behavioral thresholds, because of the
limited number of recorded neurons (e.g., Figure 2D).

In view of these challenges we did not seek to predict absolute behavioral thresholds from the
population of recorded frequency-tuned neurons. Rather, we manipulated the cortex optogenetically,
and tested whether there was a correlation between the resulting changes in the neurometric
estimate of discrimination thresholds and corresponding changes in behavior.
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Figure 2: Measurement of neurometric frequency discrimination acuity.

A. Left: Schematic of electrophysiological recording of neuronal responses in the primary auditory
cortex (A1) in awake mouse. Right: The stimulus consists of a pseudorandom sequence of pure
tones at varying frequency and intensity levels.

B. Representative frequency response function for a single neuron (f; = background tone in Fig. 1).
Black dots: data, black line: fit.

C. Fisher information for tone discrimination (black) computed on the basis of frequency response
functions (gray dashed) of neurons recorded in the same mouse.

D. Neurometric threshold for decoding frequency (solid) computed on the basis of the inverse square
root of Fisher Information computed in C. The neurometric threshold based on the recorded
population lies above behavioral threshold for discrimination around f; (dashed line). Light blue band
indicates the region in frequency space from which behavioral measurements were taken.
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Optogenetically induced changes in neurometric and behavioral thresholds are correlated.

Frequency tuning of AC neurons is thought to depend on the combination of excitatory and
inhibitory inputs (Chen and Jen, 2000; Wang et al., 2000; Wang et al., 2002a; Wehr and Zador, 2003;
Aizenberg et al., 2015). To manipulate tone responses of AC neurons, we targeted the most common
interneuron subtype, parvalbumin-positive interneurons (PVs). We drove PVs to express
Archaerhodopsin (Arch) or Channelrhodopsin (ChR2) by injecting a floxed Arch- or ChR2- encoding
virus in PV-Cre mice. We verified the efficiency of the viral transfection and light stimulation by
measuring the effect of light on spontaneous firing rates of neurons. As expected, when PVs were
activated by light, thus increasing inhibition, spontaneous activity decreased in the recorded
population (Figure 3A) (Natan et al., 2015). Optogenetically suppressing PVs had the opposite effect:
the spontaneous rate of most recorded neurons increased (Figure 3B). We also drove excitatory
neurons in AC to express ChR2 and found that optogenetic illumination of AC led to an elevated
spontaneous firing rate (Figure 3C). Thus, we reliably used light to manipulate the activity of
excitatory and PV neurons in AC.

We next measured the behavioral effects of manipulating neural activity in AC. In half of the trials,
we illuminated AC at the same time as providing the pre-pulse stimulus. Activating PVs (Figure 3D)
decreased the threshold for most animals (N=5) and increased it for some (N=2), while a few (N=4)
did not have a statistically significant threshold change. Suppressing PVs (Figure 3E) produced an
increase in the frequency discrimination threshold for two animals, and did not produce statistically
significant change for one animal. Optogenetically activating excitatory neurons increased the
threshold for most animals (N=3) and decreased it for one, with one animal displaying no threshold
change (Figure 3F). For several animals, (N=7) the manipulations did not produce any significant
behavioral changes.

Finally, we measured the effect of manipulating neuronal activity on the neurometric frequency
discrimination thresholds predicted from the recorded population. Activating PVs led to a decrease in
the predicted threshold (Figures 3G, 4A, B, blue) for most animals (N=7) and an increase for some
(N=2). The predicted threshold increased for most animals (N=3) after suppressing PVs (Figures 3H,
4A, B green), but decreased for two. Activating excitatory neurons (Figures 3l, 4A, B, red) increased
the predicted threshold for all animals (N=3). There was no predicted change for two animals (<2%
change in predicted threshold).

For most individuals (N=15/19) and on average, the sign of the neurometric change in threshold
matched the sign of the change in behavioral threshold (Figure 4A, B). This qualitative agreement
was striking, given that the electrical recordings only sample a few neurons, while the light has a
global effect on the auditory cortex and sometimes leads to opposite behavioral changes. To quantify
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the correlation, we compared the neurometric and behavioral frequency discrimination thresholds for
each mouse, under light-on and light-off conditions. The number of recorded tone-responsive
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Figure 3: Optogenetic manipulation of PV activity shifts behavioral and neurometric frequency
discrimination thresholds.

A,B,C: Baseline firing rate of light-on versus light-off trials for all frequency-tuned neurons pooled
across subjects in PV-ChR2 (Blue), PV-Arch (Green), CamK2a-ChR2 (Red) mice, respectively.
D.E,F: PPI as a function of tone frequency shift for exemplar mice. Best estimated thresholds (dashed
lines) and uncertainties (overlaid gray rectangle) are plotted for reference. Black: light-off trials; Blue,
Green, Red: light-on trials. Dots: data, solid lines: best fit curve. G,H,l: Neurometric threshold
estimate as inverse square root of Fisher information (solid) and behavioral threshold at f;,
(horizontal dotted) for the same mice as D,E,F. Light blue bands indicate the region in frequency
space from which behavioral measurements were taken.
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neurons varied significantly between mice (14-104 per animal). Using the linear dependence of the
Fisher Information on population size we estimated that ~1000 independent neurons would be
necessary for the neurometric thresholds to match the absolute behavioral thresholds (see Methods).
Therefore, in order to compare across animals, we divided the Fisher Information computed from the
population by the number of neurons, and then scaled the result back linearly to an effective

population size of 1000 neural units.
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Figure 4. Changes in A1 tone responses due to optogenetic manipulations predict changes in
behavioral frequency discrimination acuity across individuals.

A. Behavioral versus scaled neurometric frequency discrimination thresholds. Neurometric threshold
is scaled to an effective population size of 1000 neurons to control for differences in numbers of
measured neurons. The scaled neurometric threshold based on the small recorded population was
significantly (but weakly so, C=.37, p=0.02) correlated with the behavioral threshold. Each of 19 mice
contributes 2 data points, representing the light-on and light-off conditions. Gray lines connect light-on
and light-off points for a single mouse.

B. The index of change in neurometric threshold (difference in light on vs. off thresholds divided by
the sum) was strongly correlated with the behavioral frequency discrimination (Correlation coefficient
= 0.59, p=0.007). There is one data point for each mouse. Gray line is the best fit line through the
origin. Behavioral errors were computed as described in the Methods.

We compared the resulting estimate to the behavioral threshold (Figure 4, Figure 4 — Figure
Supplement 2). We first found a correlation between the absolute behavioral and neurometric
thresholds under all conditions (Figure 4A). The correlation is statistically significant (C = .37, p =
.02, N = 38, including a light-on and a light-off measurement for each of 19 mice), but only weakly so
(i.e. p>0.01), probably because our recordings sub-sample the population of neurons involved in
frequency discrimination. To test more closely the effect of the optogenetic manipulations, we
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computed an index of change as the difference in thresholds before and after application of light,
divided by the sum. We found that index of change of the neurometric thresholds was strongly
correlated with the behaviorally measured index of change in frequency discrimination acuity
threshold (Figure 4B, C = .59, p =.007, N = 19).

These correlations suggest that: (a) auditory cortex does modulate frequency discrimination
behavior, (b) the effects seen in the small recorded patch are representative, and (c) individual
differences in auditory behavior are directly driven by differences in excitatory and inhibitory

interactions in cortical circuits.

Behavior Neurometric (scaled)
Mouse Type Toff AToff Ton ATon Ichange A Ichange Toff Ton Ichange Neurons
(%) | (%) | () | (%) (%) | (%)

| PV-Arch | 215 | 1.7 22 2 0.00 .06 6.4 | 9.1 17 42
2 PV-ChR2 |16.2 | .3 4.7 .1 -.53 .07 79 4.7 -.25 104
3 PV-ChR2 | 22 4 6.0 1.7 -.54 A1 87 |65 -.14 16
4 PV-ChR2 |13.7 | 1.5 4 3 -.54 3 22.8 1106 |-34 20
5 PV-ChR2 |16.7 | 1.6 3.6 2 -.63 .03 7.8 |89 .06 24
6 PV-ChR2 | 5.6 1.1 2.5 5 -.38 A1 82 |74 -.05 25
7 PV-Arch 37 | .4 19 2 .66 .04 7.8 | 8.6 .05 25
8 PV-Arch 141 1.9 16.9 9 .08 .04 12.5 | 144 .07 23
9 Pyr-ChR2 | 5.6 1.1 4.9 4 -.06 A 83 170 -.08 19
10 Pyr-ChR2 | 6.8 | .9 3.2 5 -.35 .09 83 |53 -21 16
11 Pyr-ChR2 | .7 1.9 11 2 18 15 9.4 |12.8 15 23
12 Pyr-ChR2 | 2.0 | .01 3.4 3 .26 .04 5.0 |63 A1 26
13 Pyr-ChR2 | 3.1 .6 5.6 9 .28 A1 6.7 |75 .05 43
14 PV-ChR2 |32 |3 3.2 4 -.01 .07 6.7 69 .02 34
15 PV-ChR2 | 5.5 1.6 3.9 1.5 -.16 23 103 |55 -3 16
16 PV-ChR2 | 9.6 1.9 10.2 7 .03 .10 9 5.6 -.11 14
17 PV-ChR2 |20 | 4 2.6 1.5 .13 .30 57 169 .10 15
18 PV-ChR2 | 7.6 1.4 9.5 4 .10 .09 69 |62 -.05 22
19 PV-ChR2 | 8.3 5 8.4 8 .01 .05 88 19.0 .01 39

Figure 4 — Figure Supplement 1: Table containing relevant measured thresholds, index of change
values, neuron number, and type of mouse used.

Controls: effects of optogenetic manipulation on neural variability and correlations

Our model makes two assumptions that could be violated in neural systems: that cortical
neurons obey Poisson statistics and that neural responses are independent of one another. In order
to test the first assumption in our data, we measured the Fano factor of the recorded neurons. A large
Fano factor indicates high neuronal variability (Blackwell et al., 2016). The average Fano factor was
around 1.2, similar to the value expected for Poisson neurons and to that previously measured across
different cortical areas (Churchland et al., 2010). We found that none of the three optogenetic
manipulations (PV-ChR2: t;35 = .4, p =.69; PV-Arch: tgo = .92, p =.36; Pyr-ChR2: t33 = -2, p =
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This justified our

analysis where neurons were treated as Poisson, both with and without optogenetic manipulation.
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Figure 5. Optogenetic manipulations do not change neuronal variability or correlations.

A-C. Fano factor pooled across mice distributions are similar under light-on and light-off conditions. A:
PV-ChR2, B: PV-Arch, C: CamK2a-ChR2. Black: light-off trials; Blue, Green, Red: light-on trials. Dots
D-F. Pairwise correlation distributions pooled across mice are similar under light-on and light-off
conditions. D: PV-ChR2, E: PV-Arch, F: CamK2a-ChRz2. Colors same as in A.
G. Increasing Fano factor reduces Fisher Information, shown here for a single neuron with Gaussian
tuning curve (amplitude = 8 spikes/s, center frequency 20kHZ, tuning width = 0.2 decades) with a
constant baseline (2 spikes/s).
H. Incorporating the measured Fano factors into our model of neuronal firing via a generalized
Poisson model has a weak effect on the predicted threshold.

We next considered that neural variability has been observed to increase with the activity level

of neurons (Goris et al., 2014). It is plausible that the most active neurons, which have the largest

impact on Fisher information, may be more variable than expected from the average Fano factor
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value. The Fisher information decreases as the Fano factor increases (Figure 5G), so higher

variability in the most active neurons would disproportionately decrease the neurometric
discriminability. To test whether this might be the case, we computed the neurometric thresholds
using a generalized Poisson noise model that took into account the Fano factor of each recorded
neuron separately. Neurometric thresholds using this model changed only slightly from the thresholds
computed using the simple Poisson noise model (Figure 5H), again justifying our analysis.

We also measured the strength of pairwise neural correlations, and observed they tended to
be small but positive (Cpy_cpra = 09, tigz; = 28, p = 4.6 * 107 Cpy_gren = 13, teps = 22, p = 2.2 %
1077 Cpyr—chra = -13, togy =32, p =1.1%107155). The optogenetic manipulations had no
systematic effect on the distribution of correlations (paired t test ns: PV-ChR2 t,43, = .26, p = .80;
PV-Arch ts,, = —1.3, p =.18; Pyr-ChR2 tqg, = —1.7, p =.09; see Figure 5D-F, Figure 5 — Figure
Supplement 1). Correlations in similar models have been observed to lead only to small increases in
population-level discrimination threshold (Gu et al., 2010). The small changes in threshold observed
in previous work, in addition to the negligible change in the correlation distribution that we observe
upon optogenetic manipulation, make it unlikely that correlations account for the neurometric

threshold changes due to manipulations of cortical activity.
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Figure 5 — Figure Supplement 1: Fano factor and correlation scatter plots comparing light-on and
light-off conditions. A-C: Fano factor with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2
mice, respectively.

D-F: Pairwise correlations with and without light on for PV-ChR2, PV-Arch, and Pyr-ChR2 mice,
respectively.
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Discussion.
Theory has shown that providing inputs to inhibitory neurons in a balanced excitatory-inhibitory

network can lead to either a decrease, or, paradoxically, an increase of excitatory responses,
depending on the specifics of recurrent coupling for excitatory and inhibitory neurons in the network
or the strength of inhibitory manipulations (Tsodyks et al., 1997). Indeed, we find that manipulation of
the excitatory-inhibitory interactions in auditory cortex drives diverse, and sometimes opposite,
changes in tone-evoked responses across individuals. Remarkably, we found a strong correlation
between these changes in neuronal populations, and behavioral changes in the acuity of frequency
discrimination by individual mice. Thus our results demonstrate a role for excitatory-inhibitory
networks in the cortex in the differentiation between individuals, reflecting theoretically predicted
dynamics in such systems.

In addition, our results provide insight into the mechanics of cortical inhibition in shaping frequency
discrimination behavior. Cortical inhibitory neurons have been hypothesized to modulate numerous
aspects of tone-evoked responses in the excitatory cortical circuit, such as tuning width, reliability of
firing, tone-evoked response strength, and correlations in firing rate activity (Wang et al., 2000; Wang
et al., 2002b; Froemke, 2015). We shed light on these hypotheses by optogenetically manipulating
PVs, which are the most common inhibitory subtype, representing 40% of interneurons in the cortex
(Rudy et al., 2011; Moore and Wehr, 2013; Li et al., 2015). We found that neither the reliability of
firing of excitatory neurons, nor their correlations were systematically affected by modulation of the
PV activity. Specifically, the distributions of Fano factors and pairwise correlations were unchanged
by our circuit manipulations. PV suppression or activation did affect tone-evoked responses of cortical
neurons, including the magnitude of the tone-evoked response and tuning width (Aizenberg et al.,
2015).

Our results are thus consistent with the diversity of modulatory effects predicted for inhibition-
stabilized networks (Ozeki et al., 2009). In such networks, a strong recurrent inhibitory drive serves to
offset the large destabilizing fluctuations in firing rate induced by excitatory recurrence, provided the
inhibitory time constants are sufficiently short (Ahmadian et al., 2011). Indeed, modeling responses of
auditory cortical neurons demonstrated that recurrent inhibition, either lateralized or co-tuned with
excitatory inputs, is required to produce the large variety of response types observed in AC (de la
Rocha et al., 2008). Bi-directional modulation of either excitatory or inhibitory dynamics is further
amplified by synaptic plasticity in neuronal circuits, in the form of depression or facilitation (Dror and
Tsodyks, 2000). Our work has demonstrated that modulating elements of the excitatory-inhibitory
network in AC does have diverse effects on neural firing, and that, furthermore, these effects are

directly correlated with variations in frequency discrimination behavior.

Page 13


https://doi.org/10.1101/119453
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/119453; this version posted March 22, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

The limited size of our recordings of 10-100 frequency-tuned neurons per animal precluded direct
prediction of behavioral thresholds: an extrapolation from the measured population indicates that
0O(1000) neurons would be required to fully account for behaviorally observed frequency
discrimination threshold (Figure 4 — Figure Supplement 2). This observation is consistent with an
anatomical estimate suggesting that O(1000) neurons in the mouse AC are responsive to a given
tone (mouse cortex has ~10° neurons/mm?® (Schuz and Palm, 1989), the AC is ~1 mm?® in size, ~30-
50% of neurons are frequency tuned, and the tuning width is ~1/10 of the auditory spectrum). The
fact that we were able to make strong predictions about optogenetic effects on behavior despite this
sub-sampling suggests that the changes we observed in the measured cortical neurons were
representative of changes occurring across the entire AC. This may be partly because our laser
simultaneously illuminated the entire structure. Comprehensive recordings of more complete
populations of AC neurons will enable a test of the hypothesis that frequency discrimination
performance is limited by the encoding at the cortical level.

We have observed a relationship between neural responses and behavior under the specific
conditions of optogenetic manipulations of cortex, but the methods used here will be broadly useful
for understanding other complex phenomena. For example, appetitive and aversive conditioning has
been shown to effect cortical remapping (Bakin and Weinberger, 1990; Recanzone et al., 1993;
Polley et al.,, 2006) and to lead to diverse behavioral responses (Aizenberg and Geffen, 2013;
Aizenberg et al., 2015). More specifically, it leads to an overrepresentation of the aversive stimulus in
cortex, and while some animals show improved frequency discrimination acuity, others are impaired.
Interestingly, different changes in neural responses can lead to improved or impaired acuity,
depending on the details of the change (Figure 6). For example, shifting the neural tuning curves
towards the aversive frequency leads to increased sensitivity near this tone (Figure 6B), while simply
increasing neural activity in response to tones near the aversive frequency can lead to impaired
discrimination (Figure 6C). The methods used here can help to understand whether the change in
behavioral frequency discrimination can be explained by changes in tuning properties within auditory
cortex, and reveal more about the nature of the cortical reorganization.

Whereas we used responses to single tones as the stimulus in this study, AC neurons
generally respond to more complex sounds in a manner which is not well explained by the single-tone
responses (Ahrens et al., 2008; Carruthers et al., 2013). Our methods could be used to probe the
fidelity of cortical representation and behavior in response to any parameterized space of auditory
stimuli, e.g. auditory textures, phonemes, or overtone profiles. Similarly to work in visual texture
perception (Tkacik et al., 2010; Hermundstad et al., 2014), one could test the discrimination

thresholds along different dimensions of the texture space. Changes in these thresholds due to
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optogenetic circuit manipulation could then be compared with changes in a neurometric threshold

based on Fisher Information, as developed here. Such studies will elucidate the role of AC in

facilitating complex auditory discrimination.
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Figure 6. Overrepresenting a specific frequency can increase or reduce sensitivity to that frequency.
A. Fisher information (black) computed from a homogeneous population of neurons (responses in
gray) has an even sensitivity across a broad range of frequencies. A sample tuning curve (red) is
used to illustrate neural transformations in B and C. Neurons have baseline activity of 2 spikes/s,
peak response of 10 spikes/s, peak frequency spaced 1/20™ of a decade apart, with HWHM of .1
decades.

B. Fisher information is plotted for a neural population overrepresenting frequency f; by shifting peak
frequencies halfway between their original location in A and f;. Fisher information approximately
doubles near f;, but is reduced near the edges.

C. Fisher information is plotted for a neural population overrepresenting frequency f; by adding a
Gaussian bump near f; with an amplitude that diminishes with distance between the preferred
frequency of the neuron and f;. Fisher information is diminished at f;, leading to reduced sensitivity at
this frequency, despite its overrepresentation within the population firing activity.

Viewed in aggregate in terms of a mean over individuals, our results would have yielded small
average effects with large individual variations appearing as “noise”. Averaging in this way would
have obscured the function of AC in frequency discrimination because the correlation between
individual circuit changes and individual behavioral changes would have been missed. It is only by
treating the mice as individuals that we were able to understand the general role auditory cortex plays

in shaping the response. We suggest that such attention to individual variation will be broadly
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important throughout neuroscience as large-scale recordings begin to reveal the neural basis of

behavioral diversity.

Methods.

Animals. All experiments were performed in adult male mice (supplier - Jackson Laboratories; age, 12-15
weeks; weight, 22-32 g; PV-Cre mice, strain: B6; 129P2-Pvalbtm1(cre)Arbr/J; CamKlla-Cre: B6.Cg-
Tg(CamKlla-Cre)T29-1Stl/J) housed at 28° C on a 12h light:dark cycle with water and food provided ad libitum,
5 or fewer animals per cage. All animal work was conducted according to the guidelines of University of
Pennsylvania IACUC and the AALAC Guide on Animal Research. Anesthesia by isofluorane and euthanasia
by carbon dioxide were used. All means were taken to minimize the pain or discomfort of the animals during
and following the experiments. Experiments were performed as described previously (Aizenberg et al., 2015).

Experimental methods overview. Methods have been previously described (Aizenberg et al., 2015). Briefly, at

least 10 days prior to the start of experiments, mice were injected with a viral construct, if any, and implanted
with optical cannulas, and a headpost, as previously described, under isoflurane anesthesia. Viral construct
injection targeted AC using stereotaxic map. Fiber-optic cannulas were implanted bilaterally over the injection
site at depth of 0.5 mm from the scull surface. We previously showed that injection of control vectors (modified
AAV vectors encoding only GFP or tdTomato under FLEX promoter) in the previous study (Aizenberg et al.,
2015) did not drive significant changes in behavioral frequency discrimination acuity, demonstrating that the
effect of viral injections on behavior was specific to Arch or ChR2 activation. After recovery, mice were
habituated to the head-fixing apparatus, and subjected to behavioral frequency discrimination tests for 1-3
days, followed by electrophysiological recordings in the auditory cortex. On half of the trials in behavioral and
neurophysiological recordings, light was presented through the fiber-optic cannula to activate or suppress
target neurons. Upon conclusion of experiments, brains were extracted, fixed and subjected to immunostaining
for verification of expression of the virus and the target neuronal promoter.

Behavioral frequency discrimination. Behavioral frequency discrimination was measured using a modified PPI

procedure on daily basis (Clause et al., 2011; Aizenberg et al., 2015). As previously reported (Aizenberg and
Geffen, 2013; Aizenberg et al., 2015), PPI provides psychometric response curves for frequency discrimination
over the course of a single session that lasts less than 1 h and does not require training the subject, which can
confound interpretation of fear conditioning. Mice were head-fixed, connected to optical cannulas as needed,
and placed on a load-bearing platform. Sound was presented through a speaker, consisting of a background
tone (15kHz, 10-20 s) that, on each trial, switched to a pre-pulse tone (10.2, 12.6, 13.8, 14.7, and 15.0 kHz, 60
ms) followed by startle noise (SS, broad-band noise, 100 dB SPL, 20 ms). The frequency difference between
the background and pre-pulse tone is denoted Af. Each pre-pulse tone was repeated in a pseudo-random
order at least 5 times during each behavioral session. The Acoustic Startle Response (ASR) for a given Af
was computed as the average over trials of the difference between the maximum vertical force applied within
the 500 ms window following SS and the average baseline activity during 500 ms prior to SS. In each PPI

session, the PPl was calculated as:
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ASR(0) — ASR(4f)
ASR(0)

where PPI is measured in %, and ASR(Af) is measured using the 50% of the strongest ASR magnitudes for

PPI(Af) = 100

each PP frequency. 50% is chosen for consistency with previous work, as the psychometric curve has the
steepest slope at this value (Aizenberg and Geffen, 2013). Weaker ASR magnitudes were rejected to avoid
confounds from animal motion. Behavioral threshold was determined by fitting the PPl with a generalized
logistic function, and defining the threshold for the fit as the Af that produced 50% of the maximum PPI.
Because the primary source of uncertainty related to how close the animal’s threshold was to sampled points,
we computed thresholds for the set of fits producing less than a 25% increase in MSE relative to the best fit
(although increasing this cutoff to 60% yielded small differences). We took the mean and standard deviation of
the resulting set of thresholds to reflect the animal’s threshold. Each psychometric functions consisted of 5
data points representing the difference between the background frequency and 5 prepulse frequencies (PP).
Each data point was obtained by averaging ASRs from all repetitions corresponding to a given frequency. In a
standard PPl session, 20 repetitions of each PP were presented (100 trials in total). However, if either
threshold was out of the range (0.5-32%) or the fit coefficient of the curve (R?) was below 0.7, the mouse
underwent an additional 10 repetitions (50 trials). If threshold and fit curve failed to meet the above criteria after
200 ftrials, the session was excluded from statistical analysis (3 out of 61 sessions). Previous studies have
shown that psychometric thresholds obtained from day-to-day measurements were stable (Aizenberg and
Geffen, 2013; Aizenberg et al., 2015; Mwilambwe-Tshilobo et al., 2015). Light-on trials included a 1s laser
presentation that starts 0.5 s preceding PP onset. Light-off trials included laser presentation at quasi-random
position during ITI. All analysis was performed separately on light-on and light-off trials. Simple randomization
was used to assign the subjects to the experimental groups. A pseudorandom sequence was used for tone
presentation during PPI tests. During PPI procedure, the timing of the laser presentation on Laser-off trials was
pseudo-randomized with respect to the timing of the tones. Blinding of experiment with respect to animal
groups was not possible as animals in different groups underwent different experimental protocols.

Neuronal tone response measurement. All recordings were carried out inside a double-walled acoustic

isolation booth (Industrial Acoustics) as previously described (Aizenberg et al., 2015). Activity of neurons in the
primary auditory cortex of head-fixed, awake mice was recorded via a silicon multi-channel probe
(Neuronexus). Viral construct was injected, targeting AC using a stereotaxic map. Fiber-optic cannulas were
implanted bilaterally over the injection site at depth of 0.5 mm from the skull surface. Viral spread was
confirmed postmortem by visualization of the fluorescent protein expression in fixed brain tissue, and its co-
localization with PV or excitatory neurons, following immuno-histochemical processing with the appropriate
antibody. Putative principal (excitatory) neurons were identified using waveform and spontaneous firing rate
(for details see (Aizenberg et al., 2015)). Acoustic stimulus was delivered via a calibrated magnetic speaker
(Tucker-Davis Technologies) (Carruthers et al., 2013). We measured the frequency tuning curves by presented
a train of 50 pure tones (50ms long, IS1 450 ms) with frequencies spaced logarithmically between 1 and 80 kHz

and at 8 intensities (sound pressure levels, SPLs) spaced uniformly between 10 and 80 dB, a standard
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procedure in characterizing auditory responses, and determined the threshold amplitude for tone at each
frequency for each neuron (Carruthers et al., 2013; Aizenberg et al., 2015). For data analysis we averaged
responses of the neurons to each tone across 3 highest amplitudes. Each tone was repeated twice in pseudo-
random sequence and the stimulus was counter-balanced for laser presentation. On light-on trials, light was
presented via the optic cannulas, with the onset of 100 ms prior to tone onset, and lasting for 250 ms. The full
stimulus was repeated 5 times.

Histology. Virus spread was confirmed postmortem by visualization of the fluorescent protein expression in
fixed brain tissue, and its colocalization with PV or excitatory neurons, following immuno-histochemical
processing with the appropriate antibody.

Identification of Putative Excitatory Neurons. Putative principal (excitatory) neurons were identified using

waveform and spontaneous firing rate (for details see Aizenberg et al., 2015).

Neural Response Analysis. The neural frequency response function was calculated using the average

frequency tuning curve across the three highest intensities. The results was modeled using a Gaussian in log-

frequency space:

— 2
FR(f) = B+ Axexp —%

where B represents the baseline response, A represents the amplitude of the strongest evoked response
(relative to baseline), f, represents the frequency evoking the strongest response, and o corresponds to the
width of the frequency response function. Only neurons whose Gaussian fit had R? > .6 were kept for further
analysis.

In order to calculate Fano factor of a neuron, we calculated mean and variance of the firing rate to each
combination of frequency and SPL. The slope of these data was taken as an estimate of Fano factor.

The correlation between neurons (calculated only between simultaneously recorded neurons) was
computed using a reduced measure of deviation from the mean for each neuron:
rf(f,d) = 7(f,d)

VET(f, d)

where k denotes the repetition number (1-5), i denotes the neuron, f denotes the frequency, d denotes the

st(f,d) =

intensity, r denotes the evoked response, ¥ denotes the average response (firing rate) of a neuron to a
particular frequency and intensity, and F denotes the Fano factor of that neuron. For a generalized Poisson
process, S; has zero mean and unit variance because the variance is proportional to the mean. The correlation

between two neurons is then given by

C;j = (sF(f, d)Sjk(ﬂ A i.fa

Computing Fisher Information. Fisher information was calculated to provide a measure of neurometric

frequency discrimination. Fisher information was calculated numerically from the recorded data based on the

characterization of the neural responses (see Neural Response Analysis), and is given by:
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a 2

() = ) PGP (55108 PGi)

where P is the probability that the population of neurons produces 7 = (ny, n,...) spikes in response to the tone
f. Assuming Poisson variability and independent neurons,

—1i(f) n;
paip) = [ [padn = [ |42

. TLi!

L

where the first equation expresses the independent neuron assumption and the second step uses the
assumption of Poisson variability. Here, u; and n; are the expected and observed number of spikes from
neuron i, respectively. A second model assumes independent neurons and uses a generalized Poisson
distribution:

a; (F)(a;(f) + nyd)" te~@i(N+nido)
ni!

P(n;lf) =

where a; = u;(f) * Fl._l/2 and 4; =1 —Fl._l/2 . This model only allows for Fano factors above 1, which is
consistent with other models of neural variability and measured cortical variability (Goris et al., 2014; Blackwell
et al., 2016). We therefore set any measured Fano factor less than 1 to exactly 1 for the purpose of the Fisher
information calculation.

Estimating the number of neurons for neurometric thresholds. Animals displayed varying levels of frequency

discrimination acuity, and we measured different sized subsets of frequency-tuned neurons in each
experiment. In order to estimate the number of neurons required to account for behavioral discrimination acuity
from the measured population, we utilized the fact that Fisher information for a population of independent

neurons is the sum of the Fisher information from each neuron.

[(total) _ Z 1)
n

We then assume that the population of neurons that we measured are representative of the overall population

(at least the population that contributes to discrimination at the relevant frequency).

Ng
1) ~ LZ o 1 jeotad
Ng k=1 Ng

Here we use n to refer to the overall population that we seek to estimate, k to index the neurons that were
measured, Ny is the number of frequency-tuned neurons measured in a specific mouse, Iék) is the Fisher
information of these experimentally measured neurons, and If,wtal) is the total information used to calculate the
neurometric threshold. Recalling that the neurometric threshold is defined as I~/ , we then have

J(total) — &Ilgfoml)
Ng

2
We can rewrite this as Ny = Ng (tb_eh)

tneu
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where t,.p, is this behaviorally measured threshold and t,,, is the neurometric estimate of the threshold. This
is plotted for each animal used in our analyses in Figure 4 — Figure Supplement 2, and we find that the

average for both light-on and light-off conditions is just about 10 neurons.
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Figure 4 — Figure Supplement 2: Number of frequency-tuned neurons required to account for behavioral
sensitivity for each mouse. Average of both light-on and light-off conditions is ~10° neurons.

Comparing behavioral and neurometric thresholds. Neural responses were accumulated over all recording

sessions for each mouse, and used to compute the Fisher information for the animal. The Fisher information
provides a bound on the variability of an unbiased estimator, and any criterion level of decoding performance
scales with the inverse-square root of the Fisher information. If neural responses are independent, the Fisher
information scales linearly with the number of neurons. In order to compare threshold predictions between
mice with different numbers of measured neurons, we computed the average Fisher information per neuron.
This allowed us to compare across mice and to estimate the minimum number of effective frequency-tuned
neural units that must contribute to explain the observed frequency discrimination performance(Cover and
Thomas, 1991). To estimate the neurometric threshold, we first computed the inverse square root of the Fisher
information per neuron, and took an average over a small region around 15 kHz (the baseline frequency used
in behavioral tests). Only mice with more than 10 recorded frequency-tuned neurons were included in the
analysis (19 mice). Our estimate is a lower limit on the uncertainty in the estimate of this tone frequency based
on the recorded population responses. Since Fisher information scales linearly in an independent population,
this method also provides an estimate on the effective number of neurons, which must contribute to the tone
representation in order to account for behavioral discriminability (Figure 7). The observed neurometric
discriminability with order one thousand independent neurons is similar to behavioral discrimination acuity.

Data availability. All relevant data will be deposited in the Dryad database and made publically available.

Code availability. All relevant code will be posted on Github and made publically available.
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