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Abstract

Background: Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group
of medical and agricultural significance. In this study, I use publicly available genomes
to characterize the B. cereus s. l. pan-genome and perform the largest phylogenetic and
population genetic analyses of this group to date in terms of the number of genes and
taxa included. With these fundamental data in hand, I identify genes associated with
particular phenotypic traits (i.e., “pan-GWAS” analysis), and quantify the degree to
which taxa sharing common attributes are phylogenetically clustered.

Methods: A rapid k-mer based approach (Mash) was used to create reduced represen-
tations of selected Bacillus genomes, and a fast distance-based phylogenetic analysis of
this data (FastME) was performed to determine which species should be included in
B. cereus s. l. The complete genomes of eight B. cereus s. l. species were annotated de
novo with Prokka, and these annotations were used by Roary to produce the B. cereus s. l.
pan-genome. Scoary was used to associate gene presence and absence patterns with
various phenotypes. The orthologous protein sequence clusters produced by Roary were
filtered and used to build HaMStR databases of gene models that were used in turn to
construct phylogenetic data matrices. Phylogenetic analyses used RAxML, DendroPy,
ClonalFrameML, PAUP*, and SplitsTree. Bayesian model-based population genetic
analysis assigned taxa to clusters using hierBAPS. The genealogical sorting index was
used to quantify the phylogenetic clustering of taxa sharing common attributes.

The B. cereus s. l. pan-genome currently consists of ≈60,000 genes, ≈600 of which
are “core” (common to at least 99% of taxa sampled). Pan-GWAS analysis revealed
genes associated with phenotypes such as isolation source, oxygen requirement, and
ability to cause diseases such as anthrax or food poisoning. Extensive phylogenetic
analyses using an unprecedented amount of data produced phylogenies that were largely
concordant with each other and with previous studies. Phylogenetic support as mea-
sured by bootstrap probabilities increased markedly when all suitable pan-genome data
was included in phylogenetic analyses, as opposed to when only core genes were used.
Bayesian population genetic analysis recommended subdividing the three major clades of
B. cereus s. l. into nine clusters. Taxa sharing common traits and species designations
exhibited varying degrees of phylogenetic clustering.

Keywords: Bacillus cereus sensu lato, Bacillus cereus group; Bacillus; pan-genome;
phylogeny; phylogenetics; pan-GWAS; Bayesian model-based clustering; phylogenetic
clustering
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Background

Bacillus cereus sensu lato (s. l.) is an ecologically diverse bacterial group that comprises
a growing number of species, many of which are medically or agriculturally important.
Historically recognized and most well-sampled of the species are B. anthracis (the
causative agent of anthrax), B. cereus sensu stricto (capable of causing food poisoning
and other ailments), and B. thuringiensis (used to control insect pests). Other species
are distinguished by rhizoidal growth patterns (B. mycoides and B. pseudomycoides [48]),
thermotolerance and cytotoxicity (B. cytotoxicus [25]), psychrotolerance and ability to
cause food spoilage (B. weihenstephanensis [38] and B. wiedmannii [46]), and utility as
a probiotic in animal nutrition (B. toyonensis [30]). In addition, several new species
have also recently been described (B. bingmayongensis [42], B. gaemokensis [32], and
B. manliponensis [31]). In order to understand the fantastic diversity of B. cereus s. l.
and its concomitant ability to occupy diverse environmental niches and exhibit a variety
of phenotypes, it is crucial to accurately characterize genomic diversity within the group
and to generate robust phylogenetic hypotheses about the evolutionary relationships
among group members.

A typical B. cereus s. l. genome contains ≈5,500 protein-coding genes [53,64]. Due
to rampant horizontal gene transfer in bacterial ecosystems, however, the genome of a
particular strain or species often contains genes not found in closely related taxa [63].
Thus, it is now common practice to seek to characterize the full gene complement
of a closely related group of bacterial strains or species, otherwise known as a “pan-
genome” [63]. In this study, a “core” gene is defined as present in at least 99% of
sampled taxa, an “accessory” gene as a non-core gene present in at least two taxa, and
a “unique” gene as present in only one taxon. A previous effort to characterize the
B. cereus s. l. pan-genome [37] based on a comparison of a relatively small number
of strains estimated that there are ≈3,000 core genes and ≈22,500 total genes in the
B. cereus s. l. pan-genome. A more recent study [69] using 58 strains reported similar
estimates.

Phylogenetic hypotheses of B. cereus s. l. have been generated from a variety of data
sources, including 16S rRNA sequences [37], amplified fragment length polymorphism
(AFLP) data [26, 65], multilocus sequence typing (MLST) of housekeeping genes [8,
18, 20, 65], single-copy protein-coding genes [58], locally collinear blocks (LCBs) [69],
conserved protein-coding genes [69], whole-genome single nucleotide polymorphisms
(SNPs) [8], and digital DNA-DNA hybridization (dDDH) data [43]. Phylogenetic analyses
have used distance methods [20, 26, 43, 69], maximum likelihood [8, 26, 58], maximum
parsimony [26], and Bayesian methods [18]. For the most part, published phylogenies
have tended to agree with and reinforce one another, although naturally there have
been different classification systems developed with attendant implications for species
designations. One popular classification system divides the B. cereus s. l. phylogeny
into three broad clades [18,49,69]; traditionally, Clade 1 contains B. anthracis, B. cereus,
and B. thuringiensis; Clade 2 contains B. cereus and B. thuringiensis; and Clade 3
contains a greater diversity of species including B. cereus, B. cytotoxicus, B. mycoides,
B. thuringiensis, B. toyonensis, and B. weihenstephanensis. A somewhat more fine-
grained classification system divides the phylogeny into seven major groups [8,26,65],
each with its own thermotolerance profile [26] and propensity to cause food poisoning [27].

In this study I aimed to produce the most accurate and comprehensive estimate
of the B. cereus s. l. pan-genome and phylogeny to date by analyzing all publicly
available B. cereus s. l. genome data with a novel bioinformatic workflow for pan-genome
characterization and pan-genome-based phylogenetic analysis.
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Methods

Distance-based phylogeny of the genus Bacillus

All “reference” and “representative” Bacillus genome assemblies were retrieved from
the NCBI RefSeq [50] database in October 2016, comprising 86 assemblies from 74
well-described Bacillus species and 44 assemblies from as-yet uncharacterized species. In
addition, 16 “latest” assemblies were added for five Bacillus species that are thought
to be part of B. cereus s. l. (B. bingmayongensis [42], B. gaemokensis [32], B. pseu-
domycoides [48], B. toyonensis [30], and B. wiedmannii [46]). In total, 146 Bacillus
genomes were included in the distance-based phylogenetic analysis. The sketch function
in Mash [51] version 1.1.1 (arguments: -k 21 -s 1000) was used to create a compressed
representation of each genome, and then the Mash distance function was used to gen-
erate all pairwise distances among genomes. The Mash distance matrix was converted
to PHYLIP format and analyzed with FastME [39] version 2.1.4 using the default
BIONJ [24] algorithm.

Creation of taxon sets

BCSL 114

All complete genomes of eight B. cereus s. l. species (B. anthracis, B. cereus, B. cyto-
toxicus [25], B. mycoides, B. pseudomycoides [48], B. thuringiensis, B. toyonensis [30],
and B. weihenstephanensis [38]) were downloaded from the NCBI RefSeq [50] database
in October 2016, which altogether comprised 114 genomes. One strain from each species
was designated the “reference taxon” for that species, as required by HaMStR [21]
(Table 1). This taxon set of complete genomes (“bcsl 114”; Table 1) was used to build
the HaMStR databases and as the basis for the majority of the analyses performed in
this study.

BCSL 498

To perform analyses involving all publicly available B. cereus s. l. genome data, all
“latest assemblies” were downloaded for the eight species mentioned above, and based on
analysis of the Bacillus distance-based phylogeny, assemblies were added for B. bingmay-
ongensis [42], B. gaemokensis [32], B. manliponensis [31], B. wiedmannii [46], and one
uncharacterized species (Bacillus sp. UNC437CL72CviS29), which altogether comprised
498 genomes (“bcsl 498”; Table 1). A list of RefSeq assembly accessions for all taxa
used in this study is provided (Additional file 1).

Isolate metadata

B. cereus s. l. isolate metadata, including “Assembly Accession”, “Disease”, “Host
Name”, “Isolation Source”, “Motility”, and “Oxygen Requirement” was downloaded
from PATRIC [67] in December 2016. This metadata was used to associate patterns of
gene presence and absence with phenotypes exhibited by groups of taxa.

Genome annotation

All B. cereus s. l. genomes were annotated de novo with Prokka [59] version 1.12-beta
(arguments: --kingdom Bacteria --genus Bacillus).
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Pan-genome inference

The pan-genome of B. cereus s. l. was inferred with Roary [52] version 3.7.0. The
bcsl 114 Prokka annotations were provided to Roary as input; in turn, Roary produced
a gene presence/absence matrix (Additional file 2), a multi-FASTA alignment of core
genes using PRANK [44] version 0.140603, and a tree based on the presence and absence
of accessory genes among taxa using FastTree 2 [55] version 2.1.9. The “accessory binary
tree” was computed using only the first 4,000 genes in the accessory genome.

Phylogenetic network analysis

A NEXUS-format binary version of the bcsl 114 gene presence/absence matrix was
analyzed with SplitsTree4 [28] version 4.14.4. Three methods of calculating distances
between taxa were evaluated: Uncorrected P, GeneContentDistance [29], and the
MLDistance variant of GeneContentDistance [29]. The NeighborNet [11] algorithm
was used to reconstruct the phylogenetic network.

Genotype-phenotype association

Scoary [12] version 1.6.9 was used to associate patterns of gene presence and absence with
particular phenotypes (traits), an analysis known as “pan-GWAS” [12]. Scoary required
two basic input files: the bcsl 114 gene presence/absence matrix, augmented with gene
presence/absence information for bcsl 498 taxa obtained from orthology determination
with HaMStR [21] (Additional file 3), and a binary trait matrix that was created using
the isolate metadata obtained from PATRIC (Additional file 4). Assignment of traits
to taxa was performed conservatively in that missing data was not assumed to be an
indication of the presence or absence of a particular trait. Scoary was run with 1,000
permutation replicates, and genes were reported as significantly associated with a trait if
they attained a naive P-value less than 0.05, a Benjamini-Hochberg-corrected P-value less
than 0.05, an empirical P-value less than 0.05, and were not annotated as “hypothetical
proteins”. Lists of genes were subsequently tested for enrichment of biological processes
using the data and services provided by AmiGO 2 [13] version 2.4.24, which in turn used
the PANTHER database [45] version 11.1.

HaMStR database creation

The orthologous protein sequence clusters output by Roary were filtered to produce a
set of gene models suitable for use with HaMStR [21] version 13.2.6. HaMStR enables
one to build gene models for a clade of interest (using, ideally, high-quality complete
genomes), which are subsequently used to identify orthologs in other sequence data (e.g.,
draft genome assemblies, transcriptomes, etc.). HaMStR required that each sequence
cluster contain at least one sequence from the set of previously selected reference taxa
(Table 1), so clusters not meeting this requirement were omitted. Furthermore, each
cluster was required to contain at least four sequences (the minimum number of sequences
required to produce an informative unrooted phylogenetic tree), and all cluster sequences
needed to be at least 100 nt in length. Finally, clusters that Roary flagged as having
a quality-control issue were removed. The 9,070 clusters that passed these filters were
aligned using the linsi algorithm in MAFFT [35] version 7.305. Gene models (i.e.,
Hidden Markov Models, or HMMs) were produced from the aligned cluster sequences
using the hmmbuild program from HMMER [22] version 3.0. Finally, for each reference
taxon, a BLAST [1] database was built using the full complement of protein-coding
genes for that taxon. This completed the construction of the initial HaMStR database,
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which is called “hamstr full”. A variant of hamstr full called “hamstr core” was
created, which contained only the 594 gene models corresponding to core genes.

Mobile genetic element removal

For tree-based phylogenetic analyses that assume a process of vertical inheritance, the
inclusion of mobile genetic elements (MGEs) that may be horizontally transferred is likely
to confound the phylogenetic inference process [9]. Thus, an effort was made to identify
and remove putative MGEs from the HaMStR databases. In December 2016, a list of
Bacillus genes derived from a plasmid source was downloaded from the NCBI Gene [15]
database. In addition, all genes were exported from the ACLAME [40] database version
0.4. Using this information, gene models that were either plasmid-associated or found
in the ACLAME list of MGEs were removed from HaMStR databases. Gene models
whose annotation included the keywords “transposon”, “transposition”, “transposase”,
“insertion”, “insertase”, “plasmid”, “prophage”, “intron”, “integrase”, or “conjugal” were
also removed. The resulting HaMStR databases, “hamstr full mges removed” and
“hamstr core mges removed”, contained 8,954 and 578 gene models, respectively.
The workflow used to construct the hamstr full mges removed database is shown
as a diagram (Additional file 5).

Orthology determination

The protein-coding gene annotations of “query” taxa — i.e., taxa not included in
bcsl 114 — were searched for sequences matching HaMStR database gene models using
HaMStR [21] version 13.2.6 (which in turn used GeneWise [6] version 2.4.1, HMMER [22]
version 3.0, and BLASTP [1] version 2.2.25+). In the first step of the HaMStR search
procedure, the hmmsearch program from HMMER was used to identify translated
substrings of protein-coding sequence that matched a gene model in the database, which
were then provisionally assigned to the corresponding sequence cluster. To reduce the
number of highly divergent, potentially paralogous sequences returned by this initial
search, the E-value cutoff for a “hit” was set to 1e–05 (the HaMStR default was 1.0). In
the second HaMStR step, BLASTP was used to compare the hits from the HMM search
against the proteome of the reference taxon associated with that gene model; sequences
were only retained if the reference taxon protein used in the construction of the gene
model was also the best BLAST hit. The E-value cutoff for the BLAST search was set
to 1e-05 (the HaMStR default was 10.0).

Data matrix construction

Amino acid sequences assigned to orthologous sequence clusters were aligned using
MAFFT [35] version 7.305. The resulting amino acid alignments were converted to
corresponding nucleotide alignments using a custom Perl script that substituted for
each amino acid the proper codon from the original coding sequence. Initial orthology
assignment may sometimes result in multiple sequences for a particular taxon/locus
combination [4], which need to be reduced to a single sequence for inclusion in phylogenetic
data matrices. For this task the “consensus” [3] procedure was used, which collapsed all
sequence variants into a single sequence by replacing multi-state positions with nucleotide
ambiguity codes. Following application of the consensus procedure, individual sequence
cluster alignments were concatenated, adding gaps for missing data as necessary using
a custom Perl script. The workflow used for orthology determination and data matrix
construction is shown as a diagram (Additional file 6).
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Maximum likelihood phylogenetic analysis

Concatenated nucleotide data matrices were analyzed under the maximum likelihood
criterion using RAxML [60] version 8.2.8 (arguments: -f d -m GTRGAMMAI). The data
were analyzed either with all nucleotides included in a single data subset (all nuc), or
with sites partitioned by codon position (codon pos). Partitioned analyses assigned
a unique instance of the substitution model to each data subset, with joint branch
length optimization. Analyses of the bcsl 114 taxon set consisted of an adaptive best
tree search [5] and an adaptive bootstopping procedure that used the autoMRE RAxML
bootstopping criterion [54]; thus, the number of search replicates performed varied from
10 to 1000, depending on the analysis. DendroPy [61] was used to map bootstrap
probabilities onto the best tree. Analysis of the bcsl 498 taxon set required ≈256 GB
of RAM and multiple weeks of runtime, and was thus limited to a single best tree search.

Recombination detection

Genomic regions that may have been involved in past recombination events should be
excluded from phylogenetic analyses that assume a process of vertical inheritance, or
phylogenetic inference methods should incorporate this information to produce a more
accurate phylogeny [9]. In this study, two different software packages that address this
problem were evaluated. First, the profile program from PhiPack [10] was used to flag
and remove from concatenated data matrices sites that exhibited signs of mosaicism.
Following the procedure employed in Parsnp [66], the profile program defaults were
used, except that the step size was increased from 25 to 100 (-m 100). RAxML was then
used to create new versions of data matrices that excluded regions whose Phi statistic
P-value was less than 0.01. Second, ClonalFrameML [19] (downloaded from GitHub June
14, 2016) with default parameters was used to correct the branch lengths of phylogenies
to account for recombination. ClonalFrameML required all ambiguous bases in data
matrices to be coded as “N”.

Maximum parsimony phylogenetic analysis

Concatenated nucleotide data matrices were analyzed under the maximum parsimony
criterion using PAUP* [62] version 4.0a150. A heuristic search was performed using
default parameters.

Tree distance calculation

To quantify the difference between pairs of tree topologies, both the standard and
normalized Robinson-Foulds distance [57] were calculated with RAxML [60] version 8.2.8
(arguments: -f r -z).

Tree visualization

Visualizations of phylogenetic trees were produced with FigTree [56] version 1.4.2, except
Fig. 4, which was produced with iTOL [41] version 3.5.3.

Taxon clustering

To complement phylogenetic analysis and existing classification systems, taxa were
clustered with hierBAPS [14] (bugfixed version dated August 15, 2013), a Bayesian
model-based population genetic approach that accounts for admixture within and among
lineages. The bcsl 498 alignment of 8,954 genes (mat 6) was provided to hierBAPS as
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input, and hierBAPS was directed to produce a single-level clustering with a maximum
of 10 clusters.

Clustering of taxon-associated attributes

The degree of clustering of taxa sharing a common attribute, given a phylogeny relating
those taxa, was quantified using the genealogical sorting index [16] (gsi) version 0.92
made available through the web service at molecularevolution.org [2]. Significance
of the gsi was determined by running 104 permutation replicates.

Results

Distance-based phylogeny of the genus Bacillus

The Mash-distance-based phylogeny of the genus Bacillus (Additional file 7) indicated
a B. cereus s. l. clade containing the following species: B. anthracis, B. bingmayon-
gensis, B. cereus (sensu stricto), B. cytotoxicus, B. gaemokensis, B. manliponensis,
B. mycoides, B. pseudomycoides, B. thuringiensis, B. toyonensis, B. weihenstephanensis,
B. wiedmannii, and one uncharacterized species (Bacillus sp. UNC437CL72CviS29).
Within B. cereus s. l., the first taxon to split off from the remainder of the group was
B. manliponensis, followed by B. cytotoxicus (which has been previously recognized as
an outlier [37, 58]).

Pan-genome inference

The pan-genome of B. cereus s. l. was inferred with Roary [52] using the bcsl 114 taxon
set. Roary produced a total of 59,989 protein-coding gene sequence clusters (Additional
file 2) from an average of 5,726 genes per input genome (Additional file 8). The shortest
cluster sequence was 122 nt, the longest cluster sequence was 22,967 nt, and the average
length of a cluster sequence was 755 nt. The average difference between the shortest and
longest sequence in a cluster was only 67 nt, suggesting that the input data was relatively
uniform, as would be expected from complete genomes. The B. cereus s. l. “core
genome”, consisting of genes present in at least 99% of taxa sampled, was represented
by 598 genes (≈1% of all genes). A rarefaction curve shows that after ≈35 genomes
have been sampled (≈31% of all genomes), the number of core genes remains fairly
constant at ≈600 genes, while the total number of genes in the pan-genome continues to
increase almost linearly (Additional file 10). The 59,391 non-core genes were divided
into 32,324 “accessory genes” (i.e., non-core genes present in at least two taxa; ≈54%
of all genes), and 27,067 “unique genes” (i.e., genes present in only one taxon; ≈45%
of all genes). A rarefaction curve shows that as genomes are sampled, genes never
before observed continue to be found at a fairly steady rate, and the total number of
unique genes discovered continues to increase, with no indication of soon approaching an
asymptote (Additional file 11); these trends indicate that the B. cereus s. l. pan-genome
is “open”. Finally, Roary produced an “accessory binary tree”, which was plotted
alongside core and accessory gene presence/absence information (Additional file 12).
This figure shows that the outermost B. cereus s. l. clades include taxa with relatively
few accessory genes included in the analysis (≤ 40), such as B. cytotoxicus, B. mycoides,
and B. pseudomycoides; by contrast, the genomes with the most accessory genes present
(> 1000) belong to the highly clonal clade of B. anthracis strains.
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Phylogenetic network analysis

SplitsTree4 [28] was used to build a phylogenetic network from the gene presence/absence
information produced by Roary. The choice of method for computing distance did affect
network branch lengths; the network presented here was computed with the MLDistance

variant of GeneContentDistance (Fig. 1), as that method seemed most appropriate for
gene presence/absence data. The phylogenetic network recapitulated both the three-
clade [18,49,69] and seven-group [8,26,65] classification systems used in previous studies.
Group I and Group VII, both part of Clade 3, were most radically diverged from the
remainder of the network. Notably, Group II was absent from the network, as it was
not represented by any complete B. cereus s. l. genomes at the time the study was
performed.

Genotype-phenotype association

Scoary [12] was used to associate patterns of gene presence and absence with particular
phenotypes (traits), an analysis known as “pan-GWAS” [12]. Pan-GWAS was performed
for the following traits: isolation source (cattle, human, invertebrate, non-primate
mammal, or soil); motility; oxygen requirement (aerobic or facultative); and disease
(anthrax or food poisoning). Eight of ten traits tested had some number of significant
positively or negatively associated genes (Table 2). Traits with a sufficient number
of associated genes were tested for possible enrichment of gene ontology biological
processes (Additional file 13). The most interesting findings from this analysis concerned
taxa isolated from soil. Specifically, metabolic and biosynthetic processes involving
quinone (and in particular, menaquinone) were positively associated with soil isolates.
Analysis of quinone species present in soil have been used previously to characterize
soil microbiota [23]. Furthermore, a high ratio of menaquinone to ubiquinone (the two
dominant forms of quinone in soil) has been associated with the presence of gram-positive
bacteria such as Bacillus species [34]. On the other hand, biological processes involving
flagella, cilia, or motility more generally were negatively associated with soil isolates.
This finding is consistent with observations that motility may not be necessary for
bacterial colonization of plant roots [17], doubts about the evolutionary advantage of
maintaining flagella in a soil environment [33], and general properties of soil that bring
into question the importance of active movement and the extent to which it occurs [47].

Concatenated data matrices

In total, six different concatenated nucleotide data matrices were constructed and
analyzed (mat 1–mat 6; Table 3). The majority of the data matrices used the bcsl 114
taxon set (mat 1–mat 5); only mat 6 used the bcsl 498 taxon set. Various gene sets
were used, including 1) all core genes identified by Roary (all core); 2) only the core
genes used to build the HaMStR database (hamstr core); 3) HaMStR core genes
with mobile genetic elements (MGEs) removed (hamstr core mges removed), and a
variant of this gene set with PhiPack sites removed; and finally, 4) all HaMStR genes with
MGEs removed (hamstr full mges removed). Aligned data matrices ranged from
96,802 nt to 8,207,628 nt in length. Matrix completeness, defined as the percentage of
non-missing data, ranged from 47.4% to 99.5%. The percentage of ambiguous characters
present in data matrices ranged from 0.0% to 17.0%.

Phylogenetic analyses

In total, nine different phylogenetic analyses of the six concatenated data matrices were
performed (Table 4). Eight of the nine analyses used maximum likelihood (ml 1–ml 8),
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and one analysis used maximum parsimony (mp 1). For reasons of computational
tractability, all exploratory analyses used the bcsl 114 taxon set (ml 1–ml 7 and
mp 1); only when the best-performing methods were established was analysis of the
bcsl 498 taxon set pursued (ml 8). During the exploratory phase, several variables were
tested for their effect on phylogenetic outcome: 1) use of MAFFT instead of PRANK to
align protein sequence clusters; 2) removal of MGEs; 3) use of maximum parsimony in
addition to maximum likelihood; 4) partitioning of sites by codon position; 5) removal
of sites implicated in recombination; and finally, 6) use of all eligible genes from the
pan-genome versus only core genes.

Importantly, all phylogenetic analysis results recapitulated the three-clade [18, 49, 69]
and seven-group [8,26,65] classification systems of previous studies. Taxa were consis-
tently assigned to the same clade and group, independent of the particular phylogenetic
analysis performed. Thus, topological differences between analysis results, as measured
by the Robinson-Foulds distance [57] (Additional file 14), were confined to intra-group
relationships. Bootstrap support was fairly consistent for all analyses that used core
genes, and increased dramatically when all eligible genes from the pan-genome were used
(Table 4). Additional detail about the phylogenetic analyses, and the logic behind their
progression, is provided in the subsections that follow.

Choice of multiple sequence alignment program

Roary produced multiple sequence alignments of all 598 core genes with PRANK [44],
which explicitly models insertions and deletions, but as a consequence runs more slowly
than some other alignment programs. The PRANK alignments were concatenated
to produce mat 1. A similar matrix was built using the 594 HaMStR-eligible core
genes, except that the gene sequence clusters were aligned with MAFFT [35] (mat 2).
Phylogenetic analyses of these two matrices with RAxML [60] revealed only negligible
differences in bootstrap probabilities (ml 1 vs. ml 2; Table 4), so for the sake of
computational efficiency MAFFT was used for the remainder of the analyses.

Removal of mobile genetic elements

For tree-based phylogenetic analyses that assume a process of vertical inheritance, the in-
clusion of mobile genetic elements (MGEs) that may be horizontally transferred is likely to
confound the phylogenetic inference process [9]. Thus, putative MGEs were identified and
removed from hamstr core, leaving 578 core genes (hamstr core mges removed).
Phylogenetic analysis of this slightly smaller data matrix (mat 3) revealed comparable
bootstrap probabilities to those from the analysis that used hamstr core (ml 3 vs.
ml 2; Table 4); nevertheless, out of principle, HaMStR databases with MGEs removed
were used for the remainder of the analyses.

Partitioning of sites by codon position

It is well known that nucleotides in different codon positions (first, second, or third) are
likely to be under different selective pressures [7]; thus, when analyzing protein-coding
nucleotide sequences, it is common practice to apply a different substitution model (or
different instance of the same substitution model) to the sites associated with each codon
position, thus effectively partitioning the data matrix into three data subsets. The effect
of partitioning by codon position was tested with two different matrices (mat 3 and
mat 5); only negligible differences in bootstrap probabilities were found as compared to
the unpartitioned results (ml 4 vs. ml 3 and ml 7 vs. ml 6; Table 4).
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Removal of sites implicated in recombination

Genomic regions that may have been involved in past recombination events should not
be used for phylogenetic analyses that assume a process of vertical inheritance [9]. The
profile program from PhiPack [10] was used to flag and remove sites from mat 3
that exhibited signs of mosaicism. The resulting data matrix (mat 4) contained less
than one-fourth the number of unique alignment patterns of mat 3, thus representing
a substantial reduction in data suitable for phylogenetic analysis. This was reflected
in bootstrap probabilities, which were somewhat depressed overall (ml 5 vs. ml 3;
Table 4). It was thus concluded that removing sites implicated in recombination had a
deleterious effect on phylogenetic analysis results, and so this procedure was not applied
to subsequent analyses.

Use of all eligible genes from the pan-genome versus only core genes

Using all eligible genes (hamstr full mges removed) for phylogenetic analysis as
opposed to using only core genes (hamstr core mges removed) caused bootstrap
probabilities to increase dramatically (ml 6 vs. ml 3 and ml 7 vs. ml 4; Table 4). Thus,
the ml 6 result was selected as the best estimate of the phylogenetic relationships among
the bcsl 114 taxa. ClonalFrameML [19] was used to correct the branch lengths of this
tree to account for recombination, and the tree was rooted using B. cytotoxicus [37, 58].
The resulting bcsl 114 phylogeny is shown as a phylogram with major clades and
groups indicated (Fig. 2), and as a cladogram with bootstrap probabilities annotated
(Additional file 15).

Maximum likelihood-based analysis of all taxa

Once the exploratory analyses were completed, an analysis of bcsl 498 was executed
using the hamstr full mges removed gene set. The average number of genes included
in the analysis for each species, clade, and group is given in Additional file 8, and a count
of the number of genes included for each taxon is given in Additional file 9. Due to the
size of the data matrix (almost 4×106 unique alignment patterns), only a single best tree
search replicate was completed (ml 8; Table 4). Informed by the distance-based analysis
of Bacillus species (Additional file 7), the tree was rooted using B. manliponensis. The
resulting bcsl 498 phylogeny is shown as a phylogram with major clades and groups
indicated (Fig. 3). In contrast to analyses of bcsl 114, Group II is now represented,
and is located on the tree where expected [8, 26, 65]. Based on this topology of currently
sequenced genomes, a count of the number of taxa by species is provided for major
B. cereus s. l. clades and groups (Additional file 8).

Taxon clustering

The hierBAPS [14] clustering analysis divided bcsl 498 into nine clusters (Additional
file 9), which are displayed alongside major B. cereus s. l. clades and groups in Fig. 4. The
hierBAPS clusters are congruent with the three-clade classification system, and largely
agree with the seven-group classification system, with the following differences. Clade 1
included members of three clusters (as opposed to only two groups), and Clade 3 included
members of six clusters (as opposed to four groups). Some Clade 3 clusters expanded
slightly relative to their counterpart group to include taxa that were not assigned to any
group, and B. manliponensis was assigned to its own cluster. Interestingly, two Clade 3
B. cereus taxa were assigned to Cluster 3, whereas other members of Cluster 3 were
assigned to Clade 1, thus suggesting some genetic admixture between these two clades
that was not reflected in the phylogenetic analysis.
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Clustering of taxon-associated traits

The genealogical sorting index [16] (gsi) was used to quantify the degree of clustering of
taxa sharing a common attribute given a phylogeny relating those taxa. The gsi statistic
for a particular attribute takes a value from the unit interval [0,1]; if taxa associated
with the attribute form a monophyletic group, the gsi = 1; otherwise, the greater the
degree to which taxa associated with the attribute are dispersed throughout the tree
(accounting for the number of taxa and the size of the tree), the smaller the gsi will be
for that attribute.

Quantifying the degree of B. cereus s. l. species monophyly

The gsi was calculated for six B. cereus s. l. species that were sufficiently represented
in the bcsl 498 phylogeny; all P-values were << 0.05 (Additional file 16 and Table 5).
Due to its highly clonal nature, B. anthracis was the species closest to monophyly
(gsi = 0.95), and would have indeed been monophyletic except that one B. anthracis
taxon (GCF 001029875) did not group with the others (but still placed in Group III).
This might be a misannotation and should be investigated. B. weihenstephanensis was
the species furthest from monophyly (gsi = 0.15), primarily because it was represented
by only six taxa, one of which (GCF 000518025) was found in Group IV — the remainder
were found in Group VI. Again, the annotation of the Group IV taxon with regard to
species affiliation should be scrutinized.

Quantifying the degree of clustering of taxa sharing common traits

The gsi was calculated for ten traits shared by various B. cereus s. l. taxa using the
bcsl 114 phylogeny from the ml 6 analysis; all P-values with the exception of one
were less than 0.05 (Table 6). As not all of the taxa in bcsl 114 were assayed for each
trait, the gsi values are artificially depressed; nevertheless, their relative values may be
compared. The traits with the largest gsi values were “isolation source: cattle” and
“isolation source: non-primate mammal”, the taxa associated with the former being a
subset of the taxa associated with the latter. These taxa were all located in Group III,
and all but two were identified as B. anthracis. This finding is consistent with the
prevalence of mortality due to anthrax among cattle and other herbivores [68].
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Discussion

I show that the B. cereus s. l. pan-genome is still “open” (Additional files 10 and 11),
thus implying that continued sampling of the group — especially of underrepresented
taxa such as environmental strains [20] — will continue to reveal novel gene content. My
estimate of the number of protein-coding genes in the B. cereus s. l. core and pan-genome
(≈600 and ≈60,000, respectively), based on 114 complete genomes, is consistent with
previous estimates [37, 69], as more extensive sampling of an open pan-genome will
necessarily reduce the core genome size while simultaneously increasing the pan-genome
size. It is interesting to observe that the basic phylogenetic structure of B. cereus s. l.
can be accurately computed by relatively quick phylogenetic analyses based solely on
the distribution of accessory genes among taxa (Fig. 1 and Additional file 12), which
may in fact be sufficient for some applications. The diversity and adaptability of
B. cereus s. l. may be in part attributable to the significant proportion of unique genes
in its pan-genome (≈27,000, almost 50% of all genes; Additional file 11).

Pan-GWAS analysis found a number of genes significantly associated with various
phenotypic traits (Table 2). In terms of validating this analysis, one might naturally
look for genes known to be associated with B. anthracis virulence [36] or B. cereus s. l.-
induced food poisoning [27]; however, these genes are not found among the analysis
results. Many of these genes were not annotated by Roary, and of the ones that
were, some were not represented in the hamstr full database, thus reducing the
number of taxa for which there would have been usable data. The genes that were
reported to be significantly associated with “disease: anthrax”, “disease: food poisoning”,
and other traits thus represent hypotheses that remain to be validated. Only four
traits had enough significant positively or negatively associated genes to allow for the
identification of enriched subsets of genes involved in particular biological processes
(“isolation source: cattle”, “isolation source: human”, “isolation source: non-primate
mammal”, and “isolation source: soil”; Additional file 13). Of these, only the biological
processes associated with “isolation source: soil” were sufficiently specific so as to be
meaningfully interpretable. To increase the statistical power of the pan-GWAS analysis
and thereby generate more comprehensive and specific lists of genes associated with
various traits, one would need to include additional taxa with relevant metadata and
gene content information.

All phylogenetic analyses in this study recapitulated the three-clade and seven-group
classification systems, and taxa were consistently assigned to the same clade and group
(Figs. 1-4), irrespective of the data source or analysis methodology used (Tables 3 and 4).
This strongly suggests that the broad phylogenetic structure of B. cereus s. l. has
been inferred correctly. I demonstrate that the three-clade and seven-group systems
are compatible with each other, as no group has its member taxa assigned to multiple
clades. Clades 1 and 2 are much more extensively sampled than Clade 3 due to
historical interest in B. anthracis and B. thuringiensis (Additional file 8); a recent
study has shown that there is likely to be a tremendous amount of as-yet incompletely
characterized diversity in Clade 3 that can be assayed by sampling various natural
environments [20]. Indeed, Clade 3 exhibited the greatest degree of species diversity; in
particular, Group I contained representatives of seven different species, including two
newly characterized species (B. bingmayongensis [42] and B. gaemokensis [32]; Additional
file 8). Six of the 498 taxa did not place into one of the seven previously circumscribed
groups, which suggests that classification systems will need to be updated and refined as
additional isolates are sequenced. Perhaps most interesting among the unplaced taxa is
B. manliponensis [31], which appears to be even more divergent from other B. cereus s. l.
taxa than B. cytotoxicus [25] (Fig. 3 and Additional file 7). One possibility for updating
the group-level classification system is to incorporate information from the Bayesian
model-based clustering analysis, the results of which were shown to be compatible with
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the three-clade system and which recommended nine clusters instead of seven groups
(Fig. 4).

Using the phylogeny of bcsl 498, I quantified the degree of monophyly for six
current B. cereus s. l. species designations (Additional file 16 and Table 5). This
analysis demonstrates quantitatively that with the exception of B. anthracis, species
definitions within B. cereus s. l. are not currently based on phylogenetic relatedness,
but rather on phenotypes such as virulence, physiology, and morphology [8, 26]. The
primary focus of this study is the accurate reconstruction of phylogenetic relationships
among taxa, and thus I make no specific recommendations for species re-designation
based on these results. However, I do note a trend towards refined species designations
that correlate with group affiliation; for example, several B. cereus strains in Group II
have recently been re-designated B. wiedmanii [46]; similarly, Böhm et al. [8] suggested
that all Group V taxa should be designated B. toyonensis [30]. In general, I recommend
that taxonomic revisions are informed by well-supported phylogenetic hypotheses that
have been generated without bias towards any particular species concept (e.g., dDDH
boundaries [43]).

In a bioforensic setting, phylogenies that include well-supported strain-level rela-
tionships aid greatly in the identification of new isolates, and thus support both the
attribution process (traceback of an isolate to its source) as well as analyses of pathogen
evolution in an epidemic or outbreak scenario. However, the extremely high level of
genomic conservation among closely related bacterial strains, especially in the core
genome or in commonly typed conserved regions such as housekeeping genes, has limited
the ability of previous analyses to make robust strain-level phylogenetic inferences. An
important contribution of the current study is to show that bootstrap probabilities
increase substantially when accessory genes are included in phylogenetic analyses along
with core genes (Table 4). Thus, I have been able to resolve many strain-level, intra-group
relationships of B. cereus s. l. with 100% bootstrap support for the first time (Additional
file 15).

Conclusion

In this study, I used novel bioinformatic workflows to characterize the pan-genome and
phylogeny of B. cereus sensu lato. Based on data from 114 complete genomes, I estimated
that the B. cereus s. l. core and pan-genome contain ≈600 and ≈60,000 protein-coding
genes, respectively. Pan-GWAS analysis revealed significant associations of particular
genes with phenotypic traits shared by groups of taxa. All phylogenetic analyses
recapitulated two previously used classification systems, and taxa were consistently
assigned to the same major clade and group. By including accessory genes from the
pan-genome in the phylogenetic analyses, I produced an exceptionally well-supported
phylogeny of 114 complete B. cereus s. l. genomes. The best-performing methods
were used to produce a phylogeny of all 498 publicly available B. cereus s. l. genomes,
which was in turn used to compare three different classification systems and to test the
monophyly status of various B. cereus s. l. species. The majority of the methodology
used in this study is generic and could be leveraged to produce pan-genome estimates
and similarly robust phylogenetic hypotheses for other bacterial groups.
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GWAS: genome-wide association study
HMM: hidden Markov model
HaMStR: Hidden Markov Model based Search for Orthologs using Reciprocity
LCB: locally collinear block
MAFFT: Multiple Alignment using Fast Fourier Transform
MGE: mobile genetic element
ML: maximum likelihood
MLST: multilocus sequence typing
MP: maximum parsimony
NCBI: National Center for Biotechnology Information
PANTHER: Protein ANalysis THrough Evolutionary Relationships
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Figure 1. Phylogenetic network analysis of BCSL 114. Gene presence/absence
information produced by Roary was provided as input to SplitsTree, which used the
MLDistance variant of GeneContentDistance together with the NeighborNet algorithm
to reconstruct the phylogenetic network. Major B. cereus s. l. clades and groups are
indicated, along with representative taxa.
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Figure 2. BCSL 114 maximum likelihood phylogenetic analysis results. Phy-
logram depicting the best estimate of the phylogenetic relationships among bcsl 114
taxa, computed with RAxML using 8,954 genes (ml 7; Table 4). ClonalFrameML
was used to correct the branch lengths of the tree to account for recombination, and
B. cytotoxicus was used to root the tree. Major B. cereus s. l. clades and groups are
indicated.
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Figure 3. BCSL 498 maximum likelihood phylogenetic analysis results. Phy-
logram depicting an estimate of the phylogenetic relationships among bcsl 498 taxa,
computed with RAxML using 8,954 genes (ml 9; Table 4). B. manliponensis was used
to root the tree. Major B. cereus s. l. clades and groups are indicated.
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Figure 4. Phylogeny showing assignment of taxa to clades, groups, and
clusters. Circular phylogram depicting an estimate of the phylogenetic relationships
among bcsl 498 taxa, computed with RAxML using 8,954 genes (ml 8; Table 4).
B. manliponensis was used to root the tree. Major B. cereus s. l. clades are indicated
by highlighting of taxon labels, major groups are indicated by the inner colored strip,
and hierBAPS clusters are indicated by the outer colored strip.
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Table 1. Species composition of taxon sets.

Species
Representatives

in bcsl 114

Representatives

in bcsl 498

HaMStR

reference taxon

RefSeq assembly

accession

B. anthracis 42 128 Ames GCF 000007845

B. bingmayongensis 0 1

B. cereus (sensu stricto) 30 258 ATCC 14579 GCF 000007825

B. cytotoxicus 1 2 NVH 391-98 GCF 000017425

B. gaemokensis 0 2

B. manliponensis 0 1

B. mycoides 2 13 ATCC 6462 GCF 000832605

B. pseudomycoides 1 1 DSM 12442 GCF 000161455

B. thuringiensis 35 73 97-27 GCF 000008505

B. toyonensis 1 1 BCT-7112 GCF 000496285

B. weihenstephanensis 2 6 KBAB4 GCF 000018825

B. wiedmannii 0 11

Bacillus sp. 0 1

Table 2. Scoary result summary.

Trait Taxa with trait Taxa without trait

Significant

positively

associated genes

Significant

negatively

associated genes

isolation source: cattle 25 331 358 227

isolation source: human 44 312 53 47

isolation source: invertebrate 16 340 0 0

isolation source: non-primate mammal 46 310 162 85

isolation source: soil 121 235 34 34

motility 88 18 0 0

oxygen requirement: aerobic 65 41 15 18

oxygen requirement: facultative 41 65 20 11

disease: anthrax 85 63 44 1

disease: food poisoning 43 105 3 23

Table 3. Concatenated data matrix statistics.

Matrix Taxon set Gene set
Alignment

method

Alignment

length (nt)

Matrix

completeness

Ambiguous

characters

mat 1 bcsl 114 all core prank 508,158 97.9% 0.4%

mat 2 bcsl 114 hamstr core mafft 502,005 98.4% 0.0%

mat 3 bcsl 114 hamstr core mges removed mafft 486,546 98.4% 0.0%

mat 4 bcsl 114
hamstr core mges removed +

PhiPack sites removed
mafft 134,225 98.0% 0.0%

mat 5 bcsl 114 hamstr full mges removed mafft 7,962,138 47.4% 0.0%

mat 6 bcsl 498 hamstr full mges removed mafft 8,207,628 66.1% 0.1%
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Table 4. Phylogenetic analysis statistics1.

Analysis Matrix
Partitioning

scheme

Unique

alignment

patterns

Best tree

searches

Bootstrap

replicates

Nodes with

BP = 1.0

Nodes with

BP ≥ 0.5

Nodes with

BP < 0.5

ml 1 mat 1 all nuc 46,395 1000 100 68 98 14

ml 2 mat 2 all nuc 46,174 1000 100 68 93 19

ml 3 mat 3 all nuc 44,750 1000 200 63 94 18

ml 4 mat 3 codon pos 49,889 1000 200 64 92 20

ml 5 mat 4 all nuc 11,729 1000 200 53 86 26

ml 6 mat 6 all nuc 691,147 10 100 92 112 0

ml 7 mat 6 codon pos 852,707 28 100 89 112 0

ml 8 mat 7 all nuc 3,948,459 1 0 n/a n/a n/a

mp 1 mat 3 all nuc 83,3832 n/a n/a n/a n/a n/a

1
ml = maximum likelihood; mp = maximum parsimony; BP = bootstrap probability; n/a = not applicable.

2
Number of parsimony-informative characters.

Table 5. Monophyly status of B. cereus s. l. species, as quantified by the gsi.

Species
Representatives

in bcsl 498
gsi value P-value

B. anthracis 128 0.95 0.0001

B. cereus 258 0.55 0.0001

B. mycoides 13 0.34 0.0001

B. thuringiensis 73 0.36 0.0001

B. weihenstephanensis 6 0.15 0.0021

B. wiedmannii 11 0.58 0.0001

Table 6. Degree of clustering of taxa sharing common traits, as quantified by the gsi.

Trait Taxa with trait gsi value P-value

isolation source: cattle 9 0.33 0.0001

isolation source: human 17 0.19 0.0273

isolation source: invertebrate 5 0.16 0.0462

isolation source: non-primate mammal 15 0.37 0.0001

isolation source: soil 17 0.27 0.0002

motility 25 0.16 0.2100

oxygen requirement: aerobic 15 0.19 0.0268

oxygen requirement: facultative 9 0.22 0.0037

disease: anthrax 11 0.26 0.0008

disease: food poisoning 8 0.17 0.0302
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Additional files

Additional file 1 — RefSeq assembly accessions for the taxa used in this
study. A list of RefSeq assembly accessions for the bcsl 498 taxa.

Additional file 2 — Roary gene presence/absence matrix for BCSL 114 taxa.
The gene presence/absence spreadsheet lists all genes in the pan-genome and the taxa in
which they are present, along with summary statistics and additional information.

Additional file 3 — Roary gene presence/absence matrix for BCSL 498 taxa.
The gene presence/absence spreadsheet lists all genes in the pan-genome and the taxa in
which they are present, along with summary statistics and additional information.

Additional file 4 — Binary matrix of phenotypic traits exhibited by BCSL 498
taxa. Binary phenotypic trait matrix for bcsl 498 taxa, created using the isolate meta-
data obtained from PATRIC.

Additional file 5 — Construction of a HaMStR database. Prokka was used
to annotate 114 B. cereus s. l. complete genomes. The resulting protein-coding gene
annotations were provided as input to Roary, which constructed a pan-genome consisting
of 59,989 orthologous protein sequence clusters. After filtering, which included mobile
genetic element removal, the 8,954 remaining clusters were aligned with MAFFT. Gene
models were built from the multiple sequence alignments using the hmmbuild program
from HMMER. The 8,954 gene models, together with separately constructed refer-
ence taxon BLAST databases, constituted the hamstr full mges removed HaMStR
database.

Additional file 6 — Construction of a concatenated data matrix. Prokka was
used to annotate B. cereus s. l. “query genomes”— i.e., draft genomes that were not
included in bcsl 114. The resulting protein-coding gene annotations were provided
as input to HaMStR, which used the hmmsearch program from HMMER followed
by BLASTP to assign query sequences to HaMStR database gene models. Clusters
of orthologous protein sequences from query and database taxa were aligned with
MAFFT and converted to corresponding nucleotide alignments. The multiple sequence
alignments were reduced to a single sequence per taxon with a consensus procedure that
used nucleotide ambiguity codes to combine information from sequence variants where
necessary. The individual alignments were then concatenated to produce the final data
matrix.

Additional file 7 — Mash-distance-based phylogeny of the genus Bacillus.
Phylogeny of 146 Bacillus genomes, computed with Mash and FastME.
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Additional file 8 — Attributes of B. cereus s. l. species, clades, and groups.
Tables that provide number of taxa, average number of genes found among Roary clusters,
and average number of genes present in mat 6 for B. cereus s. l. species, clades, and
groups.

Additional file 9 — Taxon metadata for bcsl 498. Table providing clade, group
and hierBAPS cluster affiliation for bcsl 498 taxa, along with the number of genes
found among Roary clusters (complete genomes only) and the number of genes present
in mat 6 (out of a possible total of 8,954 genes).

Additional file 10 — Rarefaction curve: core vs. all genes. The rarefaction
curve shows that after ≈35 genomes have been sampled (≈31% of all genomes), the
number of core genes remains fairly constant at ≈600 genes, while the total number of
genes in the pan-genome continues to increase almost linearly.

Additional file 11 — Rarefaction curve: new vs. unique genes. The rarefaction
curve shows that as genomes are sampled, genes never before observed continue to be
found at a fairly steady rate, and the total number of unique genes discovered continues
to increase, with no indication of soon approaching an asymptote.

Additional file 12 — Accessory binary tree and gene presence/absence visu-
alization. The “accessory binary tree” and gene presence/absence information produced
by Roary are plotted side-by-side. The outermost B. cereus s. l. clades include taxa
with relatively few accessory genes included in the analysis, such as B. cytotoxicus,
B. mycoides, and B. pseudomycoides. By contrast, the genomes with the most accessory
genes present belong to the highly clonal clade of B. anthracis strains.

Additional file 13 — Scoary result summary, including enriched gene ontol-
ogy biological processes. Positively or negatively trait-associated gene sets produced
by Scoary were subsequently tested for possible enrichment of gene ontology biological
processes. Complete Scoary results for eight traits, including gene annotations, are also
given.

Additional file 14 — Robinson-Foulds distance between all pairs of BCSL 114
phylogenetic results. Both the standard and normalized Robinson-Foulds distance is
given.

Additional file 15 — BCSL 114 maximum likelihood phylogenetic analysis
results. Cladogram depicting the best estimate of the phylogenetic relationships among
bcsl 114 taxa, computed with RAxML using 8,954 genes (ml 6; Table 4). B. cytotoxicus
was used to root the tree. Major B. cereus s. l. clades and groups are indicated, as are
bootstrap probabilities.

28

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 22, 2017. ; https://doi.org/10.1101/119420doi: bioRxiv preprint 

https://doi.org/10.1101/119420
http://creativecommons.org/licenses/by/4.0/


Additional file 16 — BCSL 498 maximum likelihood phylogenetic analysis
results, color-coded by species. Phylogram depicting an estimate of the phylogenetic
relationships among bcsl 498 taxa, computed with RAxML using 8,954 genes (ml 8;
Table 4). B. manliponensis was used to root the tree. B. cereus s. l. species tested for
monophyly with the gsi are color-coded.
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