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Abstract. Protein sequences are recoded with a binary alphabet obtained by dividing the 20 amino acids into two subsets based on 
volume. A protein is identified from subsequences by database search. Computations on the Helicobacter pylori proteome show that 
over 93% of binary subsequences of length 20 are correct at a confidence level exceeding 90%. Over 98% of the proteins can be 
identified, most have multiple identifiers so the false detection rate is low. Binary sequences of unbroken protein molecules can be 
obtained  with  a nanopore from current blockade levels proportional to residue volume; only two levels, rather than 20, need be 
measured to determine a residue's subset. This  procedure can be translated into practice with a sub-nanopore that can measure 
residue volumes with ~0.07 nm3 resolution as shown in a recent publication. The high detector bandwidth required by the high speed 
of a translocating molecule can be reduced more than tenfold with an averaging technique, the resulting decrease in the identification 
rate is only 10%. Averaging also mitigates the homopolymer problem due to identical successive blockade levels. The proposed 
method is a proteolysis-free single-molecule method that can identify arbitrary proteins in a proteome rather than specific ones. This 
approach to protein identification also works if residue mass is used instead of mass; again over 98% of the proteins are identified by 
binary subsequences of length 20. The possibility of using this in mass spectrometry studies of proteins, in particular those with post-
translational modifications, is under investigation.

1. Introduction
Sequencing/identification of peptides/proteins is currently based on Edman degradation, gel electrophoresis, or mass 
spectrometry (MS) [1-3]; it is usually done in the bulk and often followed by database search [3]. In comparison 
with DNA sequencing, for which several NGS (next generation sequencing) technologies are currently available [4], 
protein sequencing is more difficult, as it has to discriminate among 20 amino acids, as opposed to four bases with 
DNA. It also has to work with the available sample, as there is no amplification technique for proteins comparable to 
PCR for DNA [2].

Compared  to  protein  sequencing,  protein  identification  is  simpler  because  it  only requires  finding  a  partial 
sequence and then searching through a protein sequence database to find the protein that is uniquely identified by it. 
Recently single-molecule methods based on proteolysis and optical or other labeling of selected residues have been 
proposed. In one of them a protein is cleaved into peptide fragments, pinned to a substrate, and selectively labeled 
[5]. The labeled residues are detected optically and a partial sequence obtained.

In contrast with these methods nanopores provide a single-molecule electrical alternative that does not require 
proteolysis, analyte immobilization, or labeling of any kind [6]. While their use in sequencing DNA is becoming 
commonplace  [7],  nanopore-based  protein  sequencing  may  seem  like  a  distant  prospect.  Recent  reviews  of 
nanopore-based protein studies are available [8-11]. Examples of work in the area include experimental studies 
involving recognition tunneling [12] and use of a sub-nanometer diameter nanopore [13]. A major limiting factor has 
been the pore current resolution needed to discriminate among 20 different amino acids; at present this appears to be 
out  of  reach.  There  has  been  some  success  in  nanopore-based  studies  of  other  aspects  of  proteins  such  as 
folding/conformation [14,15] and recognition of specific proteins or their variants [16-19].

1.1  The present work
Here it  is  shown by computation that  proteins in a proteome can be uniquely identified from subsequences  of 
primary sequences  by using a binary code derived from a division of  the amino acids  into two sets based on 
published volume data [20]. Comprehensive computations on a sample proteome (Helicobacter pylori) show that the 
codes of subsequences 20 residues long are correct at a better than 90% confidence level, and that over 98% of the 
proteins in the proteome can be identified by searching for the subsequences in the binary-coded proteome database. 
With a nanopore this means that a pore current resolution that can discriminate between the two subsets mentioned 
above is sufficient. (Incidentally a binary alphabet has been used recently in DNA sequencing with a solid-state 
nanopore. In this approach a  nucleotide is encoded  with a  predesigned oligonucleotide and two fluorescent label 
types to represent the four bases [21].)

The  scheme  described  here  can  be  translated  into  practice  with  existing  technology  (nanopore,  electronic, 
database); an easy-to-use hand-held device similar to the MinION in genome sequencing [22] can be designed and 
implemented.  Unlike  most  nanopore-based  protein  identification  methods,  the  one  presented  here  can  identify 
arbitrary proteins in a proteome rather than specific individual targets [16-19]. As such it can also be extended to the 
analysis of protein mixtures (see Section 3.4).

2.  Protein identification with a nanopore
An electrolytic cell has a membrane dividing two chambers (cis and  trans) containing an electrolyte. A potential 
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difference applied across the membrane leads to an ionic current through the pore from  cis to  trans. An analyte 
molecule (such as a polymer like DNA or protein) introduced into  cis translocates through the pore to  trans and 
causes a current blockade. A monomer may be identified from the blockade level, which may be specific to one or 
more  contiguous  monomers  based  on  some  physical  or  chemical  property  such  as  volume,  charge,  diffusion 
constant, etc. With proteins no enzymatic digests are required; the analyte is a single denatured unfolded protein 
molecule and a monomer is a residue.

Normally a  blockade  current  resolution  able  to  discriminate  among the  standard  20  residue  types  would  be 
required. Such resolution is unattainable in practice, especially with noise present. This is mitigated somewhat if a 
four-way division of the 20 amino acids based on volume is used [13].

The  method presented  here  makes  the  resolution  problem manageable  by reducing the  measured  number  of 
blockade current signal levels from 20 to two. Subsequences in the resulting binary sequence that can uniquely 
identify the protein in a binary-coded proteome database are then found. As noted earlier and demonstrated below, 
computational analysis of a sample proteome (H. pylori) using amino acid volume data [20] indicates that almost all 
of the proteins therein can be identified with a confidence level exceeding 90%.

The proposed method is analyzed computationally before considering implementation issues.

3. Computational analysis and results
There are three steps: 1) Divide the set of amino acids into two ordered subsets S1 and S2; 2) Recode the primary 
sequences in a proteome with a binary code based on this two-way partition; 3) For every protein in the proteome find 
one or more subsequences in its binary-coded primary sequence that identify the protein uniquely.

Table 1. Amino acids sorted by volume. AA = amino acid. Mean and S.D. (Standard Deviation) in 10-3 nm3. Data from [20].

AA Mean S.D. AA Mean S.D. AA Mean S.D. AA Mean S.D.

G 59.9 2.2 T 118.3 2.3 Q 145.1 5.1 K 172.7 5.9

A 87.8 2.3 N 120.1 4.1 H 156.3 6.1 R 188.2 9.6

S 91.7 1.8 P 123.3 1.8 M 165.2 1.8 F 189.7 7.4

C 105.4 5 V 138.8 3.6 I 166.1 3.4 Y 191.2 8

D 115.4 2.2 E 140.9 5.3 L 168 4.3 W 227.9 3.8

Table 1 shows the standard 20 amino acids grouped by volume into two subsets and shaded by group. The dividing 
line is between P and V so that the subsets have roughly similar sizes (8 and 12) and the difference between the 
volumes of P and V is maximal. The amino acids are coded as follows:

S1 = {G,A,S,C,D,T,N,P: 59.9 ≤ volume ≤ 123.3} → 1 (1a)
S2 = {V,Q,E,H,M,I,L,K,R,F,Y,W: volume ≥ 138.8} → 2. (1b)

It was recently shown experimentally that a sub-nanometer-diameter nanopore can measure residue volume with a 
resolution of 0.07 nm3 [23]. Such a level of resolution is sufficient to determine that a residue in a translocating 
protein belongs to S1 or to S2. In what follows, residue volume is used as a proxy for the blockade current.

From Table 1, a blockade current threshold T2 corresponding to a volume of ~0.13 nm3 can distinguish residues in 
S1 from those in S2. To distinguish blockades due to residues in S1 from the open pore current a second threshold T1 

corresponding to a volume of ~0.05 nm3 is set. Thus if the measured volume of a residue is between T1 and T2 the 
output is '1'; if > T2 the output is '2'. 

Errors in the resulting binary codes for subsequences of different lengths can be estimated for different volume 
thresholds. Assuming residue volumes to be normally distributed with mean μ and standard deviation σ, the errors 
can be computed with the normal (Gaussian) error function. Fig. 1 shows normal distributions of the 20 amino acids 
based on data from Table 1.

Let the mean volume and standard deviation for amino acid aa be μaa and σaa (Table 1). Let the error in reading the 
volume of amino acid aa be eaa(T1,T2). If F(x; μ, σ) is the cumulative normal distribution function with mean μ and 
standard deviation σ, the errors for the 20 amino acids are given by

     aa ϵ S1:   eaa (T1,T2) = F(T1;  μaa, σaa) + 1 - F(T2;  μaa, σaa)      (2a)
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     aa ϵ S2:   eaa  (T1,T2) = F(T2;  μaa, σaa)              (2b)

Fig. 1. Normal distributions of amino acid volumes

Assuming that blockades due to successive residues are independent the probability that the measured binary code 
for a protein sequence X = X1 X2 ... Xn, where Xi is one of the 20 amino acids, is correct (that is, its confidence level) 
is given by

cX (T1,T2) = Πi=1 ..  n (1 - eXi (T1,T2))       (3)

The proteome of the gut bacterium H. pylori (Uniprot id UP000000210, 1553 sequences, www.uniprot.org) is used 
as an example. Supplementary File 1 contains the complete set of  protein sequences recoded in binary according to the 
binary code in Equation 1. Fig. 2 (symbol ♦) shows the percentage of binary-coded subsequences with confidence level 
> 90% versus subsequence length.

Subsequences from every protein in a proteome are exhaustively compared with every other protein to determine 
if  they uniquely identify their  container  proteins.  To reduce computation time candidate subsequences  used are 
spaced Δ = 5 residues apart. The percentages of proteins identified are given for subsequence length L = 15, 18, 19, 
20, 22, and 25 in Fig. 2 (symbol ■). The number of proteins identified goes from 8.69% with L = 15 to ~98% with L 
= 20 and 99.1% with L = 25. L > 20 yields diminishing returns;  gains from reducing Δ are minimal. L = 20 is an 
optimal length for subsequences.

Fig. 2.  Percentage of protein subsequences in H. pylori  whose volume-based binary codes have a confidence level > 90% vs 
subsequence length (■). Percentage of proteins identified uniquely from subsequences (♦). Thresholds: T1 = 0.05 nm3, T2 = 0.13 nm3.

A complete list of protein identifying subsequences for all the proteins of H. pylori is given in Supplementary File 2.
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3.1  Reduced false detection rate
A significant majority of  proteins in the  H. pylori proteome have a large number of identifying subsequences; this 
reduces the false detection rate (FDR) considerably. Fig. 3 shows the distribution of the number of proteins vs the 
number of subsequences of length 20 that identify them. Of the 1553 proteins in the proteome 1501 proteins have more 
than one identifier, 23 one, 29 none, and 304 more than 40.

Fig. 3. Number of proteins vs number of protein identifying subsequences of length 20 in a protein in H. pylori (1553 sequences)

3.2  Reducing detector bandwidth
Normally an analyte like a protein molecule translocates through the pore rapidly (diffusion is the major cause, 
although the electrophoretic force due to the applied potential and other factors also play a role [24]). This makes it 
difficult for a detector with insufficient bandwidth to detect changes in the blockade current level. (The limit at 
present is ~1 MHz [25].) One way to reduce the required bandwidth is to compute an average over the raw pore 
current with hardware or software. This is essentially a smoothing technique that also leads to a decrease in the 
number of proteins that can be identified. It is shown next that with this approach the required bandwidth can be 
reduced by a factor of 10 or more with only a 10% decrease in the number of proteins identified.

Let the detector time resolution be τ, the corresponding detector bandwidth B = 1/2τ. With this up to L blockade 
pulses can be identified in a pore current signal interval of width 2Lτ. With a bandwidth of B/L (or equivalently a 
time resolution of Lτ), a pore current pulse of width Lτ can be detected and an average over this interval computed. 
The result is a sequence of average signal values from which in principle the binary-coded primary sequence can be 
extracted. Alternatively the average over an interval of width Lτ can be approximated by the number of 2's (or 1's) in 
that  interval.  Let  N2(i)  be  the  number  of  2's  in  the  interval  [(2iLτ,  (2i+1)Lτ],  i  =  0,1,2,...  The  sequence  of 
(continuous) average values over alternating intervals of width Lτ can now be approximated by the sequence of 
integers {N2(i); i = 0,1,2,...} corresponding to the number of 2's in [0, Lτ], [2Lτ, 3Lτ], [4Lτ, 5Lτ], etc. Since 0 ≤ 
N2(i)  ≤ L,  this is a sequence of numbers in base L+1. Subsequences of length K from the sequence, that is, N2(j) 
N2(j+1) ... N2(j+K-1), j ≥ 0, can now be used as identifiers if they identify the parent protein uniquely. ESM File 2 
has two examples showing how this works.

A second sequence {N2'(i); i = 0,1,2,...} can be defined with sample intervals [Lτ, 2Lτ], [3Lτ, 4Lτ], [5Lτ, 6Lτ], ... 
(For example, in protein 0 above this gives _4_3_1_5_3_5, where _ stands for the sample interval [2k, (2k+1)Lτ], k 
≥ 0). By counting 1's instead of 2's two more sequences {N1(i); i = 0,1,2,...} and {N1'(i); i = 0,1,2,...} can be defined. 
From these four sequences subsequences of length K can be examined to determine if they are identifiers. The total 
number  of  identified  proteins  is  then  the  cardinality  of  the  union  of  the  four  sets  of  proteins  identified  by 
subsequences of the four sequences {N2(i); i = 0,1,2,...} , {N2'(i); i = 0,1,2,...}, {N1(i); i = 0,1,2,...}, and {N1'(i); i = 
0,1,2,...}.  More generally sample intervals  over  which averaging is  done can start  anywhere along the primary 
sequence.

Table 2 gives the results for different values of L and K; it shows a trade off between the bandwidth and the 
number of proteins identified. With L = 5 and K = 8 the bandwidth is reduced by a factor of 10 while the number of  
proteins identified in H. pylori falls from 1524 (98.13%) to 1372 (88.35%). (This process can be repeated with 1's 
instead of 2's, but the increase is marginal: with L = 5 and K = 8 the number goes up from 1372 to 1375.) ESM File 
3 contains a complete list of protein identifiers for H. pylori based on averaged subsequences for the case L = 5 and 
K = 8.
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For other hardware-based approaches to bandwidth reduction see Item 6 in Section 4.

Table 2. Bandwidth reduction with averaging. Average over alternating windows of width L (= length of subsequence) is given 
by number of 2's in subsequence binary code. Resulting sequence of averages is an (L+1)-ary sequence; an id is an (L+1)-ary 
subsequence thereof of length K. Data for H. pylori (1553 sequences). Id'd = Number of proteins identified in proteome.

L 5 5 5 6 6 6 6 8 8 8

K 6 8 10 6 8 10 12 6 8 10

Id'd 849 1372 1346 1054 1337 1271 1185 1197 1227 1118

3.3  The homopolymer problem
The homopolymer problem refers here to the difficulty in identifying successive residues from the same subset as 
they generate the same (binary) output value. With a thick (8-10 nm) biological or synthetic pore, multiple (typically 
4 to 8) residues are resident in the pore at any time during translocation so that the boundary between two successive 
values may be hard to detect, although correlations in the measured signal can often provide useful information. 
Thus in [13] the blockade current was found to correlate well with four contiguous residues.

The averaging technique of Section 3.2 mitigates the homopolymer problem. As averaging is done over a whole 
interval, the boundary between two successive residues is no longer relevant.

For other solutions based on hardware or software, see Item 7 in Section 4 below.

3.4  Quantifying proteins in a mixture
The procedure described here can be used to quantify proteins in a mixture of proteins {Mi: i = 1, 2, ...}, where Mi is 
the number of molecules of the i-th protein. Let Mtot = ∑i Mi. If molecules enter the pore in some random order, then 
after  a sufficiently long run  Mi/Mtot can be estimated as  Ḿi/Ḿtot where Ḿi and Ḿtot are the measured number of 
molecules of protein i and the total measured molecules over the run. Quantification time can be reduced significantly 
by using an array of pores.

4.  Discussion
Some potential implementation and other relevant issues are now considered.
1) The method described here works on single unbroken protein molecules, no proteolysis is done; it is thus free 
from the vagaries of the latter [3]. As there is no degradation the sample can be reused/resequenced.
2) Searching for a measured subsequence in the proteome will require both forward and reverse matches because the 
protein may enter the pore C- or N-terminal first.
3) Equation 3 assumes that successive residues in a protein are independent. This is not true in practice as there are 
inherent correlations. The latter can be extracted from the pore current signal and used in error correction, this leads 
to increased reliability. Software used in nanopore-based DNA sequencing routinely uses this kind of information to 
improve sequencing accuracy [26,27].
4) Depending on the primary sequence a protein may carry only a weak charge so that entry into and/or translocation 
through the pore may be a problem. One solution [16] to this is to attach a negatively charged carrier molecule like 
DNA to the protein molecule; another may be based on dielectrophoretic trapping [28].
5) Charged residues on the pore wall tend to interfere with the passage of an analyte when the latter has charged 
residues. (Seven amino acids, namely D, E, K, R, H, C, and Y, carry a negative or positive charge whose value 
depends on the pH of the electrolyte.) To resolve this the wall charge can be neutralized in some way. With DNA as  
the analyte a lipid coat has been shown to do this [29].
6) Hardware solutions to the bandwidth reduction problem of Section 3.2 include use of: a) a room-temperature 
ionic liquid (RTIL), which is a high viscosity electrolyte that can slow down an analyte by a factor of ~200 [30]; b) 
an opposing hydraulic pressure field [31]; c) an enzyme ('unfoldase') to unfold the protein molecule before it enters 
into and thus slow its passage through [32] the pore; or d) ligands attached to the protein or the pore [33].
7)  The homopolymer problem of Section 3.3 has also been addressed with hardware. If  a single atom layer of 
graphene [34] or molybdenum sulphide (MoS2) [30] is used for the membrane, or a biological pore with a narrow 
constriction (MspA, CsgG) [35,36], or an adapter such as β-cyclodextrin in αHL [37], roughly one residue will be 
resident in the pore or its constriction or in the adapter during translocation. Software based on a Hidden Markov 
Model [26] or Viterbi algorithm [27] may also be used to computationally separate successive residues with near 
identical (binary-coded) blockade levels.
8) This approach also works if residue volume is replaced with residue mass. Following [1] the 20 amino acids are listed 
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here in array form ordered on mass:

AA =  {G,A,S,P,V,T,C,I,L,N,D,E,K,Q,M,H,F,R,Y,W}.

Table 3 shows their division into two subsets of sizes 11 and 9 (shown shaded by subset in the table). 

Table 3. Amino acids sorted by mass. AA = amino acid. Mass in dalton. Data based on [1]. 

AA G A S P V T C I L N

Mass 57.02 71.04 87.03 97.05 99.07 101.05 103.01 113.08 113.08 114.04

AA D E K Q M H F R Y W

Mass 115.03 128.06 128.09 129.04 131.04 137.06 147.07 156.1 163.06 186.08

The subsets are coded with the binary alphabet {1,2}:

S1 = {G,A,S,P,V,T,C,I,L,N: 57.02 ≤ mass ≤ 115.03} → 1 (4a)
S2 = {E,K,Q,M,H,F,R,Y,W: mass ≥ 128.06} → 2 (4b)

Similar to division by volume, the dividing line is chosen between D and E so that the two sets have roughly similar sizes 
(11 and 9) and the difference between the masses of D and E is relatively large. The primary sequences in the proteome are 
then recoded with the mapping given in Equation 4. This leads to a binary-mass-coded proteome sequence database 
(Supplementary File 3).
The procedure for generating residue-mass-based identifiers for the proteins of H. pylori is identical to Step 2 above. Fig. 
4 below is the mass counterpart of Fig. 3. In this case 1509 proteins have more than one subsequence identifier of length 
20, 15 one, 29 none, and 263 more than 40. As with binary-volume-coding, the identity of most proteins is redundantly 
encoded in the binary-mass-coded primary sequence. The data behind Fig. 4 are available in Supplementary File 4.

Fig. 4  Distribution of number of proteins vs number of protein identifying subsequences of length 20 based on residue 
mass in a protein in H. pylori (1553 sequences).

However, unlike residue volume, which translates to current blockade level in a nanopore, there is no similar measurable 
behavior for residue mass, which is central to MS. The extraordinary precision with which it is measured by mass 
spectrometry (MS) [38] in combination with machine language algorithms [39], allows proteins to be sequenced (not just 
identified) with a high level of confidence. This applies to de novo sequencing as well so proteins whose provenance is not 
known or those designed de novo can also be sequenced. An attempt is currently being made to determine if binary-coded 
residue mass is useful in MS-based studies of proteins, in particular those with post-translational modifications [40].

5. Conclusion
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Unlike most recent work in protein identification, which is usually aimed at identifying specific single proteins or 
their variants, the method proposed in this Letter can identify an arbitrary protein in a large set such as a proteome.  
The  availability  of  sub-nanopores  capable  of  measuring  residue  volumes  with  adequate  resolution  makes  the 
proposed method both feasible and practical. Reducing the number of current blockade levels to be measured from 
20 to two effectively removes a major obstacle to the use of nanopores for protein identification. All of this points to 
the near-term prospect of implementing an easy-to-use hand-held device that can identify and quantify proteins in 
mixtures while requiring minimal sample preparation without any proteolysis.

Note: The file format for Supplementary Files 1 and 2 is given in a preamble to the data. File format information for 
Supplementary Files 3 and 4 is not included, refer to Files 1 and 2 respectively.
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