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Abstract. Proteins  can  be  identified  by  partitioning  them  into  eight  mutually  exclusive  sets  of 
peptides, recoding them with a binary alphabet obtained by dividing the 20 amino acids into two 
ordered sets based on some measurable property of amino acids (for example, residue volume or 
mobility), and searching for the recoded peptides in a proteome sequence database. In principle over 
89.7% of the proteins in the human proteome (http://www.uniprot.org;  database id UP000005640, 
20207 curated sequences) can be uniquely identified with this approach. Potential  implementation 
issues are discussed. In particular, use of a nanopore to identify a residue based on the level of the 
blockade current, which is in part determined by residue volume, becomes less difficult as it requires 
the detection of only two, rather than 20, such levels.

1. Introduction
Protein fingerprinting is the process of identifying a protein from a subsequence by searching for the latter in a protein 

sequence database [1]. In the present report it is shown that in principle close to 90% of all proteins in the human proteome 
can  be  identified  from  peptide  subsequences  coded  with  a  binary  protein  alphabet.  The  proposed  procedure  can  be 
implemented in practice with available chemical procedures, this is discussed in Section 5 below.

2. A peptide partition
Consider peptide sequences of the form X1Z*X2, where X1 ϵ {λ,K}, X2 ϵ {λ,D,E,R}, Z is one of the remaining 16 residue 

types, Z* ≡ 0 or more occurrences of Z, and λ is the empty string. This leads to the peptide sequence partition P = {KZ*D, 
KZ*E, KZ*R, KZ*, Z*D, Z*E, Z*R, Z*}.

3. Amino acid partitions
The standard 20 amino acids may be ordered on a physical or chemical property such as volume, mass, charge, diffusion 

constant,  or mobility.  They may then be divided into 2 or more ordered subsets at fixed points along the ordering. For 
example, Table 1 shows them ordered on volume and grouped into two subsets. The dividing line is chosen between P and V 
so that the two subsets have nearly the same size and the difference between the volumes of P and V is substantial. (There are 
higher volume differences between Y and W and between G and A, but the resulting subset sizes are lopsided.) The amino 
acids can now be coded with a binary code: {G,A,S,C,D,T,N,P: 59.9 ≤ volume ≤ 123.3} → 1, {V,Q,E,H,I,L,M,K,R,F,Y,W: 
volume ≥ 138.8} → 2.

Table 1. Table of amino acids ranked by volume
AA = Amino acid; Volumes in 10-3 nm3. Background shading shows grouping of amino acids into 2 subsets. Data from [2].

AA G A S C D T N P V E

Mean volume 59.9 87.8 91.7 105.4 115.4 118.3 120.1 123.3 138.8 140.9

Standard deviation 2.2 2.3 1.8 5 2.2 2.3 4.1 1.8 3.6 5.3

AA Q H M I L K R F Y W

Mean volume 145.1 156.3 165.2 166.1 168 172.7 188.2 189.7 191.2 227.9

Standard deviation 5.1 6.1 1.8 3.4 4.3 5.9 9.6 7.4 8 3.8

4. Peptides that uniquely identify their parent proteins in the human proteome
Consider the human proteome database  UP000005640 at  http://www.uniprot.org. There are 20207 curated sequences in 

this database. Column 2 in Table 2 gives the number of peptides in each subset of the partitioned database (as defined in Section 
2). Let each protein sequence in the proteome and each peptide (subsequence) in each subset of the partition be recoded with the 
binary code given in Section 3. The number of proteins in the proteome that are identified by these recoded peptides in each 
partition  subset  is  computed  using  straightforward  search  methods  and  given  in  Column  3.  The  corresponding  protein 
identification efficiencies are given in Column 4. The total number of proteins that are uniquely identified by one or more 
peptides from the full partition  P is the union of the sets of proteins identified by peptides from the individual sets in the 
partition (Rows 2 through 9). The size of this union and the identification efficiency are given by the entries in Columns 3 and 4, 
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Row 10. The corresponding data for the full alphabet and for alphabets of sizes 3 and 4 are given in Columns 5 through 10 for  
comparison. (The 3-character alphabet is given by the following mapping: {G,A,S: 59.9 ≤ volume ≤ 91.7} → 1, {C,D,T,N,P: 
105.4 ≤ volume ≤ 123.3} → 2, {V,Q,E,H,I,L,M,K,R,F,Y,W: volume ≥ 138.8} → 3. The 4-character alphabet corresponds to a 
reduced volume-based alphabet used in a recent report on nanopore sequencing of proteins [3], see the last paragraph in Section 
5 below for more information on the work reported therein.)

Table 2. Protein identification efficiency with a binary alphabet for the human proteome (Uniprot database UP000005640; 
20207 manually curated sequences). Data for the full alphabet and for alphabets of size 3 and 4 included for comparison.

Subset 
of 

partiti
on

Total 
no. of 

peptides 
in 

subset

Binary alphabet Full alphabet Alphabet size 3 Alphabet size 4

No. of 
proteins 

identified 
(a)

Identifica
tion 

efficiency 
(b)

No. of 
proteins 

identified 
(a)

Identifica
tion 

efficiency 
(b)

No. of 
proteins 

identified 
(a)

Identifica
tion 

efficiency 
(b)

No. of 
proteins 

identified 
(a)

Identifica
tion 

efficiency 
(b)

KZ*R 139423 5196 25.67% 14247 70.51% 8265 40.83% 10060 49.78%

KZ*D 125351 4602 22.73% 12983 64.25% 7378 36.45% 9847 44.63%

KZ*E 194024 5171 25.54% 14304 70.79% 8400 41.50% 10185 50.40%

KZ* 189713 5143 25.41% 13736 67.98% 8128 40.15% 9832 48.65%

Z*R 499784 10356 51.16% 18305 90.59% 14183 70.06% 15770 78.04%

Z*D 411189 9117 45.04% 17691 87.55% 13031 64.37% 14700 72.74%

Z*E 609872 9932 49.06% 18254 90.34% 14078 69.55% 15690 77.64%

Z* 345450 9411 46.49% 18467 91.39% 13644 67.40% 15370 76.06%

P 2514806 18133 89.74% 19885 98.4% 19302 95.35% 19581 96.90%

(b) Protein identification efficiency (%) = Total number of proteins in proteome uniquely identified by the identifying peptides in column marked (a) * 
100/20207. P = union of all 8 subsets of the partition

5. Discussion
The most commonly used fingerprinting method relies on mass spectrometry [4]. More recently theoretical methods 

have been proposed based on optical or other labeling of selected residues. In these methods a protein is proteolytically 
cleaved into peptide fragments and selectively labeled with as many different dyes as the size of the reduced alphabet chosen. 
The labeled fragments are sequenced in one of two ways: 1) by pinning the fragments to a substrate, cleaving successive 
residues from a fragment by Edman degradation, and using a fluorescent readout to read the cleaved residues [5]; 2) using a 
protein translocase to pass the fragments through a nanochannel followed by Förster resonance energy transfer (FRET) to 
detect a labeled residue as it moves past the enzyme [6]. As few as 2 tagged residue types among the possible 20 may be 
sufficient to partially sequence a peptide; this partial sequence is then used to identify its parent protein by comparison with 
the set of protein sequences in a sequence database.

In contrast, no analyte immobilization or labeling of any kind is used in nanopore-based sequencing [7]. This is an 
electrical method based on the use of an electrolytic cell. It measures the current blockade that occurs when a single protein 
or peptide molecule passes through a nano-sized pore in a membrane under the influence of an electric field. The magnitude 
of the blockade due to a residue in the translocating peptide is assumed (as is done in [3]) to be a simple monotonic function 
of residue volume. Partitioned peptides may then be sequenced (partially, as in [5] and [6]) by determining which of two 
ordered groups of residue types (as defined in Section 3, for example) a peptide in the residue belongs to. This can be done 
by comparing the resulting drop in the current with two threshold values (which are set based on the definition of the binary 
alphabet in Section 3) and assigning one of two binary values to the output. This makes the process considerably simpler 
than it would be with the full alphabet of 20 characters. Additionally the sequencing device is significantly smaller than one 
based on fluorescent methods. As with most other nanopore-based sequencing approaches, the homopolymer problem, which 
arises from successive residues belonging to the same subset generating the same binary output value, needs to be addressed. 
With a thick (8-10 nm) biological or synthetic pore, multiple (typically 4 to 8) residues are resident in the pore at any time 
during translocation so that the boundary between two successive such values may be difficult to identify. The severity of the 
problem can be reduced by using a single atom layer of graphene [8] or molybdenum sulphide (MoS2) [9] for the membrane. 
In this case only one residue will be resident in the pore at any time during translocation. Alternatively an electrolytic cell 
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with a tandem pair of nanopores and an exopeptidase may be used [10]. Here the enzyme, which is situated below the first 
pore, cleaves successive residues from a peptide emerging from the first pore; the cleaved residues diffuse-drift through the 
second pore and cause distinct current blockades, one per residue; only one residue will be resident in the second pore at any 
time during translocation. Multiple discriminators, including the blockade level and the time of translocation through the 
second pore, are available with this approach. Software based on hidden Markov models can also be used to computationally 
separate successive residues with identical discriminator values [11]. Incidentally the work described in [9] also includes a 
workable solution to another problem in nanopore sequencing, namely the high speed with which a peptide translocates 
through the pore, which makes it difficult for a detector with insufficient bandwidth to detect changes in the blockade current 
level.

Additional information is available in [12] on potential implementation procedures, including peptide partitioning of 
proteins based on sequential proteolysis, the use of isoelectric focusing (IEF) to separate partition subsets, and the use of 
single molecule methods (including nanopores and flurorescent tagging) for sequencing of partitioned subsequences. Also 
see [3] for recent work on nanopore-based sequencing of proteins in which the 20 amino acids are divided into four subsets 
labeled  Minuscule,  Small,  Intermediate, and  Large; the labels are descriptive of the volume excluded in the pore by the 
corresponding residue in the protein as it translocates through the pore. The level of the measured signal is mapped to one of 
these four subsets and the resulting peptide encoded with the 4-character alphabet {M, S, I, L}, following which a search is 
done for the recoded peptide in the proteome database to obtain the identity of the parent protein.

References
[1] M.A. Baldwin, “Protein identification by mass spectrometry”,  Mol. & Cellular Proteomics, 3, 1-9, 2004.
[2] S. J. Perkins, “Protein volumes and hydration effects”, Eur. J. Biochem., 157, 169-180, 1986.
[3] M. Kolmogorov, E. Kennedy, Z. Dong, G. Timp, and P. Pevzner. “Single-molecule protein identification by sub-nanopore 
sensors”, arXiv, 1604.02270v1 [q-bio.QM], 8 April 2016.
[4] E. M. Marcotte, “How do shotgun proteomics algorithms identify proteins?”, Nature Biotech., 25, 755-757, 2007.
[5] J. Swaminathan, A. A. Boulgakov, E. M. Marcotte, “A theoretical justification for single molecule peptide sequencing”, 
PLoS Comput. Biol., 11, e1004080, 2015.
[6] Y. Yao, M. Docter, J. van Ginkel, D de Ridder, and C. Joo, “Single-molecule protein sequencing through fingerprinting: 
computational assessment”, Phys. Biol., 12, 055003, 2015.
[7] D. Wu, S. Bi, L. Zhang, and J. Yang. “Single-molecule study of proteins by biological nanopore sensors”,  Sensors 14, 
18211-18222, 2014.
[8] M. Drndic, “Sequencing with graphene pores”, Nature Nanotech., 9, 743, 2014.
[9]  J.  Feng,  K.  Liu,  R.  D.  Bulushev,  S.  Khlybov,  D.  Dumcenco,  A.  Kis,  and  A.  Radenovic.  “Identification  of  single 
nucleotides in MoS2 nanopores”, Nature Nanotech., 21 September 2015, doi: 10.1038/nnano.2015.219.
[10] G. Sampath, “Amino acid discrimination in a nanopore and the feasibility of sequencing peptides with a tandem cell and 
exopeptidase”, RSC Adv., 5, 30694-30700, 2015.
[11] J. Schreiber and K. Karplus, “Analysis of nanopore data using hidden Markov models”, Bioinformatics 31, 1897–1903, 
2015.
[12]  G.  Sampath,  “Peptide  sequence  partitions  and  protein  identification:  a  computational  analysis”,  biorxiv.org, 
10.1101/069526, 15 August 2016.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/119313doi: bioRxiv preprint 

https://doi.org/10.1101/119313
http://creativecommons.org/licenses/by-nc-nd/4.0/

