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Abstract 
 
Background: DNA-methylation changes at a discrete set of sites in the human 
genome are predictive of chronological and biological age. However, it is not known 
whether these changes are causative or a consequence of an underlying ageing 
process. It has also not been shown whether this ‘epigenetic clock’ is unique to 
humans or conserved in the more experimentally tractable mouse.  
 
Results: We have generated a comprehensive set of genome-scale base-resolution 
methylation maps from multiple mouse tissues spanning a wide range of ages. Many 
CpG sites show significant tissue-independent correlations with age and allowed us to 
develop a multi-tissue predictor of age in the mouse. Our model, which estimates age 
based on DNA methylation at 329 unique CpG sites, has a median absolute error of 
3.33 weeks, and has similar properties to the recently described human epigenetic 
clock. Using publicly available datasets, we find that the mouse clock is accurate 
enough to measure effects on biological age, including in the context of interventions. 
While females and males show no significant differences in predicted DNA 
methylation age, ovariectomy results in significant age acceleration in females. 
Furthermore, we identify significant differences in age-acceleration dependent on the 
lipid content of the offspring diet. 
 
Conclusions: Here we identify and characterize an epigenetic predictor of age in 
mice, the mouse epigenetic clock. This clock will be instrumental for understanding 
the biology of ageing and will allow modulation of its ticking rate and resetting the 
clock in vivo to study the impact on biological age. 
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Background 
 
Ageing describes the progressive decline in cellular, tissue and organismal function 
during life, which ultimately drives age-related diseases and limits lifespan [1]. From 
a biological perspective, ageing is associated with numerous changes at the cellular 
and molecular level [2], including epigenetic changes, that is modifications of DNA 
or chromatin that do not change the primary nucleotide sequence. At present it is not 
clear which epigenetic changes are causative or correlative, but these mechanisms are 
of particular interest due to their reversibility, suggesting that rejuvenation might be 
possible at least in principle [3,4].  
 
Recently, age-correlated DNA methylation changes at discrete sets of CpGs in the 
human genome have been identified and used to predict age [5-7]. These ‘epigenetic 
clocks’ can estimate the DNA methylation age in specific tissues [5] or tissue-
independently [6] and can predict mortality [8] and time to death [9]. These findings 
have sparked intense interest regarding the role of DNA methylation in the ageing 
process and also opened up a number of key questions. Interestingly, while initially 
designed to predict chronological age, there is evidence that the epigenetic age also 
reflects biological age and is predictive of functional decline [10-22]. This suggests 
that the observed methylation signatures might be caused by an intrinsic biological 
ageing process. One suggestion has been that the methylation clock “measures the 
cumulative effect of an epigenetic maintenance system” [6], a system that is of critical 
importance and regulated at multiple levels [23,24]. As such, further insights into the 
mechanistic properties of this underlying process are of key relevance to understand 
ageing in more detail and will also be instrumental for the design of future 
interventions. Consequently, a methylation clock that is applicable to animal models 
more amenable to experimental interventions would be of considerable importance.  
 
Importantly, while a very small number of age-correlated methylation changes at 
selected sites in the mouse genome have been reported [25], it is not known whether 
such an epigenetic ageing clock is conserved between species or a unique property of 
humans and some closely related primates [6]. Given the general occurrence of the 
ageing process across the animal kingdom [1], differences in the mechanistic 
properties of such a clock could explain differences in median lifespan between 
closely related species. Here we have generated high-resolution methylomes from the 
experimentally tractable mouse across a wide range of tissues and ages. We find that 
discrete DNA methylation changes correlate with chronological age and are 
associated with biological functions. Based on these findings, we generated a multi-
tissue age predictor for the mouse, characterized its properties, and demonstrate that it 
can be applied to inform other studies by applying it to publicly available datasets, 
including key biological interventions.  
 

Results and discussion 
 
DNA methylation changes in mice correlating with age 
 
In order to study age associated DNA methylation changes in the mouse over a wide 
range of ages and tissues, we collected liver, lung, heart, and brain (cortex) samples 
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from newborn to 41 week-old mice (Figure 1A). To reduce genetic variability and 
hormonal variations, we restricted our cohort to male C57BL/6-BABR mice and 
sampled 3-5 animals per time point. In total we collected 62 samples (Additional 
File 1) and extracted genomic DNA for methylation analysis from them. 
 
We generated Reduced Representation Bisulphite Sequencing (RRBS) libraries of all 
samples to be able to assess DNA methylation changes at a wide range of CpG sites 
and sequenced these to 15x genomic coverage on average. RRBS represents a good 
compromise between sequencing costs, CpG sites measured and fold genomic 
coverage obtained. To improve the quantification results, we optimised the standard 
RRBS library preparation protocol [26] and were able to achieve very low duplication 
rates and high genomic coverage. On average more than 1.23 million CpG sites in 
each sample were covered at least 5 fold and of these 0.73 million CpG sites had >5 
fold coverage in all samples analysed. Global CpG methylation levels in newborns 
were around 43% and did not differ significantly between tissues. In the older 
samples, average methylation levels were slightly higher (~45%) but did not show 
major differences between ages or tissues (Additional File 2A). Global methylation 
levels measured by RRBS are generally lower than whole genome bisulfite 
sequencing estimates, as the method enriches for hypomethylated CpG islands (CGIs) 
[26]. We also observed low levels of non-CG methylation in all non-brain tissues 
(Additional File 2B). In agreement with the notion that de novo methylation activity 
in non-dividing cells results in accumulation of CHH methylation, we found that adult 
cortex samples had higher CHH methylation levels than newborn cortex samples [27]. 
Together our samples represent the most comprehensive dataset thus far of matched 
single base resolution methylomes in mice across multiple tissues and ages. 
Importantly, a hierarchical clustering analysis using Manhattan distances (Additional 
File 2C) clearly separated the samples by tissue (with the exception of newborn lung 
samples which clustered together with adult heart samples), highlighting key tissue 
specific methylation signatures [28]. 
 
A correlation analysis showed that DNA methylation at a substantial number of CpG 
sites across all tissues correlated with age (Spearman’s correlation, with a multiple 
testing corrected p-value < 0.05) (Figures 1B and C). As expected, the majority of 
these sites showed age-correlated methylation changes in all or at least 3 tissues 
(Additional File 2D), suggesting that age-dependent DNA methylation changes at 
specific sites occur in a coordinated manner across tissues. The correlation values 
between age and DNA methylation at discrete CpG sites were both positive and 
negative and normally distributed (Figure 1D). Overall we identified more positive 
correlations, but this skewing is likely to be the result of the slight global 
hypomethylation in the newborn samples and represents the general tendency for gain 
of DNA methylation during development.  
 
To understand whether the underlying sequence composition or genomic context was 
relevant to the changes observed, we analysed CpG density (Bonferroni corrected 
two-tailed t-test, p-value<0.05) and genomic context (Binomial test, p-value<0.05) at 
the significantly correlating sites. While CpGs changing DNA methylation with age 
were on average in regions with higher CpG density (lower CpG scarcity), the CpG 
density was not predictive of the methylation changes (AUC = 0.58 or 0.61; see 
Materials and Methods for details) (Figure 1E). We also found a strong depletion of 
sites with significant correlations with age at CGIs and CGI rich promoters and 
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conversely a strong increase at CGI-shores and CGI-shelves (4 kb around CGIs) 
(Figure 1F). This indicates that tightly controlled regulatory regions, such as CGIs, 
are relatively protected from age associated DNA methylation changes, while regions 
with intermediate CG density are more prone to changes. A Gene Ontology (GO) 
analysis of the genes closest (max 4 kb distance) to CpGs with highly significant 
positive age-dependent changes in DNA methylation revealed a significant 
enrichment of genes associated with the terms “anatomical structure morphogenesis”, 
“anatomical structure development” and “developmental process” (Figure 1G). Genes 
close to sites with significant negative age related correlations were enriched in terms 
containing nucleotide and enzyme binding. These results suggest that the age-related 
changes in DNA methylation could alter various important biological processes and 
future experiments may reveal the regulatory relevance and association with gene 
expression. In particular, increased DNA methylation at developmentally relevant 
genes suggests that the ageing process may restrict expression of developmental 
genes. 
 
We next analysed age-correlations in each tissue independently and identified a large 
number of sites, which showed exclusively tissue specific changes in DNA 
methylation with age (Figure 1H and Additional File 2E). Interestingly, only a small 
fraction of these were shared between 3 or more tissues, indicating that additional 
age-related DNA methylation changes are characteristic for each tissue and might 
relate to its intrinsic biological function (Additional File 2F). In particular, GO 
analysis of genes close to the sites with tissue specific changes revealed highly 
different GO term enrichments, indicating their unique tissue specific regulation. 
 
The marked differences between the global methylation levels of newborn and adult 
samples (Additional File 2A) prompted us to also analyse the datasets excluding 
newborn samples (Additional File 3). A number of sites showed a reversed 
directionality of age-dependent methylation changes if we excluded the newborn 
samples from the analysis (highlighted in pink and green; Additional File 3A and B), 
however the majority of sites (highlighted in blue and orange/red) showed the same 
correlation characteristics independent of the inclusion or exclusion of newborn 
samples (Additional File 3C). The correlations between age and DNA methylation in 
the adult datasets were both positive and negative and the correlation values were 
normally distributed (Additional File 3D), but none of the correlations were 
significant (Additional File 3E; Spearman’s correlation, with a multiple testing 
corrected p-value cut-off of < 0.05). Although the analysis was based on all tissues, 
only a small number of the age-correlated methylation changes in the adult samples 
were common to all tissues (p<0.005; Additional File 3F). A subsequent analysis of 
age-correlations in each tissue independently identified a large number of tissue 
specific methylation changes (p<0.005; Additional File 3G and H), suggesting that 
changes in DNA methylation in adults are primarily driven by tissue specific 
processes, while tissue-independent methylation changes are associated with global 
developmental processes (Figure 1G). 
 
DNA methylation levels at a discrete set of CpGs are predictive of age 
 
Having found that methylation at many individual CpG sites did change in an age-
dependent manner we decided to generate an epigenetic age predictor in mice 
(Figure 2A). In addition to our own datasets, we also included previously published 
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datasets comprised of RRBS libraries from liver, lung, muscle, spleen, and cerebellum 
samples from male and female C57BL/6 mice aged newborn to 31 weeks [29-32]. A 
description of these datasets can be found in Additional File 4. In short, 129 healthy 
samples were used to define the training set, with the remaining 189 making up an 
independent test set, including two datasets that were generated by different labs and 
hence experimentally independent from the datasets used to train the model. All 
samples were processed as described in the Materials and Methods. We excluded 
CpGs located on either of the sex chromosomes or in the mitochondrial genome prior 
to further processing and analysis. 
 
We used an elastic-net regression model to predict log-transformed chronological age, 
measured in days. Only CpG sites covered by least 5 reads in all samples were used 
(~18k sites; see Material and Methods for details). Following cross-validation to 
optimise the model parameters, the final predictor was based on 329 CpG sites 
(Additional File 5A & Additional File 6); the sites in this predictor will be referred to 
as mouse (multi-tissue) clock sites. The model selects the most informative sites but 
allows for some redundancy to increase robustness, and it infers weights for each 
individual site [33]. The model weights across sites are depicted in Additional File 
5B. One implication of this approach is that the clock sites do not necessarily 
represent the strongest age-correlating sites characterised above (Figure 2B). Similar 
to the human age predictor described by Hannum et al. [5], the initial starting 
methylation levels of the mouse clock sites are somewhat predictive of the 
directionality of their methylation changes with age (Additional File 5C). 
 
As expected, the exponent of the weighted average of the DNA methylation levels of 
the 329 selected CpG sites was highly correlated with (chronological) age of the 
individual samples within the training dataset (Figure 2C). Notably, using unobserved 
test samples, our mouse epigenetic clock was able to accurately predict chronological 
age in various tissues (Figure 2D) and across multiple independent datasets 
(Additional File 7A). The accuracy of the model predictions were also independent of 
sequencing depth of the test samples (Additional File 7B), provided a mean coverage 
per CpG site of 5 reads or more. This indicates that minor technical variations and 
coverage differences are well tolerated, and consequently our mouse epigenetic clock 
model can be applied to a wide range of different settings. This was evident by the 
fact that the predictor was able to accurately estimate age in two completely 
independent test datasets [31,32] (Additional File 7C).  
 
The mouse clock performed well across all tissues and ages tested, with an age 
correlation of 0.839 and median absolute error (MAE) of 3.33 weeks in the test data 
(Figure 2D and E), corresponding to less than 8.5% error relative to the oldest ages 
(41 weeks) analysed. In order to compare the accuracy with the human epigenetic 
clock [6], we calculated the MAE as a proportion of the expected lifespan of a mouse 
(>100 weeks) and found it to be similar to that reported for the human clock 
(assuming an average human lifespan of 85 years). Noteworthy, similar to the human 
clock, the performance of our mouse age-predictor varied between young and old 
mice. In young animals (<20 weeks) the model-predictions were much more accurate, 
with a MAE of 2.14 weeks in the test samples. In mice aged 20 weeks or older, the 
MAE was 4.66 weeks (Additional File 7D). We also attempted to include publicly 
available whole genome bisulphite sequencing datasets (WGBS), including samples 
from 24 month old animals [34], to test our age predictor at older ages. Unfortunately, 
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the sequencing depth in most WGBS dataset is significantly lower than in RRBS 
datasets (mean coverage <5 fold), thus precluding their analysis. It is expected that 
future high coverage datasets will help to further improve the accuracy of the mouse 
clock and test its performance at older ages. 
 
To get further insights into the architecture of our multi-tissue age predictor, we 
performed a principal component analysis (PCA) of the variation within the 329 
selected sites in the training datasets. Ninety percent of the observed variability was 
explained by 69 principal components (PCs) (Additional File 7E), of which 2 PCs 
(PC1 and PC13) displayed a clear age relation (p<0.05). PC1 captured age-dependent 
changes and showed a good separation of samples by age; PC2 separated liver 
samples from the other tissue samples (Figure 2F and Additional File 7F). This 
analysis highlights that the major variation within the selected CpG sites in the 
training set is governed by numerous factors, including tissue type and age. However, 
dataset effects (i.e. technical variations) are not among the major drivers of variation. 
 
Next, we characterized the clock sites in more detail. The CpG sites were distributed 
across all autosomes with no specific enrichment in any chromosome (Additional 
File 8A). Similarly to the age-correlated CpG sites, we found a strong depletion over 
CGIs and CGI promoters but also over non-CGI promoters (Additional File 8B), 
suggesting that the clock sites were specifically depleted in regulatory regions. CGI 
shores and intergenic regions showed increased enrichment in clock sites, whereas the 
CpG density around the clock sites did not show any differences compared to other 
random CpG sites (Additional File 8C). The 329 clock sites did also not show any 
specific GO enrichment (not shown), suggesting that the sites selected by the model 
might not represent a unique biological function and are instead associated with 
various biological functions.  
 
 
Age predictions using the human clock sites in mouse 
 
Given the similarities between our mouse epigenetic age predictor and the previously 
described human epigenetic clock [6], we asked whether the specific genomic loci 
described in human could be used to predict age in mouse samples too. First, we 
attempted to lift-over the genomic locations of the 353 human clock sites to the 
mouse, by defining regions +/- 500bp around the sites. We were able to lift-over 328 
regions, of which 175 regions (in the following referred to as “Horvath clock regions 
in mouse”) were covered by at least one CpG site in our dataset. Methylation levels at 
these 175 Horvath clock regions in mouse were only weakly correlated with age 
(Additional File 9A), which is also true for the Horvath clock sites in human [6]. 
 
Next, we assessed whether the 175 Horvath clock regions in mouse could be used for 
age prediction. Using a ridge model, we were able to generate an age prediction 
model with a MAE of 11.2 weeks (Figure 3), indicating that the methylation levels at 
the 175 Horvath clock regions in mouse contain age-related information and are 
predictive of age in the mouse. The directionality of the mouse-specific and human-
specific weighting for any individual CG site within the Horvath clock regions in 
mouse were completely unrelated (Additional File 9B), suggesting that the human 
clock [6] is not fully conserved in mouse. Noteworthy, we found that we could also 
generate age prediction models from matched random regions (see Materials and 
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Methods for details) with an average MAE of 10.6 weeks (Figure 3), highlighting the 
fact that methylation changes in many genomic regions are age-related and potentially 
predictive. 
 
In summary, the predictive accuracy of the sites corresponding to the human clock in 
mouse samples was significantly lower than our mouse epigenetic clock. These 
differences are in part due to technical differences in defining the clock sites, but do 
also highlight species-specific differences, which result in different age-dependent 
methylation changes at discrete loci and might point to different “ticking” rates of 
human and mouse ageing.  
 
DNA methylation age is altered in ovariectomised females and by diet 
 
Given the accuracy of our mouse epigenetic clock to predict chronological age in 
healthy individuals, we asked whether epigenetic age in the mouse would be affected 
by gender, diet or other biological interventions. Since it has been reported that DNA 
methylation shows gender specific patterns [30], we compared the predicted DNA 
methylation age of female and male mice. Although the training data were 
predominantly composed of male samples (>72%), we did not find significant 
differences in the estimated ages between sexes (Figure 4A and Additional File 10), 
highlighting the robustness of the model and showing that gender specific differences 
are not skewing the predictions of the mouse epigenetic clock.  
 
We next analysed publicly available RRBS datasets of samples with various 
biological interventions [29,30]. Overall the epigenetic age predictions were well 
related to the true chronological age of the individual mice (Figure 4B), but at closer 
inspection we identified important differences, which depended on treatment.  
 
Reizel et al. performed ovariectomy in females, treated the mice with testosterone (5 
mg/mL) or vehicle [30] and analysed their liver DNA methylome by RRBS. 
Ovariectomy decreases average lifespan in female rats [35], and indeed we found that 
ovariectomy increased epigenetic age significantly in mice (Figure 4C). Additional 
testosterone or vehicle treatment had no significant effect on the epigenetic age, and 
was also shown to not alter lifespan in rats [35]. This suggests that hormonal 
differences in mice affect ‘biological age’, as measured by our mouse epigenetic 
clock; similarly in humans breast tissue is found to have accelerated epigenetic ageing 
[6].  
 
In a 2nd study Cannon et al. [29] characterized the effects of lipid content in maternal 
and offspring diet on body weight, physiology and DNA methylation status in the 
liver and reported a significant effect of maternal diet on the susceptibility of the 
offspring to become obese and develop signs of metabolic disease. The greatest 
adverse effects were observed when the mothers were fed a low fat diet and the 
offspring a high fat one. By applying our mouse epigenetic clock to these liver 
samples, we identified a strong dependency of the predicted epigenetic age on 
offspring diet (Figure 4D). Offspring on a high fat diet showed accelerated epigenetic 
ageing, which had a tendency to be further exacerbated if the mothers were fed a low 
fat diet. This result suggests that biological ageing is modulated by diet and possibly 
inter- or transgenerational effects and that epigenetic age is a potential powerful 
measure of biological function. 
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Conclusions 
 
In this study, we have generated the thus far most comprehensive set of matched 
single base resolution methylomes in mice across multiple tissues and ages. This 
resource allowed us to study the correlation between DNA methylation changes and 
ageing in detail. Importantly, we were able to establish, for the first time, a mouse 
epigenetic clock, which estimates age based on the methylation state at 329 discrete 
CG sites throughout the mouse genome. Our novel epigenetic clock is performing 
similar to the human epigenetic clock and allowed us to assess (epigenetic) age in 
unrelated methylation datasets. Noteworthy, the 329 sites of our mouse epigenetic 
clock perform significantly better in predicting age in mouse samples than the sites in 
the mouse genome corresponding to the human Horvath clock sites. So far our 
epigenetic clock has been developed and tested from tissue samples up to 41 weeks of 
age and future experiments and datasets will be required to assess its accuracy in 
older mice. The epigenetic clock and the comprehensive set of methylomes are 
available to the ageing research community and will enable mechanistic and 
intervention studies in the experimentally tractable mouse model system.  
 
Importantly, we found that the mouse methylation clock is affected by biological 
interventions, and as such we suggest that the prediction of the clock reflects not only 
chronological age but also biological age. It will be exciting to test the consequences 
of manipulations of the ticking rate of the epigenetic clock on biological function, in 
particular the possible reversibility of ageing associated functional decline. We 
believe that this work will help scientists gain insights into the biology of ageing and 
potentially help to discover novel strategies to extend life- and health span in the 
future.  
 

Materials and Methods  
 
Sample collection - Babraham dataset 
C57BL/6-BABR male mice were kept under standard conditions in the Babraham 
Animal Facility. Cortex, heart, liver and lung samples were collected at 4 different 
ages: newborn (<1 week), 14 weeks, 27 weeks and 41 weeks. All tissues were snap 
frozen directly after isolation. Genomic DNA was isolated from ~10 mg frozen tissue 
using the DNeasy Blood & Tissue Kit (Qiagen). A total of 62 samples were collected, 
processed and further analysed. The resulting dataset are referred here to as Babraham 
dataset. 
 
Library preparation 
RRBS libraries were prepared from isolated DNA following published protocols [36]. 
Briefly, RRBS libraries were prepared by MspI digestion of 100 – 500 ng genomic 
DNA, followed by end-repair and T-tailing using Klenow Exo- (Fermentas). Adapter 
ligation was performed overnight (homemade adapters) using T4 DNA Ligase (NEB), 
followed by a cleanup step using AMPure XP beads (Agencourt, 0.9x). Subsequently, 
libraries were bisulfite treated according to the manufactures instructions (Sigma 
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Imprint Kit; 2 step protocol) and purified using an automated liquid handling robotic 
system (Agilent Bravo). The libraries were amplified using KAPA HiFi Uracil 
HotStart DNA Polymerase (KAPA Biosystems), indexing the samples with individual 
primers. All amplified libraries were purified (AMPure XP beads, 0.8x) and assessed 
for quality and quantity using High-Sensitivity DNA chips on the Agilent 
Bioanalyzer. High-throughput sequencing of all libraries was carried out with a 75 bp 
paired-end protocol on a HiSeq 2000 instrument (Illumina). 
 
Methylation data processing 
For datasets generated in this study, raw paired-end FastQ files were pre-processed to 
remove the first 13 bp from their 5’ ends, containing unique molecular identifiers 
(UMI) sequence tags. Both Read 1 and Read 2 UMIs and fixed sequences were 
written into the read IDs. These trimmed reads were then subjected to adapter and 
quality trimming with Trim Galore 
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/; v0.4.2; options: --
paired --three_prime_clip_R1 15 --three_prime_clip_R2 15, to also remove potential 
UMI and fixed tag sequences from the 3’ ends). The trimmed files were then aligned 
to the mouse genome (GRCm38) using Bismark [37]; v0.16.3, default parameters). 
The mapped sequences were deduplicated by chromosomal position as well as the 
UMI sequences of both Read 1 and Read 2 (no mismatches tolerated) using the tool 
UmiBam (https://github.com/FelixKrueger/Umi-Grinder; v0.0.1; options: --bam --
dual_umi). These UMI-deduplicated BAM files were then further processed with the 
Bismark Methylation Extractor (default parameters) to yield Bismark coverage files. 
 
Calling of methylation at single CG sites 
Mean methylation levels of each CG site covered in each sample were calculated 
from the Bismark coverage files. In addition, a read count was conducted for each CG 
site in each sample, so that filtering could be done based on this information in 
downstream analysis. 
 
Statistical analysis of age association at single CG sites 
For the statistical analysis presented in Figure 1, we first filtered site that had a mean 
coverage of less than 2 reads or more than 100 reads. This was done to remove 
spurious reads from library preparation and potential mapping artefacts. For the 
remaining sites any site that was covered with less than 5 reads in a sample was 
replaced with NA. Before calculating age association, we further filtered for sites, 
such that the sites were at least covered in 90% of samples (n = 1,921,569). Ages in 
days were used when computing the Spearman correlation for each site using the R 
implementation of the Spearman correlation and multiple testing correction was 
performed using the Q-value package [38]. For the tissue-specific analysis, a further 
filtering step was conducted to ensure that there were at least 4 samples being 
considered for each correlation test. For data exploration we used PCA analysis, on 
sites (n = 729,785), which were covered in all samples at 5x.  
 
Predicting significance of age relation based on CpG density 
To assess if CpG density is predictive of the methylation age relations we tried to 
predict if a relation between age and methylation level would be significant based on 
CpG density. To do so we used CpG density as a linear predictor using multiple 
thresholds to predict if a methylation age relation would be significant or not using 
the AUC function for the pROC library [39].  
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Genomic enrichment analysis of significant age-associated sites 
Normalised likelihood was calculated as: 
 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑,𝑎𝑡 𝑥 =
s
𝑏×

𝐵
𝑆 − 1 

where: 
s= number of significant sites at a given x 
S = total number of significant sites 
b = number of background sites at a given x 
B = total number of background sites 
 
CG scarcity 
CG scarcity was calculated as: 
 

𝐶𝐺 𝑠𝑐𝑎𝑟𝑐𝑖𝑡𝑦 =
200

𝑛𝑜. 𝑜𝑓 𝐶𝐺 𝑠𝑖𝑡𝑒𝑠 𝑤𝑖𝑡𝑖𝑛 𝑎 200𝑏𝑝, 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑜𝑛 𝑎 𝐶𝐺 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 

 
GO analysis of neighbouring genes 
Neighbouring genes were defined for single CG sites that were within 4 kb of a gene. 
GO terms were defined using the gprofiler online software [40]. For the GO 
enrichment analysis a background gene list was made consisting of the neighbouring 
genes (max distance of 4 kb) for all sites considered in that analysis. Significant GO 
terms were ordered by p-value, and the top 6 GO terms are shown. 
 
Human-comparative analysis 
We defined 1 kb windows around the 21k CpG sites that are interrogated in both the 
27k and 450k MethylArray [6], to ensure that the sites could be faithfully lifted-over. 
These sites were then lifted-over from the human genome to the corresponding 
regions in the mouse genome (GRCm38). In particular, 91% of the sites selected by 
Horvath [6] for the human clock were successfully lifted, i.e. 329 of 353. To be able 
to contrast the human Horvath clock sites [6] to other sites in the mouse genome we 
chose to use all ~21k sites, of which we were able to lift-over 19k regions. 175 
regions corresponding to the 353 clock sites and 10k regions corresponding to all 
~21k sites were covered in the Babraham dataset. Adding additional datasets (e.g. 
Reizel et al. [30]) reduced the number of regions covered dramatically.  
Using these sites, we first assessed the age association by comparing the correlation to 
age in the Horvath clock regions verses random selections of all lifted-over regions. 
After this we built an age prediction model based on the 175 covered regions 
corresponding to the Horvath clock sites. For this we built a ridge model as 
implemented in glmnet, by fixing the alpha parameter to 0. The predictor reaches a 
MAE of 11.2 weeks. To compare this to background, we built a thousand random 
models, picking a random set of 329 regions, regardless of coverage, from the 19k 
regions we could lift over. The average MAE was 10.65 weeks in these random 
models.  
 
Predicting age in mice 
 
Dataset overview (see Additional File 1) 
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For defining a more generalizable age predictor, we included four additional external 
RRBS datasets, which were downloaded from the GeneExpressionOmnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/): Reizel et al. [30] (GSE60012; n=173); 
Cannon et al. [29] (GSE52266; n=40); Zhang et al. [31] (GSE80761; n=4); and 
Schillebeeckx et al. [32] (GSE45361; n=23). The datasets were processed in the 
following manner: Raw FastQ files were trimmed with Trim Galore (v0.4.2; 
parameters: --rrbs) and then aligned to the mouse genome (GRCm38) with Bismark 
(v0.16.3; default parameters). The aligned BAM files did not undergo deduplication 
but were processed directly with the Bismark Methylation Extractor (default 
parameters) to yield Bismark coverage files. 
 
In the following sections a short description of the dataset is given. 
 
Reizel et al. [30] 
The Reizel study consists of 173 samples originating from four different tissues: liver, 
muscle, cerebellum and spleen and data were collected at six time points ranging from 
1 to 31 weeks. In the original study gender and tissue specificity of demethylation 
during ageing has been studied. In the study a perturbation based on castration and 
restoring testosterone levels after castration has been performed. For the development 
of the methylation clock the perturbations were not taken into the training, these were 
left for the test-set. Further information can be found in Additional File 1 and the 
original publication. After QC there were 143 samples left. 
 
Cannon et al. [29] 
The Cannon study consists of 40 samples all originating from liver at the age of nine 
weeks. In the original study the effect of maternal diet on the metabolism of adult 
offspring was studied. In our study we selected part of the data to be in our training 
set to reflect the nine-week time point (n=5). The other part of the data is used to 
assess the effect of diet on ageing. Further information can be found in Additional 
File 1 and the original publication. After QC there were 36 samples left. 
 
Zhang et al. [31] 
The Zhang study consists of 4 samples all originating from liver at the age between 6 
and 8 weeks. In the original study methylation differences between different strains of 
mice, and the difference between mouse and zebrafish DNA-methylation levels are 
assessed. In our study these samples were used as a validation to see how the 
predictor works for an unobserved time-point. The age of these mice has been set to 7 
weeks in our study. Further information can be found in Additional File 1 and the 
original publication. After QC there were 4 samples left. 
 
Schillebeeckx [32] 
The Schillebeeckx study consists of 23 samples all originating from the liver, the 
adrenal gland and from endometrial cancer. The mice were ovariectomized at the age 
of 3 to 4 weeks, samples were collected after an additional 3 months.  In the original 
study a laser capture microdissection RRBS method was introduced. For our study we 
selected the liver samples, which were generated using normal RRBS, and after QC 3 
samples were left. In our study these samples were used as a validation to see how the 
predictor works for an unobserved time-point. The age of these mice has been set to 
16 weeks in our study. Further information can be found in Additional File 1 and the 
original publication. 
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Age prediction 
To predict the mouse age, we adopted a similar approach to those utilised in human 
studies [5,6], namely an elastic-net regression model. Firstly, we intersected the sites, 
which were available with more than 5-fold coverage in all training and test samples 
used, totalling to 17,992 sites. By selection of the sites available in all datasets we 
hope to have selected a set of methylation sites, which will be present in most RRBS 
studies, irrespective of size selection and data handling. In addition, we filtered out 
both sex chromosomes (X and Y) and the mitochondrial genome to ensure that the 
model would not be sex-specific nor hampered by the unreliability of mitochondrial 
genome bisulfite conversion. After selection of the sites and samples, we have used a 
quantile normalization to normalize the methylation values, followed by a 
standardization, putting the mean methylation per site to 0 and the standard deviation 
to 1. 
 
For the predictor we used the elastic-net generalized linear model as implemented in 
the GLMNET package [33]. To optimize the alpha, defining the elastic net mixing 
parameter (1 for lasso to 0 for ridge) and to optimize the lambda, the regularization 
parameter, we used a double-loop cross-validation set-up. This setup is described in 
Ronde et al. [41]. We have trained the model to predict the log transformed mouse 
age (in weeks); 3 weeks were added before the log transforming the ages, to be able to 
predict samples pre-birth. 
  
For the training set we selected 129 healthy samples from the Babraham, Reizel and 
Cannon study, sample details are in Additional File 4. By using an internal 10 fold 
cross-validation, in the inner loop the optimal alpha (0.05) and optimal lambda (0.93) 
were identified. In the outer loop the actual performance of the predictor was scored 
(as assessed by the mean squared error). After the cross-validation in the training we 
built the final model on all 129 samples to get our final model. To get to our final 
model we have taken the beta’s as derived from GLMNET for the selected sites (329) 
and trained a quadratic function using the nls function in R to transform the raw 
prediction scores (sum of the product of the beta weights multiplied by their 
respective methylation level) to the log age in weeks. The final function used is:  
 

𝑙𝑜𝑔(𝑎𝑔𝑒) =  0.1207𝑥! + 1.2424𝑥 + 2.5440 
 

where x is the summed beta score per sample. 
 
A set of healthy and treated samples, originating from the same three studies, and the 
Schillebeeckx and Zhang study were used to assess the usability of the final model. 
The MAE of the prediction was found to be 3.33 weeks. Furthermore, the model has 
been used to assess the influence of diet on the methylation age, using the Cannon 
training samples and the influence of male and female castration on the methylation 
age.  
 
MouseEpigeneticClock GitHub project: 
To predict methylation age from new samples we have generated an easy to use R 
project and deposited it as a GitHub project: 
https://github.com/EpigenomeClock/MouseEpigeneticClock 
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Figure Legends 
 
Figure 1: DNA methylation changes correlate with age 
(A) Overview of the Babraham dataset. Tissues (liver, lung, heart and cortex) were 
isolated from mice at 4 distinct time points (newborn, 14 weeks, 27 weeks and 41 
weeks). DNA was isolated from these tissues and reduced-representation bisulfite 
(RRBS) libraries made. 
(B) Heatmap of the top 500 tissue independent age-associated correlations. 
Highlighted are ages and tissues, CG sites were clustered by Euclidean distance.  
(C) Single CG sites within the genome are correlated with age. Shown is an example 
site (chr8:120397660), with a Spearman correlation with age of 0.65. Tissues are 
highlighted by colour. Jitter is for aesthetic purposes only.  
(D) Overview of Spearman correlations calculated over all tissues. The distributions 
of correlation estimates are shown in the histogram and proportionate numbers of 
correlations are shown in the barplot. Nominal correlations are highlighted (p-
value<0.05) in light orange (positive) and light blue (negative). Significant 
correlations are highlighted (q-value<0.05) in orange (positive) and blue (negative). 
Numbers provided above the barplot represent the number of single CG sites within 
the given category.  
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(E) Surrounding CG content (±500 bp) of the significantly correlated sites. 
Background was calculated from all CG sites with 5-fold coverage in 90% of 
samples; CG scarcity is defined as the average CG distance within this 1 kb region. 
*:  Bonferroni corrected p-value<0.05. 
(F) Enrichment of a correlated CG site falling within a given genomic element. 
Background was all CG sites with 5-fold coverage in 90% of samples. Tested using 
binomial test; *: p-value<0.05. 
(G) GO analysis of the significantly correlated CG sites. GO terms are plotted against 
–log(corrected p-value). Positive correlations are shown in orange and negative in 
blue. The 6 most significant GO terms are shown.  
(H) Tissue-specific Spearman correlations with age. An example is provided of a 
tissue-specific correlation with age in cortex, liver, lung and heart. Correlations for 
these CG sites are provided for all tissues combined and for the tissue in question. 
Jitter is for aesthetic purposes only. 
 
 
Figure 2. Prediction of chronological age from a mouse epigenetic clock 
(A) Flow-chart to illustrate the steps taken in defining the model and testing it. 
Datasets are displayed as segments of a circle. They are coloured to correspond with 
later figures, namely: Reizel in brown (R), Cannon in green (C), Babraham in purple 
(B), Zhang in pink (Z) and Schillebeeckx in light green (S). The two independent 
datasets are displayed as segments in a separate circle to those datasets utilised for the 
training phase. The flow of methylation data is shown as colour-coded lines. Training 
occurs at the node (screen) with the caption: “glmnet”. The chosen CG sites and their 
corresponding weighting are passed on to the prediction tool itself (node with the 
caption: “epigenetic age predictor”. Test data enters this prediction tool and age 
predictions are outputted, as displayed by the pocket watches exiting this node. 
(B) Scatterplot depicting weight of chosen clock sites against their age-associated 
correlation, blue are negatively correlated sites and orange are positively correlated 
sites.  
(C) Training set ages as predicted by the model, x-axis shows the actual age and y-
axis shows the predicted age, coloured by tissue. Jitter is used to represent the 
experimental error in age estimates. 
(D) Test set ages as predicted by the model, x-axis shows the actual age and y-axis 
shows the predicted age, coloured by tissue.  
(E) Boxplot of the absolute error in the training (left) and test (right) samples. The 
MAE is indicated. 
(F) Principal component representation of the sites used in the clock, coloured by age 
in weeks.  
 
Figure 3. Prediction evaluation of the human Horvath clock sites in mouse 
Shown is the MAE of the age prediction model generated using the lifted-over human 
clock sites [6] (red line). The distribution (blue) shows the MAEs of one thousand age 
prediction models generated using random selections of 329 regions (see Materials 
and Methods for further details) 
 
Figure 4. Methylation age is affected by biological interventions 
(A) Predicted age of 20 week old liver samples [30], shown separately for males and 
females. Statistical test performed: t-test, p-value of 0.58. 
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20 
 

(B) Age prediction in test samples from various biological intervention studies. X-
axis shows the actual age and y-axis shows the predicted age, coloured by study. 
(C) Age prediction in normal female liver samples and samples which underwent an 
ovariectomy and were administered with either vehicle alone or testosterone [30]. 
Statistical test performed: Unpaired two-tailed t-test performed to assess the impact of 
ovariectomy, p-value of 0.014. 
(D) Age prediction in diet perturbation study [29]. Liver samples from animals with 
following treatments were analysed: maternal high fat diet followed by adult high fat 
diet, maternal high fat diet followed by adult low fat diet, maternal low fat diet 
followed by adult high fat diet and maternal low fat diet followed by adult low fat 
diet. Statistical test performed: Two-way ANOVA performed, p-values displayed 
where significant. 

Additional material 
 
Additional File 1: List of all samples collected in this study, as well as all additional 
publicly available datasets used. (Excel Format; AdditionalFile1.xls) 
 
Additional File 2: Characterisation of ageing associated methylation changes at 
discrete CpGs, related to Figure 1. (PDF Format; AdditionalFile2.pdf) 
 
Additional File 3: Characterisation of ageing associated methylation changes at 
discrete CpGs excluding newborn samples, related to Figure 1. (PDF Format; 
AdditionalFile3.pdf) 
 
Additional File 4: Table of Training and Test samples. (Excel Format; 
AdditionalFile4.xls) 
 
Additional File 5: Properties of the mouse epigenetic clock sites, related to Figure 
2. (PDF Format; AdditionalFile5.pdf) 
 
Additional File 6: Table of mouse epigenetic clock sites. (Excel Format; 
AdditionalFile6.xls) 
 
Additional File 7: Additional detail on the mouse epigenetic clock, related to 
Figure 2. (PDF Format; AdditionalFile7.pdf) 
 
Additional File 8: Information on the datasets properties of the clock sites, 
related to Figure 2. (PDF Format; AdditionalFile8.pdf) 
 
Additional File 9: Testing age relation of the human clock sites in the mouse, 
related to Figure 3. (PDF Format; AdditionalFile9.pdf) 
 
Additional File 10: Predicted age of test samples as coloured by sex, related to 
Figure 4. (PDF Format; AdditionalFile10.pdf) 
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