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Abstract	19	

	20	

Perception	can	be	described	as	a	process	of	inference,	integrating	bottom-up	sensory	inputs	and	top-21	

down	expectations.	However,	it	is	unclear	how	this	process	is	neurally	implemented.	It	has	been	22	

proposed	that	expectations	lead	to	pre-stimulus	baseline	increases	in	sensory	neurons	tuned	to	the	23	

expected	stimulus,	which	in	turn	affects	the	processing	of	subsequent	stimuli.	Recent	fMRI	studies	have	24	

revealed	stimulus-specific	patterns	of	activation	in	sensory	cortex	as	a	result	of	expectation,	but	this	25	

method	lacks	the	temporal	resolution	necessary	to	distinguish	pre-	from	post-stimulus	processes.	Here,	26	

we	combined	human	MEG	with	multivariate	decoding	techniques	to	probe	the	representational	content	27	

of	neural	signals	in	a	time-resolved	manner.	We	observed	a	representation	of	expected	stimuli	in	the	28	

neural	signal	well	before	they	were	presented,	demonstrating	that	expectations	indeed	induce	a	pre-29	

activation	of	stimulus	templates.	These	results	suggest	a	mechanism	for	how	predictive	perception	can	30	

be	neurally	implemented.	 	31	
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Introduction	32	

	33	

Perception	is	heavily	influenced	by	prior	knowledge1–3.	Accordingly,	many	theories	cast	perception	as	a	34	

process	of	inference,	integrating	bottom-up	sensory	inputs	and	top-down	expectations4–6.	However,	it	is	35	

unclear	how	this	integration	is	neurally	implemented.	It	has	been	proposed	that	prior	expectations	lead	36	

to	baseline	increases	in	sensory	neurons	tuned	to	the	expected	stimulus7–9,	which	in	turn	leads	to	37	

improved	neural	processing	of	matching	stimuli10,11.	In	other	words,	expectations	may	induce	stimulus	38	

templates	in	sensory	cortex,	prior	to	the	actual	presentation	of	the	stimulus.	Alternatively,	top-down	39	

influences	in	sensory	cortex	may	exert	their	influence	only	after	the	bottom-up	stimulus	has	been	40	

initially	processed,	and	the	integration	of	the	two	sources	of	information	may	become	apparent	only	41	

during	later	stages	of	sensory	processing12.	42	

The	evidence	necessary	to	distinguish	between	these	hypotheses	has	been	lacking.	fMRI	studies	43	

have	revealed	stimulus-specific	patterns	of	activation	in	sensory	cortex	as	a	result	of	expectation9,13,	but	44	

this	method	lacks	the	temporal	resolution	necessary	to	distinguish	pre-	from	post-stimulus	periods.	Here,	45	

we	combined	MEG	with	multivariate	decoding	techniques	to	probe	the	representational	content	of	46	

neural	signals	in	a	time-resolved	manner14–17.	We	trained	a	forward	model	to	decode	the	orientation	of	47	

task-irrelevant	gratings	from	the	MEG	signal18,19,	and	applied	this	decoder	to	trials	in	which	participants	48	

expected	a	grating	of	a	particular	orientation	to	be	presented.	This	analysis	revealed	a	neural	49	

representation	of	the	expected	grating	that	resembled	the	neural	signal	evoked	by	an	actually	presented	50	

grating.	This	representation	was	present	already	before	stimulus	presentation,	demonstrating	that	51	

expectations	can	indeed	induce	the	pre-activation	of	stimulus	templates.	 	52	
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Results	53	

	54	

Participants	were	exposed	to	auditory	cues	that	predicted	the	likely	orientation	(45°	or	135°)	of	an	55	

upcoming	grating	stimulus	(Fig.	1a-b).	This	grating	was	followed	by	a	second	grating	that	differed	slightly	56	

from	the	first	in	terms	of	orientation	and	contrast.	In	separate	runs	of	the	MEG	session,	participants	57	

performed	either	an	orientation	or	contrast	discrimination	task	on	the	two	gratings	(see	Methods	for	58	

details).	59	

	60	

Behavioural	results.	Participants	were	able	to	discriminate	small	differences	in	orientation	(3.9°	±	0.5°,	61	

accuracy	=	74.0%	±	1.6%,	mean	±	sem)	and	contrast	(4.6%	±	0.3%,	accuracy	=	76.6%	±	1.5%)	of	the	cued	62	

gratings.	There	was	no	significant	difference	between	the	two	tasks	in	terms	of	either	accuracy	(F1,22	=	63	

3.38,	p	=	0.080)	or	reaction	time	(mean	RT	=	621	ms	vs.	603	ms,	F1,22	=	1.46,	p	=	0.24).	Overall,	accuracy	64	

and	reaction	times	were	not	influenced	by	whether	the	cued	grating	had	the	expected	or	the	65	

unexpected	orientation	(accuracy:	F1,22	=	0.21,	p	=	0.65;	RT:	F1,22	=	0.03,	p	=	0.87),	nor	was	there	an	66	

interaction	between	task	and	expectation	(accuracy:	F1,22	=	0.96,	p	=	0.34;	RT:	F1,22	=	0.42,	p	=	0.52).	Note	67	

that	these	discrimination	tasks	were	orthogonal	to	the	expectation	manipulation,	in	the	sense	that	the	68	

expectation	cue	provided	no	information	about	the	likely	correct	choice.	69	

During	the	grating	localiser	(Fig.	1c,	see	Methods	for	details),	participants	correctly	detected	70	

91.2%	±	1.6%	(mean	±	sem)	of	fixation	flickers,	and	incorrectly	pressed	the	button	on	0.2%	±	0.1%	of	71	

trials,	suggesting	that	participants	were	successfully	engaged	by	the	fixation	task.		72	

	73	

MEG	results	–	Localiser	orientation	decoding.	As	mentioned,	participants	were	exposed	to	auditory	74	

cues	that	predicted	the	likely	orientation	of	an	upcoming	grating	stimulus.	The	question	we	wanted	to	75	

answer	was	whether	the	expectations	induced	by	these	auditory	cues	would	evoke	templates	of	the	76	
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visual	stimuli	prior	to	the	presentation	of	the	gratings.	To	be	able	to	uncover	such	sensory	templates,	we	77	

trained	a	decoding	model	to	reconstruct	the	orientation	of	(task-irrelevant)	visual	gratings	(Fig.	1c)	from	78	

the	MEG	signal,	in	a	time-resolved	manner.	First,	we	found	that	this	model	was	highly	accurate	at	79	

reconstructing	the	orientation	of	such	gratings	from	the	MEG	signal	(Fig.	2).	Grating	orientation	could	be	80	

decoded	across	an	extended	period	of	time	(from	40	to	655	ms	post-stimulus,	p	<	0.001,	and	from	685	81	

to	730	ms,	p	=	0.018),	peaking	around	120-160	ms	post-stimulus	(Fig.	2c).	Furthermore,	in	the	period	82	

around	100	to	330	ms	post-stimulus,	orientation	decoding	generalised	across	time,	meaning	that	a	83	

decoder	trained	on	the	evoked	response	at,	for	example,	120	ms	post-stimulus	could	reconstruct	the	84	

grating	orientation	represented	in	the	evoked	response	around	300	ms,	and	vice	versa	(Fig.	2d).	In	other	85	

words,	certain	aspects	of	the	representation	of	grating	orientation	were	sustained	over	time.	86	

	87	

MEG	results	–	Expectation	induces	stimulus	templates.	Our	main	question	pertained	to	the	presence	of	88	

visual	grating	templates	induced	by	the	auditory	expectation	cues	during	the	main	experiment.	89	

Therefore,	we	applied	our	model	trained	on	task-irrelevant	gratings	to	trials	containing	gratings	that	90	

were	either	validly	or	invalidly	predicted,	respectively	(Fig.	3a).	In	both	conditions,	the	decoding	model	91	

trained	on	task-irrelevant	gratings	succeeded	in	accurately	reconstructing	the	orientation	of	the	gratings	92	

presented	in	the	main	experiment	(valid	expectation:	cluster	from	training	time	60	to	410	ms	and	93	

decoding	time	60	to	400	ms,	p	<	0.001,	and	from	training	time	205	to	325	ms	and	decoding	time	400	to	94	

495	ms,	p	=	0.045;	invalid	expectation:	cluster	from	training	time	75	to	225	ms	and	decoding	time	75	to	95	

330	ms,	p	=	0.0012,	and	from	training	time	250	to	360	ms	and	decoding	time	195	to	355	ms,	p	=	0.027).	96	

If	the	cues	induced	sensory	templates	of	the	expected	grating,	one	would	expect	these	to	be	97	

revealed	in	the	difference	in	decoding	between	valid	and	invalidly	predicted	gratings	(see	Material	and	98	

Methods	for	details	of	the	subtraction	logic).	Indeed,	this	subtraction/analyses	demonstrates	that	the	99	

auditory	expectation	cues	induce	orientation-specific	neural	signals	(Fig.	3a,	bottom	panel).	These	100	
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signals	were	present	already	40	ms	before	grating	presentation,	and	extended	into	the	post-stimulus	101	

period	(from	decoding	time	-40	to	230	ms,	p	=	0.0092,	and	from	300	to	530	ms,	p	=	0.016).	Furthermore,	102	

these	signals	were	uncovered	when	the	decoder	was	trained	on	around	120	to	160	ms	post-stimulus	103	

during	the	grating	localiser	(Fig.	3b),	suggesting	that	these	cue-induced	signals	were	similar	to	those	104	

evoked	by	task-irrelevant	gratings.	In	other	words,	the	auditory	expectation	cues	evoked	orientation-105	

specific	signals	that	were	similar	to	sensory	signals	evoked	by	the	corresponding	actual	grating	stimuli.	106	

In	sum,	expectations	induced	pre-stimulus	sensory	templates	that	influenced	post-stimulus	107	

representations	as	well;	invalidly	expected	gratings	had	to	‘overcome’	a	pre-stimulus	activation	of	the	108	

opposite	orientation,	while	validly	expected	gratings	were	facilitated	by	a	compatible	pre-stimulus	109	

activation	(Supplementary	Fig.	1a).	The	post-stimulus	carryover	of	these	expectation	signals	lasted	110	

throughout	the	trial	(Supplementary	Fig.	1b).	111	

As	in	previous	studies	using	a	similar	paradigm11,20,	there	was	no	interaction	between	the	effects	112	

of	the	expectation	cue	and	the	task	(orientation	vs.	contrast	discrimination)	participants	performed	(no	113	

clusters	with	p	<	0.4).	114	

In	the	current	study,	there	was	no	difference	in	the	overall	amplitude	of	the	neural	response	115	

evoked	between	validly	and	invalidly	expected	gratings	(no	clusters	with	p	<	0.4,	Supplementary	Fig.	2).	116	

	 	117	
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Discussion	118	

	119	

Here,	we	show	that	expectations	can	induce	sensory	templates	of	the	expected	stimulus	already	before	120	

the	stimulus	appears.	These	results	extend	previous	fMRI	studies	demonstrating	stimulus-specific	121	

patterns	of	activation	in	sensory	cortex	induced	by	expectations,	which	could	not	resolve	whether	these	122	

templates	indeed	reflected	pre-stimulus	expectations,	or	instead	stimulus	specific	error	signals	induced	123	

by	the	unexpected	omission	of	a	stimulus9,13.	124	

The	fact	that	expectation	signals	were	revealed	by	a	decoder	trained	on	physically	presented	125	

(but	task-irrelevant)	gratings	suggests	that	these	expectation	signals	resemble	activity	patterns	induced	126	

by	actual	stimuli.	The	expectation	signal	remained	present	throughout	the	trial,	extending	into	the	post-127	

stimulus	period,	suggesting	the	tonic	activation	of	a	stimulus	template.	These	results	are	in	line	with	a	128	

recent	monkey	electrophysiology	study10,	which	showed	that	neurons	in	the	face	patch	of	IT	cortex	129	

encode	the	prior	expectation	of	a	face	appearing,	both	prior	to	and	following	actual	stimulus	130	

presentation.	When	the	subsequently	presented	stimulus	is	noisy	or	ambiguous,	such	a	pre-stimulus	131	

template	could	conceivably	bias	perception	towards	the	expected	stimulus21–24.	132	

What	is	the	source	of	these	cue-induced	expectation	signals?	One	candidate	region	is	the	133	

hippocampus,	which	is	known	to	be	involved	in	encoding	associations	between	previously	unrelated,	134	

discontiguous	stimuli25,	such	as	the	auditory	tones	and	visual	gratings	used	in	the	present	study.	135	

Furthermore,	fMRI	studies	have	revealed	predictive	signals	in	the	hippocampus13,26,27,	and	Reddy	and	136	

colleagues28	reported	anticipatory	firing	to	expected	stimuli	in	the	medial	temporal	lobe,	including	the	137	

hippocampus.	One	intriguing	possibility	is	that	predictive	signals	from	the	hippocampus	are	fed	back	to	138	

sensory	cortex13,29,30.	139	

In	addition	to	expectation,	several	other	cognitive	phenomena	have	been	shown	to	induce	140	

stimulus	templates	in	sensory	cortex,	such	as	preparatory	attention17,31,	mental	imagery32–34,	and	141	
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working	memory35,36.	In	fact,	explicit	task	preparation	can	also	induce	pre-stimulus	sensory	templates	142	

that	last	into	the	post-stimulus	period17.	Note	that	in	the	current	study	the	task	did	not	require	explicit	143	

use	of	the	expectation	cues,	the	task	response	was	in	fact	orthogonal	to	the	expectation.	Furthermore,	144	

there	was	no	difference	in	the	expectation	signal	between	runs	in	which	grating	orientation	was	task-145	

relevant	(orientation	discrimination	task)	and	when	it	was	irrelevant	(contrast	discrimination	task),	146	

suggestion	expectation	may	be	a	relatively	automatic	phenomenon11,37.	In	fact,	neural	modulations	by	147	

expectation	have	even	been	observed	during	states	of	inattention38,	sleep39	and	in	patients	experiencing	148	

disorders	of	consciousness40.	One	important	question	for	future	research	will	be	to	establish	whether	149	

the	same	neural	mechanism	underlies	the	different	cognitive	phenomena	that	are	capable	of	inducing	150	

stimulus	templates	in	sensory	cortex,	or	whether	different	top-down	mechanisms	are	at	work.	Indeed,	it	151	

has	been	suggested	that	expectation	and	attention,	or	task	preparation,	may	have	different	underlying	152	

neural	mechanisms20,41,42.	For	instance,	predictive	coding	theories	suggest	that	attention	may	modulate	153	

sensory	signals	in	the	superficial	layers	of	sensory	cortex,	while	predictions	modulate	the	response	in	154	

deep	layers5,43.		155	

One	may	wonder	why	the	current	study	does	not	report	a	modulation	of	the	overall	neural	156	

response	by	expectation,	while	previous	studies	have	found	an	increased	neural	response	to	unexpected	157	

stimuli37,44–48,	including	some	using	an	almost	identical	paradigm	as	the	current	study11,20.	Of	course,	the	158	

current	study	reports	a	null	effect,	from	which	it	is	hard	to	draw	firm	conclusions.	However,	it	is	possible	159	

that	the	type	of	measurement	of	neural	activity	plays	a	role	in	the	absence	of	the	effect.	Most	previous	160	

studies	reporting	expectation	suppression	in	visual	cortex	used	fMRI,	while	the	current	study	used	MEG.	161	

It	is	possible	that	the	BOLD	signal,	a	mass-action	signal	that	integrates	synaptic	and	neural	activity,	as	162	

well	as	integrating	over	time,	is	sensitive	to	certain	neural	effects	that	MEG,	which	is	predominantly	163	

sensitive	to	synchronised	activity	in	pyramidal	neurons	oriented	perpendicular	to	the	cortical	surface,	is	164	
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not.	It	is	even	possible	that	within	MEG,	different	types	of	sensors	(i.e.	magnetometers,	planar	and	axial	165	

gradiometers)	differ	in	their	sensitivity	to	expectation	suppression49.	166	

Recent	theories	of	sensory	processing	state	that	perception	reflects	the	integration	of	bottom-167	

up	inputs	and	top-down	expectations,	but	ideas	diverge	on	whether	the	brain	continuously	generates	168	

stimulus	templates	in	sensory	cortex	to	pre-empt	expected	inputs10,23,50,51,	or	rather	engages	in	169	

perceptual	inference	only	after	receiving	sensory	inputs52,53.	Our	results	are	in	line	with	the	brain	being	170	

proactive,	constantly	forming	predictions	about	future	sensory	inputs.	These	findings	bring	us	closer	to	171	

uncovering	the	neural	mechanisms	by	which	we	integrate	prior	knowledge	with	sensory	inputs	to	172	

optimise	perception.	 	173	
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Methods	174	

	175	

Participants.	Twenty-three	(15	female,	age	26	±	9,	mean	±	SD)	healthy	individuals	participated	in	the	176	

experiment.	All	participants	were	right-handed	and	had	normal	or	corrected-to-normal	vision.	The	study	177	

was	approved	by	the	local	ethics	committee	(CMO	Arnhem-Nijmegen,	The	Netherlands)	under	the	178	

general	ethics	approval	(“Imaging	Human	Cognition”,	CMO	2014/288),	and	the	experiment	was	179	

conducted	in	accordance	with	these	guidelines.		All	participants	gave	written	informed	consent	180	

according	to	the	declaration	of	Helsinki.	181	

	182	

Stimuli.	Grayscale	luminance-defined	sinusoidal	grating	stimuli	(spatial	frequency:	1.0	cycles/°)	were	183	

generated	using	MATLAB	(MathWorks,	Natick,	MA)	in	conjunction	with	the	Psychophysics	Toolbox54.	184	

Gratings	were	displayed	in	an	annulus	(outer	diameter:	15°	of	visual	angle,	inner	diameter:	1°),	185	

surrounding	a	black	fixation	bull’s	eye	(4	cd/m2),	on	a	gray	(580	cd/m2)	background.	The	visual	stimuli	186	

were	presented	with	an	LCD	projector	(1024	×	768	resolution,	60	Hz	refresh	rate)	positioned	outside	the	187	

magnetically	shielded	room,	and	projected	on	a	translucent	screen	via	two	front-silvered	mirrors.	The	188	

projector	lag	was	measured	at	36	ms,	which	was	corrected	for	by	shifting	the	time	axis	of	the	data	189	

accordingly.	The	auditory	cue	consisted	of	a	pure	tone	(500	or	1000	Hz,	250	ms	duration,	including	10	190	

ms	on	and	off-ramp	time),	presented	over	MEG-compatible	earphones.	191	

	192	

Experimental	design.	Each	trial	consisted	of	an	auditory	cue,	followed	by	two	consecutive	grating	stimuli	193	

(750	ms	SOA	between	auditory	and	first	visual	stimulus)	(Fig.	1a).	The	two	grating	stimuli	were	194	

presented	for	250	ms	each,	separated	by	a	blank	screen	(500	ms).	A	central	fixation	bull’s	eye	(0.7°)	was	195	

presented	throughout	the	trial,	as	well	as	during	the	intertrial	interval	(ITI,	2250	ms).	The	auditory	cue	196	

consisted	of	either	a	low-	(500	Hz)	or	high-frequency	(1000	Hz)	tone,	which	predicted	the	orientation	of	197	
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the	first	grating	stimulus	(45°	or	135°)	with	75%	validity	(Fig.	1b).	In	the	other	25%	of	trials,	the	first	198	

grating	had	the	orthogonal	orientation.	Thus,	the	first	grating	had	an	orientation	of	either	exactly	45°	or	199	

135°,	and	a	luminance	contrast	of	80%.	The	second	grating	differed	slightly	from	the	first	in	terms	of	200	

both	orientation	and	contrast	(see	below),	as	well	as	being	in	antiphase	to	the	first	grating	(which	had	a	201	

random	spatial	phase).	The	contingencies	between	the	auditory	cues	and	grating	orientations	were	202	

flipped	halfway	through	the	experiment	(i.e.,	after	four	runs),	and	the	order	was	counterbalanced	over	203	

subjects.	204	

In	separate	runs	(64	trials	each,	~4.5	minutes),	subjects	performed	either	an	orientation	or	a	205	

contrast	discrimination	task	on	the	two	gratings.	When	performing	the	orientation	task,	subjects	had	to	206	

judge	whether	the	second	grating	was	rotated	clockwise	or	anticlockwise	with	respect	to	the	first	207	

grating.	In	the	contrast	task,	a	judgment	had	to	be	made	on	whether	the	second	grating	had	lower	or	208	

higher	contrast	than	the	first	one.	These	tasks	were	explicitly	designed	to	avoid	a	direct	relationship	209	

between	the	perceptual	expectation	and	the	task	response.	Subjects	indicated	their	response	(response	210	

deadline:	750	ms	after	offset	of	the	second	grating)	using	an	MEG-compatible	button	box.	The	211	

orientation	and	contrast	differences	between	the	two	gratings	were	determined	by	an	adaptive	212	

staircase	procedure55,	being	updated	after	each	trial.	This	was	done	to	yield	comparable	task	difficulty	213	

and	performance	(~	75%	correct)	for	the	different	tasks.	Staircase	thresholds	obtained	during	one	task	214	

were	used	to	set	the	stimulus	differences	during	the	other	task,	in	order	to	make	the	stimuli	as	similar	as	215	

possible	in	both	contexts.	As	in	previous	studies	using	a	similar	paradigm11,20,	there	was	no	interaction	216	

between	the	effects	of	the	expectation	cue	and	the	task	participants	performed,	and	therefore	we	217	

collapsed	over	the	two	tasks	in	all	MEG	analyses.	218	

All	subjects	completed	eight	runs	(four	of	each	task,	alternating	every	two	runs,	order	was	219	

counterbalanced	over	subjects)	of	the	experiment,	yielding	a	total	of	512	trials.	The	staircases	were	kept	220	

running	throughout	the	experiment.	Before	the	first	run,	as	well	as	in	between	runs	four	and	five,	when	221	
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the	contingencies	between	cue	and	stimuli	were	flipped,	subjects	performed	a	short	practice	run	222	

containing	32	trials	of	both	tasks	(~4.5	minutes).	223	

Interleaved	with	the	main	task	runs,	subjects	performed	eight	runs	of	a	grating	localiser	task	(Fig.	224	

1c).	Each	run	(~2	min)	consisted	of	80	grating	presentations	(ITI	uniformly	jittered	between	1000	and	225	

1200	ms).	The	grating	annuli	were	identical	to	those	presented	during	the	main	task	(80%	contrast,	250	226	

ms	duration,	1.0	cycles/°,	random	spatial	phase).	Each	grating	had	one	of	eight	orientations	(spanning	227	

the	180°	space,	starting	at	0°,	in	steps	of	22.5°),	each	of	which	was	presented	ten	times	per	run	in	228	

pseudorandom	order.	A	black	fixation	bull’s	eye	(4	cd/m2,	0.7°	diameter,	identical	to	the	one	presented	229	

during	the	main	task	runs)	was	presented	throughout	the	run.	On	10%	of	trials	(counterbalanced	across	230	

orientations),	the	black	fixation	point	in	the	centre	of	the	bull’s	eye	(0.2°,	4	cd/m2)	briefly	turned	gray	231	

(324	cd/m2)	during	the	first	50	ms	of	grating	presentation.	Participants	task	was	to	press	a	button	232	

(response	deadline:	500	ms)	when	they	perceived	this	fixation	flicker.	This	simple	task	was	meant	to	233	

ensure	central	fixation,	while	rendering	the	gratings	task-irrelevant.	Trials	containing	fixation	flickers	234	

were	excluded	from	further	analyses.	235	

Finally,	participants	were	exposed	to	a	tone	localiser	(~1.5	min),	presented	at	the	start,	end,	and	236	

halfway	through	the	MEG	session.	These	runs	consisted	of	81	presentations	of	the	two	tones	used	in	the	237	

main	experiment.	Data	from	these	runs	were	not	analysed	further.	238	

Prior	to	the	MEG	session	(1–3	days),	all	participants	completed	a	behavioural	session.		The	aim	239	

of	this	session	was	to	familiarise	participants	with	the	tasks	and	to	initialise	the	staircase	values	for	both	240	

the	orientation	and	the	contrast	discrimination	task	(see	above).	The	behavioural	session	consisted	of	241	

written	instructions	and	32	practice	trials	of	each	task,	followed	by	four	runs	(~4.5	min	each)	of	the	main	242	

experiment	(each	task	twice,	alternating	between	runs,	cue	contingencies	switching	between	the	243	

second	and	third	run).	Finally,	participants	were	exposed	to	one	run	each	of	the	grating	and	tone	244	

localiser,	to	familiarise	them	with	the	procedure.	245	
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	246	

MEG	recording	and	preprocessing.	Whole-head	neural	recordings	were	obtained	using	a	275-channel	247	

MEG	system	with	axial	gradiometers	(CTF	Systems,	Coquitlam,	BC,	Canada)	located	in	a	magnetically	248	

shielded	room.		Throughout	the	experiment,	head	position	was	monitored	online,	and	corrected	if	249	

necessary,	using	three	fiducial	coils	that	were	placed	on	the	nasion	and	on	earplugs	in	both	ears	56.	If	250	

subjects	had	moved	their	head	more	than	5	mm	from	the	starting	position	they	were	repositioned	251	

during	block	breaks.	Furthermore,	both	horizontal	and	vertical	electrooculograms	(EOGs),	as	well	as	an	252	

electrocardiogram	(ECG)	were	recorded	to	facilitate	removal	of	eye-	and	heart-related	artifacts.	The	253	

ground	electrode	was	placed	at	the	left	mastoid.	All	signals	were	sampled	at	a	rate	of	1200	Hz.	254	

The	data	were	preprocessed	offline	using	FieldTrip57	(www.fieldtriptoolbox.org).	In	order	to	255	

identify	artifacts,	the	variance	(collapsed	over	channels	and	time)	was	calculated	for	each	trial.	Trials	256	

with	large	variances	were	subsequently	selected	for	manual	inspection	and	removed	if	they	contained	257	

excessive	and	irregular	artifacts.	Independent	component	analysis	was	subsequently	used	to	remove	258	

regular	artifacts,	such	as	heartbeats	and	eye	blinks.	Specifically,	for	each	subject,	the	independent	259	

components	were	correlated	to	both	EOGs	and	the	ECG	to	identify	potentially	contaminating	260	

components,	and	these	were	subsequently	inspected	manually	before	removal.	For	the	main	analyses,	261	

data	were	low-pass	filtered	using	a	two-pass	Butterworth	filter	with	a	filter	order	of	6	and	a	frequency	262	

cutoff	of	40	Hz.	To	rule	out	that	the	temporal	smoothing	caused	by	low-pass	filtering	may	have	263	

artificially	decreased	the	onset	latency	of	neural	signals,	we	repeated	the	decoding	analyses	(see	below)	264	

on	data	that	were	not	low-pass	filtered	(Supplementary	Fig.	3).	Here,	only	notch	filters	were	applied	at	265	

50,	100	and	150	Hz	to	remove	line	noise	and	its	harmonics.	Finally,	main	task	data	were	baseline	266	

corrected	on	the	interval	of	−250	to	0	ms	relative	to	auditory	cue	onset,	and	grating	localiser	data	were	267	

baseline	corrected	on	the	interval	of	-200	to	0	ms	relative	to	visual	grating	onset.	268	

	269	
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Event-related	field	analysis.	Event-related	fields	(ERFs)	were	calculated	per	participant,	and	subjected	270	

to	a	planar	gradient	transformation58	before	averaging	across	participants.	The	planar	transformation	271	

simplifies	the	interpretation	of	the	sensor-level	data	because	it	typically	places	the	maximal	signal	above	272	

the	source.	To	avoid	differences	in	the	amount	of	noise	when	comparing	conditions	with	different	273	

numbers	of	trials,	we	matched	the	trial	count	by	randomly	selecting	a	subsample	of	trials	from	the	274	

conditions	with	more	trials	(i.e.,	valid	expectations).	275	

	276	

Orientation	decoding	analysis.	To	probe	sensory	representations	in	the	visual	cortex,	we	used	a	forward	277	

modelling	approach	to	reconstruct	the	orientation	of	the	grating	stimuli	from	the	MEG	signal17–19,59.	The	278	

forward	modelling	approach	was	two-fold.	First,	a	theoretical	forward	model	was	postulated	that	279	

described	the	measured	activity	in	the	MEG	sensors,	given	the	orientation	of	the	presented	grating.	280	

Second,	this	forward	model	was	used	to	obtain	an	inverse	model	that	specified	the	transformation	from	281	

MEG	sensor	space	to	orientation	space.	The	forward	and	inverse	models	were	estimated	on	the	basis	of	282	

the	grating	localiser	data.	The	inverse	model	was	then	applied	to	the	data	from	the	main	experiment,	in	283	

order	to	generalise	from	sensory	signals	evoked	by	task-irrelevant	gratings	to	the	gratings	and	284	

expectation	signals	evoked	in	the	main	task.	To	test	the	performance	of	the	model	we	also	applied	it	to	285	

the	localiser	data	itself,	using	a	cross-validation	approach	in	which	in	each	iteration	one	trial	of	each	286	

orientation	was	used	at	the	test	set,	and	the	remaining	data	were	used	as	the	training	set.	287	

The	forward	model	was	based	on	work	by	Brouwer	and	Heeger18,19	and	involved	32	hypothetical	288	

channels,	each	with	an	idealised	orientation	tuning	curve.	Each	channel	consisted	of	a	half-wave-289	

rectified	sinusoid	raised	to	the	fifth	power,	and	the	32	channels	were	spaced	evenly	within	the	180°	290	

orientation	space,	such	that	a	tuning	curve	with	any	possible	orientation	preference	could	be	expressed	291	

exactly	as	a	weighted	sum	of	the	channels.	Arranging	the	hypothesised	channel	activities	for	each	trial	292	
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along	the	columns	of	a	matrix	C	(32	channels	×	n	trials),	the	observed	data	could	be	described	by	the	293	

following	linear	model:	294	

	 	B=WC+N 		295	

where	B	are	the	(m	sensors	×	n	trials)	MEG	data,	W	is	a	weight	matrix	(m	sensors	×	32	channels)	that	296	

specifies	how	channel	activity	is	transformed	into	sensory	activity,	and	N	are	the	residuals	(i.e.,	noise).	297	

In	order	to	obtain	the	inverse	model,	we	estimated	an	array	of	spatial	filters	that,	when	applied	298	

to	the	data,	aimed	to	reconstruct	the	underlying	channel	activities	as	accurately	as	possible.	In	doing	so,	299	

we	extended	Brouwer	and	Heeger's18,19	approach	in	three	respects.	First,	since	the	MEG	signal	in	300	

(nearby)	sensors	is	correlated,	we	took	into	account	the	correlational	structure	of	the	noise.	Second,	we	301	

estimated	a	spatial	filter	for	each	orientation	channel	independently.	As	a	result,	the	number	of	302	

channels	used	in	our	model	was	not	constrained,	whereas	the	maximum	number	of	channels	would	303	

otherwise	be	dependent	on	the	number	of	presented	orientations.	In	practice,	this	resulted	in	304	

smoothing	in	orientation	space,	because	the	channels	were	not	truly	independent.	Third,	each	filter	was	305	

normalised	such	that	the	magnitude	of	its	output	matched	the	magnitude	of	the	underlying	channel	306	

activity	it	was	designed	to	recover.	Prior	to	estimating	the	inverse	model,	B	and	C	were	demeaned	such	307	

that	their	average	over	trials	equalled	zero,	for	each	sensor	and	channel,	respectively.	308	

As	stated	above,	the	inverse	model	was	estimated	on	the	basis	of	the	grating	localiser	data.	On	309	

each	localiser	trial,	one	of	eight	orientations	was	presented	(see	above),	and	the	hypothetical	responses	310	

of	each	of	the	channels	could	thus	be	calculated	for	each	trial,	resulting	in	the	response	row	vector	311	

			
ctrain,i ,	of	length		ntrain 	trials,	for	each	channel	i.	The	weights	on	the	sensors			wi 	could	now	be	obtained	312	

through	least	squares	estimation,	for	each	channel:	313	

	
			
wi =Btrainctrain,i

T ctrain,ictrain,i
T( )−1 	314	
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where			Btrain 	are	the	(m	sensors	×		ntrain 	trials)	localiser	MEG	data.	Subsequently,	the	optimal	spatial	315	

filter			vi 	to	recover	the	activity	of	the	i-th	channel	was	obtained	as	follows
16:	316	

 			

vi =
!Σi
−1wi

wi
T !Σi

−1wi 	
317	

where	 	
!Σi 	is	the	regularised	covariance	matrix	for	channel	i.	Incorporating	the	noise	covariance	in	the	318	

filter	estimation	leads	to	the	suppression	of	noise	that	arises	from	correlations	between	sensors.	The	319	

noise	covariance	was	estimated	as	follows:	320	

	 		
Σ̂i =

1
ntrain −1

ε iε i
T

		321	

	
			
ε i =Btrain −wictrain,i 		322	

where		ntrain 	is	the	number	of	training	trials.	For	optimal	noise	suppression,	we	improved	this	estimation	323	

by	means	of	regularization	by	shrinkage,	using	the	analytically	determined	optimal	shrinkage	parameter	324	

(for	details,	see60),	yielding	the	regularised	covariance	matrix	 	
!Σi .	325	

Such	a	spatial	filter	was	estimated	for	each	hypothetical	channel,	yielding	an	m	sensors	×	32	326	

channel	filter	matrix	V.	Given	that	we	performed	our	decoding	analysis	in	a	time-resolved	manner,	V	327	

was	estimated	at	each	time	point	of	the	training	data,	in	steps	of	5	ms,	resulting	in	array	of	filter	328	

matrices,	or	decoders.	To	improve	the	signal-to-noise	ratio,	the	data	were	first	averaged	within	a	329	

window	of	29.2	ms	centred	on	the	time	point	of	interest.		The	window	length	of	29.2	ms	was	based	on	330	

an	a	priori	chosen	length	of	30	ms,	but	minus	one	sample	such	that	the	window	contained	an	odd	331	

number	of	samples	for	symmetric	centring16.	These	filter	matrices	could	now	be	applied	to	estimate	the	332	

orientation	channel	responses	in	independent	data	–	in	this	case,	the	trials	from	the	main	experiment:	333	

			Ctest = VTBtest 	334	
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where			Btest 	are	the	(m	sensors	×		ntest 	trials)	main	experiment	data.	These	channel	responses	were	335	

estimated	at	each	time	point	of	the	test	data,	in	steps	of	5	ms,	with	the	data	being	averaged	within	a	336	

window	of	29.2	ms	at	each	step.	This	procedure	resulted	in	a	four-dimensional	(training	time	×	testing	337	

time	×	32	channel	×		ntest )	matrix	of	estimated	channel	responses	for	each	trial	in	the	main	experiment.	338	

Each	trials’	channel	responses	were	shifted	such	that	the	channel	with	its	hypothetical	peak	response	at	339	

the	orientation	presented	on	that	trial	(i.e.	45°	or	135°)	ended	up	in	the	position	of	the	0°	channel,	340	

before	averaging	over	trials	within	each	condition	(i.e.,	valid	vs.	invalid	expectation).	Thus,	the	presented	341	

orientation	was	defined	as	0°,	by	convention.	Note	that	for	3D	surface	plots	that	show	the	evolution	of	342	

channel	responses	over	time	(e.g.,	Fig.	2b),	the	response	of	the	90°	channel	(i.e.,	orthogonal	to	the	343	

presented	orientation)	was	used	as	a	baseline,	to	avoid	negative	numbers	for	visualisation	purposes.	344	

To	quantify	decoding	performance,	the	channel	responses	for	a	given	condition	were	converted	345	

into	polar	form	and	projected	onto	a	vector	with	angle	0°	(the	presented	orientation,	see	above).		346	

	 		
r =|z|cos arg z( )( ) ,									z = c e2iϕ

	347	

where	c	is	a	vector	of	estimated	channel	responses,	and	ϕ 	is	the	vector	of	angles	at	which	the	channels	348	

peak	(multiplied	by	2	to	project	the	180°	orientation	space	onto	the	full	360°	space).	The	scalar	349	

projection	r	indicates	the	strength	of	the	decoder	signal	for	the	orientation	presented	on	screen.	(Note	350	

that	subtracting	the	estimated	response	of	the	90°	channel	from	that	of	the	0°	channel	yielded	virtually	351	

identical	results,	data	not	shown.)	This	quantification	yielded	(training	time	×	testing	time)	temporal	352	

generalisation	matrices	of	orientation	decoding	performance.	353	

In	order	to	isolate	any	orientation-specific	neural	signals	evoked	by	the	expectation	cues,	we	354	

applied	the	following	subtraction	logic.	On	valid	expectation	trials,	the	expected	and	presented	355	

orientations	are	identical,	and	thus	the	orientation	signal	induced	by	both	the	cue	and	stimulus	be	356	

expected	to	be	positive,	by	convention.	On	invalid	expectation	trials	on	the	other	hand,	the	expected	357	
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and	presented	orientations	are	orthogonal,	and	thus	the	orientation	signal	induced	by	the	stimulus	358	

would	be	positive	and	the	signal	induced	by	cue	would	be	expected	to	be	negative.	Thus,	subtracting	the	359	

orientation	decoding	signal	on	invalid	trials	from	that	on	valid	trials	would	subtract	out	the	stimulus-360	

evoked	signal	while	revealing	any	cue-induced	orientation	signal.	361	

	362	

Statistical	testing.	Neural	signals	evoked	by	the	different	conditions	were	statistically	tested	using	363	

nonparametric	cluster-based	permutation	tests61.	For	ERF	analyses,	we	averaged	over	the	spatial	(sensor)	364	

dimension,	on	the	basis	of	independent	localisation	of	the	10	sensors	that	showed	the	strongest	visual-365	

evoked	activity	during	the	grating	localiser	between	50	and	150	ms	post-stimulus.	Therefore,	our	366	

statistical	analysis	considered	one-dimensional	(temporal)	clusters.	For	orientation	decoding	analyses,	367	

the	data	consisted	of	two-dimensional	(training	time	×	testing	time)	decoding	performance	matrices,	368	

and	the	statistical	analysis	thus	considered	two-dimensional	clusters.	For	both	one-	and	two-369	

dimensional	data,	univariate	t-statistics	were	calculated	for	the	entire	matrix	and	neighbouring	elements	370	

that	passed	a	threshold	value	corresponding	to	a	p-value	of	0.01	(two-tailed)	were	collected	into	371	

separate	negative	and	positive	clusters.	Elements	were	considered	neighbours	if	they	were	directly	372	

adjacent,	either	cardinally	or	diagonally.	Cluster-level	test	statistics	consisted	of	the	sum	of	t-values	373	

within	each	cluster,	and	these	were	compared	to	a	null	distribution	of	test	statistics	created	by	drawing	374	

10,000	random	permutations	of	the	observed	data.	A	cluster	was	considered	significant	when	its	p-value	375	

was	below	0.05	(two-tailed).	 	376	
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Figures	514	

	515	

	516	
Figure	1.	Experimental	paradigm.	(a)	Each	trial	started	with	an	auditory	cue	that	predicted	the	517	

orientation	of	the	subsequent	grating	stimulus.	This	first	grating	was	followed	by	a	second	one,	which	518	

differed	slightly	from	the	first	in	terms	of	orientation	and	contrast.	In	separate	runs,	participants	519	

performed	either	an	orientation	or	contrast	discrimination	task	on	the	two	gratings.	(b)	Throughout	the	520	

experiment,	two	different	tones	were	used	as	cues,	each	one	predicting	one	of	the	two	possible	521	

orientations	(45°	or	135°)	with	75%	validity.	These	contingencies	were	flipped	halfway	through	the	522	

experiment.	(c)	In	separate	grating	localiser	runs,	participants	were	exposed	to	task-irrelevant	gratings	523	

while	they	performed	a	fixation	dot	dimming	task.	524	

	 	525	
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	526	
Figure	2.	Localiser	orientation	decoding.	(a)	The	output	of	the	decoder	consisted	of	the	responses	of	32	527	

hypothetical	orientation	channels,	shown	here	decoders	trained	and	tested	on	the	MEG	signal	120-160	528	

ms	post-stimulus	during	the	grating	localiser	(cross-validated).	Shaded	region	represent	SEM.	(b)	529	

Decoder	output	over	time,	trained	and	tested	in	5	ms	steps	(sliding	window	of	29.2	ms),	showing	the	530	

temporal	evolution	of	the	orientation	signal.	(c)	The	response	of	the	32	orientation	channels	collapsed	531	

into	a	single	metric	of	decoding	performance	(see	Methods),	over	time.	Shaded	region	represent	SEM,	532	

horizontal	lines	indicate	significant	clusters	(p	<	0.05).	(d)	Temporal	generalisation	matrix	of	orientation	533	

decoding	performance,	obtained	by	training	decoders	on	each	time	point,	and	testing	all	decoders	on	all	534	

time	points	(as	above,	steps	of	5	ms	and	a	sliding	window	of	29.2	ms).	This	method	provides	insight	into	535	

the	sustained	versus	dynamical	nature	of	orientation	representations15.	Solid	black	lines	indicate	536	

significant	clusters	(p	<	0.05),	dashed	lines	indicate	grating	onset	(t	=	0s).	537	
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Figure	3.	Expectation	induces	stimulus	539	

templates.	(a)	Temporal	generalisation	matrices	540	

of	orientation	decoding	during	the	main	541	

experiment.	Decoders	were	trained	on	the	542	

grating	localiser	(training	time	on	the	y-axis)	and	543	

tested	on	the	main	experiment	(time	on	the	x-544	

axis;	dashed	vertical	line	indicates	t	=	0s,	onset	545	

of	the	first	grating).	Decoding	shown	separately	546	

for	gratings	preceded	by	a	valid	expectation	(top	547	

row),	invalid	expectation	(middle	row),	and	the	548	

subtraction	of	the	two	conditions	(i.e.,	the	549	

expectation	cue	effect,	bottom	row).	Solid	black	550	

lines	indicate	significant	clusters	(p	<	0.05).	(b)	551	

Orientation	decoding	during	the	main	task,	552	

averaged	over	training	time	120	–	160	ms	post-553	

stimulus	during	the	grating	localiser.	That	is,	a	554	

horizontal	slice	through	the	temporal	555	

generalisation	matrices	above	at	the	training	556	

time	for	which	we	see	a	significant	cluster	of	557	

expected	orientation	decoding,	for	visualisation.	558	

Shaded	regions	indicate	SEM.	559	
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