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Abstract

Several methods have been developed to measure dynamic functional connectivity (dFC) in fMRI data. These methods are often
based on a sliding-window analysis, which aims to capture how the brain’s functional organization varies over the course of a
scan. The aim of many studies is to compare dFC across groups, such as younger versus older people. However, spurious group
differences in measured dFC may be caused by other sources of heterogeneity between people. For example, the shape of the
haemodynamic response function (HRF) and levels of measurement noise have been found to vary with age. We use a generic
simulation framework for fMRI data to investigate the effect of such heterogeneity on estimates of dFC. Our findings show that,
despite no differences in true dFC, individual differences in measured dFC can result from other (non-dynamic) features of the
data, such as differences in neural autocorrelation, HRF shape, connectivity strength and measurement noise. We also find that
common dFC methods such as k-means and multilayer modularity approaches can detect spurious group differences in dynamic
connectivity due to inappropriate setting of their hyperparameters. fMRI studies therefore need to consider alternative sources of
heterogeneity across individuals before concluding differences in dFC.

Keywords: Dynamic functional connectivity, FMRI, Resting state, Group studies

1. Introduction

Brain connectivity can refer to a number of different types
of relation between distinct regions in the brain. While struc-
tural connectivity refers to the anatomical links between brain
regions, functional connectivity (FC) describes how activity
in different regions is related over time. In functional mag-
netic resonance imaging (fMRI), this is commonly measured
using the Pearson correlation between the fMRI time series
in different brain regions (Biswal et al. (1995)). Typically,
one would calculate the correlation between two time series
over the course of the whole fMRI scan. However, this ap-
proach may represent an average across informative fluctua-
tions in FC. Indeed, recent evidence suggests that even in task-
free, resting-states these functional connections change over the
course of a scan (Allen et al. (2012), Chang and Glover (2010),
Kiviniemi et al. (2011)). Moreover, measures of this dynamic
functional connectivity (dFC) have been used in an attempt to
identify biomarkers for schizophrenia (Sakoğlu et al. (2010))
and Alzheimer’s disease (Jones et al. (2012)).

The most common way to measure dFC is to apply a sliding-
window analysis (see Hutchison et al. (2013) for a review of
dFC). Methods to analyse the changes in connectivity across
windows vary in complexity. A simple approach characterises
dFC as the standard deviation (SD) of the correlation values
across time windows (Elton and Gao (2015)). Alternatively,
one can pool data across individuals and use k-means clustering
to identify recurring connectivity patterns (Allen et al. (2012)),

or “FC states”. Another class of methods applies network the-
ory on an individual level. The brain can be characterised as
a complex graph, with distinct brain regions corresponding to
nodes, and functional connections corresponding to edges be-
tween nodes (Bullmore and Sporns (2009)). Differences in the
properties of the resulting graphs can then be used as measures
of dFC (Bassett et al. (2011), Bassett et al. (2013b)). Crucially,
both these classes of methods require a choice of hyperparame-
ters, which have to be estimated from the data. For example, in
a k-means analysis, the number of clusters k has to be prespec-
ified.

Some of the challenges facing current methods, such as the
choice of window width and the effect of data pre-processing,
have already been discussed in Hutchison et al. (2013). Further-
more, Shakil et al. (2016) have shown that the width and offset
of windows can have an effect on the detection of FC state tran-
sitions and duration in a k-means analysis. In this paper we
address an additional issue, namely unaccounted heterogene-
ity between individuals. While the aim of group studies is to
detect heterogeneity in true dFC, other sources of heterogene-
ity may have an impact on estimated dFC. Heterogeneity can
arise in a variety of ways. For example, Arbabshirani et al.
(2014a) found the autocorrelation of fMRI time series within
brain regions to differ between healthy brains and those with
schizophrenia, and autocorrelation is known to affect estimation
of cross-correlation (Arbabshirani et al. (2014b)). Although it
is unclear whether this change in autocorrelation is due to neu-

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 21, 2017. ; https://doi.org/10.1101/118968doi: bioRxiv preprint 

https://doi.org/10.1101/118968
http://creativecommons.org/licenses/by/4.0/


0 20 40

0

1

0 20 40

Time (TRs)

0

1

0 20 40

0

0.5

0 20 40

0

0.5

0 20 40

0

0.5

0 20 40

Time (TRs)

0

0.5

0 20 40

0

0.5

1

1.5

0 20 40

0

0.5

1

1.5

0 20 40

0

0.5

1

1.5

0 20 40

Time (TRs)

0

0.5

1

1.5

0 20 40

0

2

4

0 20 40

0

2

4

0 20 40

0

2

4

0 20 40

Time (TRs)

0

2

4

0 20 40

0

2

4

0 20 40

0

2

4

0 20 40

0

2

4

0 20 40

Time (TRs)

0

2

4

Full event

sequence

Module-specific

        events
Convolve

 with HRF
Add noise

Region-specific

        events+ =

Blue module

Red module

S
2

S
1

R
1

R
2

R
3

R
4

Figure 1: The generic simulation framework used to generate fMRI data for a brain consisting of four regions. State i is denoted by S i and region j is denote by R j.
Two brain regions are connected at any given time if they are in the same module, which are distinguished here by colours. These panels show data for 40 TRs: the
first 20 TRs are spent in S 1 while the last 20 TRs are spent in S 2.

ral or vascular factors, work with dynamic causal modeling has
suggested that neural autocorrelation within some networks can
vary between young and older participants (Tsvetanov et al.
(2016)). Another example of heterogeneity is differences in
the haemodynamic response function (HRF). The shape of the
HRF, which can be modelled as a finite impulse response ker-
nel, has been found to vary between healthy patients and pa-
tients with schizophrenia (Hanlon et al. (2016)) and also be-
tween age groups (Huettel et al. (2001), Aizenstein et al. (2004),
D’Esposito et al. (1999)). Even non-neural physiological noise
levels might differ across groups, owing for example to greater
within-scan head movement in old relative to young subjects
(Geerligs et al. (2015)).

Here, we aim to investigate how unaccounted heterogeneity
impacts estimates of dFC. Building on previous work by Allen
et al. (2012), we designed a simulation framework to generate
data from a dynamic connectivity structure based on FC states.
We characterise FC states as time periods in which brain regions
can be grouped into specific sets, or “modules”. In a given FC
state, regions are considered connected if, and only if, they are
in the same module. In this framework, changes in connectiv-
ity structure then correspond to FC state transitions. Data were
generated to investigate the effect of individual differences in
neural autocorrelation, HRF shape, connectivity strength and
measurement noise on estimated dFC. We specifically used the
case of aging to illustrate how plausible age-related sources of
heterogeneity could impact dFC estimates. Furthermore, we
varied the number of FC states and frequency of FC state tran-
sitions, in order to explore the effect of hyperparameter selec-
tion on the results of popular dFC methods such as the k-means
method used by Allen et al. (2012) and the multilayer modular-
ity approach of Bassett et al. (2011). Our analysis follows a typ-
ical sliding-window dFC pipeline based on a number of recent
studies (e.g. Allen et al. (2012), Elton and Gao (2015), Sakoğlu

et al. (2010)). Our findings show that group-level differences in
neural autocorrelation, HRF shape, connectivity strength, mea-
surement noise, number of FC states and frequencies of FC
state transitions can lead to systematic differences in observed
dFC between simulated fMRI time-series data.

2. Methods: simulation framework

To demonstrate some of the issues associated with assess-
ing dFC in heterogeneous samples, we developed a simulation
framework based on Allen et al. (2012). For each type of het-
erogeneity, we report the effects of changing only one parame-
ter at a time, in order to isolate its relative impact on the analy-
sis, though we consider interactions between parameters in the
Supplementary Material. Thus, each source of heterogeneity
corresponded to a change in a single step of the data generation
process. To illustrate the effects of neural autocorrelation, HRF,
connectivity strength and measurement noise, it was sufficient
to simulate data from a model with only four regions of interest
(ROIs) - Base Simulation 1. In order to analyse the impact of
changes in both number of FC states and frequency of FC state
transitions, we increased the number of ROIs to 32 to allow for
a greater variety of states - Base Simulation 2. We now describe
the simulation framework in detail, illustrated schematically in
Figure 1, before outlining both Base Simulations and the spe-
cific variations for each source of heterogeneity.

We characterised FC states as time periods in which regions
are partitioned into “modules”. For convenience, we denote
state i as S i and region j as R j. To simulate fMRI data for an
individual, we first generated a FC state sequence to describe
the changes in functional connectivity. This process is outlined
in detail in the Base Simulations below. We used a sampling
rate of TR = 2s and generated binary neural event sequences
of length T = 360 TRs for each module and each region. The
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module-specific event sequences drive the connectivity struc-
ture: a module-specific event is one which occurs for all re-
gions within that module in the current FC state. In contrast,
region-specific events are those which occur for single regions
only, independent of other regions, and thus correspond to neu-
ral noise.

More precisely, a module-specific event occurred in a mod-
ule at an individual time point with probability Pmod = 0.5,
independent of all other modules and time points. If a mod-
ule has an event at time t, all regions within that module at
time t have an event. For each region, we then superimposed a
region-specific neural event sequence. A region-specific event
occurred in a region at an individual time point with probabil-
ity Preg = 0.5, independent of all other regions and time points
(except in Section 3.1, where we explored the effect of auto-
correlated region-specific events). We fixed the amplitude of
region-specific events to be areg = 1, and set the amplitude of
the module-specific events to be amod = 2. The full event se-
quences were then convolved with a haemodynamic response
function (HRF; kernel length = 16 TRs) using the SPM12 soft-
ware (http://www.fil.ion.ucl.ac.uk/spm) to produce fMRI-like
time series, which were rescaled to have a SD of 1. White
noise with SD σnoise = 0.2 was then added. Finally, a high-pass
Butterworth filter removing frequencies below 0.033Hz was ap-
plied. This is based on the rule of thumb given by Leonardi and
Ville (2015) which recommends removing frequency compo-
nents below 1/w, where w is the window length in the sliding-
window analysis.

2.1. Base Simulation 1 (4 ROIs)
In this setting, which corresponds to the framework illus-

trated in Figure 1, we restricted dynamics to two FC states,
S 1 and S 2. S 1 corresponded to the partition {1,1,2,1}, so that
R1, R2, R4 were grouped into module 1, and R3 was grouped
by itself into module 2, while S 2 corresponded to the partition
{1,1,2,2}. We fixed the FC state sequence such that each indi-
vidual spent half of the time in S 1 and then transitioned to S 2.
This allowed for the comparison of dFC between three types
of region pairs: connected (within-module e.g. R1-R2), uncon-
nected (between-module e.g. R1-R3), and a dynamic connection
(within-module to between-module e.g. R1-R4). We then gener-
ated fMRI-like data using the simulation framework described
above.

2.2. Base Simulation 2 (32 ROIs)
In this setting, we generated a total of 9 FC states, each con-

sisting of a partition of the 32 ROIs into exactly 5 modules. For
each FC state we generated a module label for each region from
the numbers {1, . . . , 5} uniformly. If a FC state did not contain
all 5 modules, we repeated this process. To ensure that no two
FC states were too similar to each other, we computed the nor-
malised mutual information (NMI) between each pair of state
vectors, repeating the whole process if the maximum pairwise
NMI exceeded 0.5. For each individual, we generated a ran-
dom sequence of FC states under the assumption that a brain
remained in a FC state for a fixed period of time before switch-
ing to any other FC state. Each FC state thus lasted a quarter of

the total time period if three FC state transitions were specified,
or half of the period if just one FC state transition was spec-
ified. We then generated fMRI-like data using the simulation
framework described above.

3. Methods: specific simulations

For the first four simulations described here, we used Base
Simulation 1 to generate the data. To measure dFC, we applied
a sliding-window analysis. We used a tapered-cosine (Tukey)
window of width w = 30 TRs with a total taper section of
length 15 TRs. We slid the windows one time point at each step,
yielding a total of 331 windows. We calculated pairwise Fisher-
transformed Pearson correlation for each window and for each
pair of regions. We then computed the SD of the time series of
correlation values between each pair of regions. This measure
is commonly defined as a proxy for dynamic functional connec-
tivity. We also used the variance and the interquartile range of
the correlation time series as alternative measures of dFC but
these did not produce materially different results. For each set
of parameters, we simulated 100 replicates in order to account
for the randomness inherent in the data generation and also to
assess the variability of our measure of dFC.

3.1. Neural autocorrelation

To investigate the effect of varying neural autocorrelation on
the analysis of dFC, we used Base Simulation 1. To control the
neural autocorrelation, we varied the generation of the region-
specific neural event sequences. We modelled the binary se-
quences as Markov chains dependent on two parameters: the
equilibrium probability of an event πreg and the lag-1 autocor-
relation ρreg. The default value in Base Simulation 1 is the
special case of πreg = 0.5 and ρreg = 0, indicating no auto-
correlation, and is the value used in later simulations. For the
purposes of this simulation, we kept the equilibrium probability
of an event fixed at πreg = 0.5, thus ensuring that the expected
number of events was constant at 180. We generated data for
ρreg = −0.8,−0.7, . . . , 0.8 with the remainder of the simulation
following the simulation framework described in section 2. We
also performed this analysis with a range of values of Pmod,
Preg, amod, and σnoise and after prewhitening the data - see Fig-
ures S5 and S8 respectively.

Note that this region-specific signal can be considered a
source of noise (as opposed to the module-specific events that
drive the connectivity signals). The autocorrelation in this neu-
ral noise contributes to the temporal autocorrelation observed
in the fMRI time series, which, once combined with the white
noise measurement noise below, produces the AR(1)+white
noise that characterises fMRI noise (at least after high-pass fil-
tering; Friston et al. (2000)). Nonetheless, in real fMRI data,
there are other sources of coloured noise, such as those induced
by respiratory and cardiac signals, and by head-movement (see
e.g. Woolrich et al. (2001)), which could also differ across
groups.
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Figure 2: Two example haemodynamic response functions (HRF) based on
different values for the dispersion of response and the delay of response. The
purple line represents the default HRF used in the Base Simulations. We used
a sampling rate of TR = 2s.

3.2. Haemodynamic response function

To demonstrate the impact of the HRF on dFC, we gener-
ated data with various HRFs, two of which are shown in Fig-
ure 2. We varied two of the HRF parameters, the dispersion
of peak response (the width of the initial peak) and the delay
of response, while the other 6 HRF parameters were held con-
stant. In this simulation, we generated data using each HRF
with peak dispersion σHRF = 0.6, 0.8, . . . , 2.4 and response de-
lay τHRF = 5, 5.2, . . . , 9s.

3.3. Connectivity strength

In our simulation framework, neural noise corresponds to the
neural events that do not contribute to the connectivity struc-
ture. In other words, neural noise corresponds to the region-
specific neural events, while the module-specific events are
those which drive the connectivity structure. To investigate how
connectivity strength affects dFC estimation, we varied the am-
plitude amod of the module-specific events relative to the region-
specific events, which we fix to have amplitude areg = 1. In this
simulation, we generated data for amod = 0.5, 1, . . . , 5. We also
performed this analysis with a range of values of Pmod, Preg,
ρreg, and σnoise - see Figure S6.

3.4. Measurement noise

To investigate how measurement noise affects dFC estima-
tion, we varied the amount of white noise added to the fMRI-
like time series. We generated data with white noise of stan-
dard deviation σnoise = 0, 0.1, . . . , 2.5 times that of the signal.
We also performed this analysis with a range of values of Pmod,
Preg, ρreg, and amod - see Figure S7.

3.5. k-means
A key assumption in many FC state-based methods is that

there is a common set of FC states across individuals. In par-
ticular, it is assumed that, at rest, different participants cycle
through a comparable set of brain states. In this simulation, we
investigated what happens when this assumption does not hold.
Specifically, we simulated 32-ROI fMRI data, using Base Sim-
ulation 2, from two groups of 50 people: group 1 could visit 9
distinct FC states, and group 2 could only visit 6 of these 9 FC
states. Individuals in both groups experienced 3 FC state transi-
tions in the course of a scan. FC state sequences for both groups
were thus of length 4, with sequences for group 2 restricted to
the FC states {1, . . . , 6}. For group 2, individuals were equally
likely to be in each of the first six FC states. For group 1, in
contrast, individuals were twice as likely to be in FC states 7,8
and 9 than in the first six FC states. The remainder of the simu-
lation for each individual then followed the generic simulation
framework.

We estimated correlation matrices for each position of the
sliding-window analysis, as in the previous simulations, to
produce 331 (Fisher-transformed) correlation matrices of size
32 × 32. The upper triangular part of this correlation matrix
was vectorised to yield 331 correlation vectors of length 496
per subject. The k-means clustering was then performed on
the set of all these vectors, pooled across subjects, with the `2
norm as distance measure. Centroids were initialised using the
k-means++ algorithm in Matlab and analysis was repeated 40
times with different initial centroids to avoid sub-optimal clus-
terings. We investigated the performance of the clustering with
k = 1, . . . , 12 for the two groups separately and combined.

For each k, the algorithm returned a sequence of FC state
labels for each subject, and the centroid of each of the k FC
states. As the recovered FC state labels are arbitrary, the labels
do not necessarily match those of the true FC states. While one
can permute the recovered FC state labels to maximise the over-
lap with the true FC state sequence, this becomes more difficult
with multiple subjects. Additionally, a simple relabelling does
not take into account that incorrectly labelled FC states are not
equally wrong. For example, if in two distinct windows, a sub-
ject is in FC state 1, but a k-means analysis recovers FC states
2 and 3 respectively (after relabelling), it may be the case that
FC state 2 is closer to FC state 1 than FC state 3.

To circumvent the mislabelling and to enable comparisons of
performance across different values of k, we replaced FC state
labels by correlation matrices. For the recovered FC state se-
quences, we used the corresponding FC state centroid as cal-
culated by the k-means algorithm. For the true sequences, we
replaced a FC state label by a ‘true’ correlation matrix for that
state. Recall that, in the 360 TRs simulated, a brain experienced
3 FC state transitions so that each FC state lasted 90 TRs. For
each FC state, we first calculated the correlation matrix for each
window of width 90 TRs in which all time points are in that FC
state. We then took the ‘true’ correlation matrix as the average
of all the corresponding correlation matrices in the same FC
state across all subjects.

At each time point, we then computed the centroid error as
the `2 distance from the ‘true’ correlation matrix to the centroid
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of the recovered FC state at that time. We thus used two mea-
sures of performance: the average number of detected FC state
changes across subjects, and the mean centroid error across all
time points and subjects.

Note that, in typical task-free fMRI analyses, we do not know
the ground truth. In our simulation, however, we assumed that
the states of all participants were drawn from a larger common
pool of states. The k-means algorithm identifies comparable
connectivity patterns and groups them into states. It does not
take into account the order in which the states occur for an in-
dividual and so a state can occur at different times for different
participants. This allowed us to cluster across individuals and
time points.

3.6. Multilayer Modularity

In many studies of dFC, a question of interest is whether
groups differ in the degree to which connections between re-
gions are static versus dynamic. Here, we examined how the
frequency of state transitions could be detected using a multi-
layer moduarity algorithm, and how the choice of parameters
affected these results. To this end, we simulated 32-ROI data,
using Base Simulation 2, from two groups of 50 people: indi-
viduals in group 1 experienced 3 FC state transitions, and group
2 experienced just 1 FC state transition in the course of a scan.
FC state sequences for group 1 were thus of length 4, while FC
state sequences for group 2 were of length 2. All individuals
could visit the same 9 FC states. The remainder of the simula-
tion for each individual then followed the simulation framework
described in Section 2. We applied the same sliding-window
analysis as in the previous simulations, again using a window of
width w = 30, calculating pairwise (Fisher-transformed) Pear-
son correlation for each window and for each pair of regions.
In this case, however, we slid windows in steps of 30 TRs (in-
stead of 1 TR) resulting 12 non-overlapping windows of width
30 TRs. This is based on the multilayer-modularity approach
used by Bassett et al. (2011).

In the multilayer-modularity approach, the brain is charac-
terised as a multilayer network with nodes corresponding to
brain regions in different windows, or “layers”. The non-
overlapping sliding-window analysis yields a correlation matrix
A with Ai jl corresponding to the correlation between regions Ri

and R j in window l. For each partitioning of regions into mod-
ules, the following multilayer modularity index is defined as a
measure of the quality of the partition:

Q =
1

2µ

Nreg∑
i=1

Nreg∑
j=1

Nwin∑
l=1

Nwin∑
r=1

[(
Ai jl−γ

kilk jl

2ml

)
δl,r +ωδi, jδl−r,1

]
δ(gil, g jr),

where γ and ω are hyperparameters, Nreg is the number of
regions, Nwin is the number of windows, gil is the module as-
signment of region Ri in window l, kil =

∑
j Ai jl, 2ml =

∑
i j Ai jl,

and 2µ =
∑

jl(k jl +
∑

r ωδl−r,1). The δ function is defined such
that δi, j ≡ δ(i, j) = 1 if i = j and is equal to 0 otherwise. In our
simulation, Nreg = 32 and Nwin = 12. The regions can then be

partitioned into modules by attempting to maximise the mod-
ularity index Q using a generalised Louvain algorithm (Mucha
et al. (2010)).

We investigated the effect of varying the hyperparameters γ
and ω on the accuracy of the subsequent partitions. Broadly
speaking, γ controls the resolution of the partitioning within
layers so that a high value of γ encourages regions to be
grouped into smaller modules, thus increasing the total number
of modules. On the other hand, ω influences the ‘stickiness’ of
module assignments between consecutive layers. Thus, a high
value of ω encourages fewer module changes for an individual
region.

To assess the performance of the algorithm, we used two er-
ror measures. Firstly, we created “incidence matrices” of size
32 × 32 × 12, which contained an entry of 1 if the correspond-
ing pair of regions had the same module label during a given
window, and 0 otherwise. We then calculated the error in con-
nectivity structure as the Hamming distance of the recovered
incidence matrix (based on the multilayer modularity partition-
ing) to the true incidence matrix (based on the original module
structure) at that time. The Hamming distance between two
matrices of the same size is given by the number of elements
at which the matrices differ. Secondly, we computed the mean
flexibility for each subject, as defined by Bassett et al. (2011).
The flexibility of a region is calculated by the number of times
the region changes module assignment divided by the total pos-
sible number of module changes. The mean flexibility is then
given by the mean region flexibility over all 32 regions. Note
that the expected mean flexibility for a young individual in our
simulation is approximately 4/55 (1 state change out of a pos-
sible 11 with the probability of a region changing module at
a state change of approximately 0.8), compared to 12/55 for
an old individual. For each subject, we ran the algorithm for
γ = 0.75, 1, . . . , 2.5 and ω = 0.25, 0.5, . . . , 4.5.

4. Results: issues and limitations

We first investigate whether unaccounted heterogeneity can
impact estimates of dFC. Here we examine four sources of het-
erogeneity: 1) individual differences in neural autocorrelation,
2) shape of the HRF, 3) connectivity strength and 4) measure-
ment noise. We consider a simple, yet common, measure of
dynamic connectivity, namely the standard deviation (SD) of
correlation values across sliding windows. We calculated this
measure for three types of true connectivity: 1) static, positive
connections between regions within the same module, 2) static,
zero connections between regions in different modules, and 3)
dynamic changes between positive and zero connections when
a region switched from being in the same module to being in a
different module as another region (see Section 2). As expected,
across all the simulations, estimated dFC for the dynamic con-
nections is higher than the estimated dFC for both types of static
connections.

4.1. Neural autocorrelation
In this simulation, we investigated the association between

neural autocorrelation and estimated dFC, making sure that dif-
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(d)

Regression results for dFC

Connection
type Covariate Estimate 95% CI

Within-
module

ρreg 0.038 (0.032, 0.044)

ρ2
reg -0.019 (-0.033, -0.005)

Between-
module

ρreg 0.003 (-0.005, 0.010)

ρ2
reg -0.013 (-0.029, 0.003)

Module
change

ρreg -0.135 (-0.145, -0.124)

ρ2
reg 0.159 (0.136, 0.182)

Model: σcorr = α + β1ρreg + β2ρ
2
reg + ε

ε ∼ N(0, σ2)

Figure 3: The impact of neural autocorrelation on estimated dFC, measured by the SD of the correlation time series, between (a) statically connected regions (within-
module), (b) unconnected regions (between-module), and (c) dynamically connected regions (module change), with (d) the results of a multiple regression. Ri refers
to Region i. Region pair R1-R4 has a dynamic connection so the true dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection.
Estimated dFC between statically connected (within-module) regions increased with neural autocorrelation, while estimated dFC for dynamically connected regions
(module change) decreased with increased neural autocorrelation. The neural autocorrelation is varied independently of the underlying connectivity structure, so
changing it should have no effect on dFC. The multiple regression assesses the impact of neural autocorrelation on estimated dFC with a statistically significant
effect indicated by a 95% confidence interval (CI) in bold type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.

ferences in neural autocorrelation were not associated with dif-
ferences in ‘true’ dynamic connectivity. This was achieved
by varying the autocorrelation ρreg of region-specific events
but keeping the autocorrelation of the module-specific events
fixed at zero. Recall that region-specific events are gener-
ated independently of the connectivity structure so, under our
simulation framework, changing them should have no effect
on dFC. Note that the underlying dFC structure is held con-
stant across all iterations. We estimated dFC for three types
of connection: a static, positive connection, a static zero con-
nection, and a dynamic connection (from positive to zero) for

ρreg = −0.8,−0.6, . . . , 0.8.

Figure 3 illustrates the impact of neural autocorrelation on
estimated dFC. Although Figure 3b shows that estimated dFC
for the unconnected regions remains unaffected by changes in
neural autocorrelation, Figure 3a demonstrates that estimated
dFC between the positively connected regions is higher as neu-
ral autocorrelation increases. In contrast, Figure 3c shows that
estimated dFC decreased between the dynamically-connected
regions as the autocorrelation increased. In other words, the
ability to detect a difference in dFC between dynamically con-
nected and statically connected regions decreases with higher
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levels of neural autocorrelation. These observations are sup-
ported by the multiple regression in Figure 3d: neural auto-
correlation had a statistically significant effect on estimated
dFC for the positively connected and dynamically connected
regions, but not for the unconnected regions. These results sug-
gest that observed dFC may vary substantially due to differ-
ences in neural autocorrelation, even though the true dFC was
identical across individuals.

4.2. Haemodynamic response function

It has been shown that the haemodynamic response func-
tion (HRF) varies between different ages (Huettel et al. (2001),
Aizenstein et al. (2004), D’Esposito et al. (1999)) and dis-
ease states (Hanlon et al. (2016)). To illustrate the effect of
the HRF on observed dFC, we altered the HRF by varying
the dispersion of the response σHRF and the delay of response
τHRF . Note that the underlying dFC structure is held con-
stant across all iterations. To measure dFC, we calculated the
mean SD of the sliding-window correlation time series for the
three types of region pairs (positively connected, unconnected,
and dynamically connected) for σHRF = 0.6, 0.8, . . . , 2.4 and
τHRF = 5, 5.2, . . . , 9s.

Figures 4a and 4b show that a more temporally dispersed
HRF (as often observed for older individuals) resulted in in-
creased dFC between regions, when in truth the connectivity
remained constant. Increases in both the dispersion of peak
response σHRF and the delay of response τHRF resulted in in-
creased estimated dFC. Figure 4c shows a similar effect for re-
gions with a dynamic connection though, in this case, the in-
crease was not as marked. Figure 4d compares the observed
dFC for two of these HRFs. Individuals in Group 1 had a HRF
with peak dispersion 1 and a response delay of 6s (purple line
in Figure 2), which might represent a younger sample. In con-
trast, individuals in Group 2 had a HRF with peak dispersion
2 and a response delay of 8s (yellow line in Figure 2), which
might represent an older sample. For the static connections we
see that, even though the true dFC was the same across groups,
the observed dFC varied substantially between groups due to
the shape of the HRF. These observations are supported by the
multiple regression results in Figure 4e: both the dispersion of
peak response σHRF and the delay of response τHRF had sta-
tistically significant effects on estimated dFC for the statically
connected regions, but only the delay of response τHRF had a
statistically significant impact for the dynamically connected
regions.

4.3. Connectivity strength

In our simulation framework, connectivity strength corre-
sponds to the amplitude of the module-specific events, since
these drive the connectivity structure. In this simulation, we
investigated the association between connectivity strength and
estimated dFC. This was done by varying the amplitude of
module-specific events amod while keeping the amplitude of the
region-specific events fixed (i.e. the size of the connectivity
“signal” versus region-specific neural “noise”). Note that the
underlying dFC structure is held constant across all iterations.

To measure dFC, we calculated the mean SD of the sliding-
window correlation time series for the three types of region
pairs (positively connected, unconnected, and dynamically con-
nected) for amod = 0.5, 1, . . . , 5.

Figure 5 illustrates the impact of connectivity strength on
estimated dFC. As expected, Figure 5b shows that estimated
dFC for the unconnected regions remains unaffected by changes
in connectivity strength. However, Figure 5a demonstrates
that estimated dFC between the positively connected regions
is moderately lower as connectivity strength increases. In con-
trast, Figure 5c shows that estimated dFC increased between
the dynamically-connected regions as connectivity strength in-
creased. In particular, the ability to detect a difference in dFC
between dynamically connected and statically connected re-
gions decreases with lower connectivity strength. These obser-
vations are supported by the multiple regression results in Fig-
ure 5d: connectivity strength had a statistically significant effect
on estimated dFC for the positively connected and dynamically
connected regions, but not for the unconnected regions. These
results suggest that observed dFC may vary substantially due to
differences in connectivity strength, even though the true dFC
was identical across individuals.

4.4. Measurement noise
We also investigated the effects of varying amounts of mea-

surement noise on observed connectivity dynamics by generat-
ing data with white noise of SD σnoise = 0, 0.1, . . . , 2.5. Recall
that the signal was rescaled to have SD 1, resulting in noise-to-
signal ratios equal to σnoise (ignoring neural noise).

Figure 6 shows the effect of varying measurement noise on
the standard deviation of correlation. Figures 6a, 6b, and 6c
show that for all three types of region pair, increasing the
amount of measurement noise resulted in decreased observed
dFC. This is supported by the multiple regression results in Fig-
ure 6d: measurement noise had a statistically significant effect
on estimated dFC for all three connection types. Thus, noisier
data resulted in lower estimated dFC even for the pair of ROIs
that experienced a true change in connectivity. When the ampli-
tude reached a certain threshold (σnoise > 2.0), the white noise
dominated the underlying fMRI signal, resulting in a mean dFC
of 0.2 for all three types of connectivity.

In the Supplementary Material, we demonstrate that the ef-
fects of neural autocorrelation, connectivity strength and mea-
surement noise on estimated dFC persist across a range of pa-
rameter values (see Figures S5, S6 and S7 respectively).

4.5. k-means
In the previous sections, we demonstrated that group differ-

ences in connectivity dynamics, as measured with simple slid-
ing window approaches, can be due to other factors such neural
autocorrelation. However, even when such differences do not
exist, some common dFC methods may still detect artifactual
group differences in dFC owing to unaccounted heterogeneity
in the dynamic connectivity structure.

To investigate the effect of heterogeneity in the number of FC
states attainable, we generated a set of data for two groups of 50
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(e) Regression results for dFC

Within-module Between-module Module change

Covariate Estimate 95% CI Estimate 95% CI Estimate 95% CI

τHRF 0.093 (0.084, 0.101) 0.098 (0.088, 0.107) 0.039 (0.027, 0.052)
σHRF 0.013 (0.002, 0.024) 0.032 (0.020, 0.045) 0.004 (-0.013, 0.021)

τHRF : σHRF 0.000 (-0.001, 0.001) -0.002 (-0.004, -0.001) -0.000 (-0.002, 0.001)
τ2

HRF -0.006 (-0.006, -0.005) -0.006 (-0.007, -0.005) -0.003 (-0.004, -0.002)
σ2

HRF -0.004 (-0.007, -0.001) -0.005 (-0.008, -0.002) -0.000 (-0.004, 0.004)

Model: σcorr = α + β1τHRF + β2σHRF + β3τHRFσHRF + β4τ
2
HRF + β5σ

2
HRF + ε

ε ∼ N(0, σ2)

Figure 4: The impact of HRF shape on estimated dFC, measured by the SD of the correlation time series, between (a) statically connected regions (within-module),
(b) unconnected regions (between-module), and (c) dynamically connected regions (module change), with (d) a comparison of estimated dFC for two groups and
(e) a summary of results. Ri refers to Region i. The HRF was altered by varying two parameters: the dispersion of response σHRF and the delay of response τHRF .
Individuals in G1 had an HRF with σHRF = 1 and τHRF = 6 while individuals in G2 had an HRF with σHRF = 2 and τHRF = 8. Each square in (a-c) corresponds to
the mean (across individuals) estimated dFC for a pair of parameter values of (σHRF , τHRF ), with yellow indicating higher dFC. The dashed lines in (a-c) indicate the
parameter values of the two groups compared in (d), whose HRFs are shown in Figure 2. A more dispersed HRF increased estimated dFC between all three types of
region pairs, despite all individuals having identical dFC structure. We observed higher variability in dFC for the statically connected regions (within-module) as the
dispersion and delay of the response increased. We saw a similar effect for the dynamically connected regions (module change), though this was less pronounced.
While the box plots in (d) illustrate a single comparison of two groups, the multiple regression results in (e) summarise the impact of the two HRF parameters on
estimated dFC with a statistically significant effect indicated by a 95% confidence interval (CI) in bold type.
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(d)

Regression results for dFC

Connection
type Covariate Estimate 95% CI

Within-
module

amod -0.033 (-0.043, -0.024)

a2
mod 0.003 (0.001, 0.005)

Between-
module

amod 0.002 (-0.009, 0.013)

a2
mod -0.000 (-0.002, 0.002)

Module
change

amod 0.200 (0.185, 0.215)

a2
mod -0.019 (-0.022, -0.016)

Model: σcorr = α + β1amod + β2a2
mod + ε

ε ∼ N(0, σ2)

Figure 5: The impact of connectivity strength on estimated dFC, measured by the SD of the correlation time series, between (a) statically connected regions (within-
module), (b) unconnected regions (between-module), and (c) dynamically connected regions (module change), with (d) the results of a multiple regression. Ri refers
to Region i. Region pair R1-R4 has a dynamic connection so the true dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection.
Increased amplitude of module-specific events resulted in decreased observed dFC for the positive static connected pair (within-module) but increased dFC for the
dynamically connected pair (module change). The effect on the unconnected pair (between-module) was small. The connectivity strength, corresponding to the
amplitude of module-specific events, is varied independently of the underlying connectivity structure, so changing it should have no effect on dFC. The multiple
regression assesses the impact of connectivity strength on estimated dFC with a statistically significant effect indicated by a 95% confidence interval (CI) in bold
type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.

individuals: those in G1 could reach 9 FC states, and those in
G2 could reach only 6 of these 9 FC states (see Section 3.5). If
these FC states can be recovered accurately from the data, then
a simple measure of dFC is the number of FC state transitions
that occur. Importantly, in the simulations, the number of such
transitions was identical across groups, namely three.

We used a k-means cluster analysis on the correlation ma-
trices in an attempt to recover the underlying FC states. Fig-
ure 7 illustrates the performance of the k-means analysis for
values of the hyperparameter k = 1, . . . , 12. We ran the analysis
for the two groups separately, and also for all 100 individuals

together. Here, we perform the analysis with sliding-window
width w = 30, though window widths w = 60, 90, 120 TRs,
yielded broadly similar results (see Figures S1, S2 and S3). Fur-
ther, Figure S4 shows that, when k is correctly estimated or only
slightly misspecified, it becomes more difficult to estimate the
states correctly as window length increases.

Figure 7a shows that when k < 9, the typical (combined)
k-means analysis underestimated the number of FC state transi-
tions for G1, while the number of FC state transitions for G2
was recovered more accurately. Unless the correct value of
k was estimated, Figure 7c shows that the combined analysis
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(d)

Regression results for dFC

Connection
type Covariate Estimate 95% CI

Within-
module

(NS R) -0.115 (-0.126, -0.103)

(NS R)2 0.032 (0.028, 0.037)

Between-
module

(NS R) -0.163 (-0.174, -0.151)

(NS R)2 0.045 (0.040, 0.050)

Module
change

(NS R) -0.493 (-0.509, -0.478)

(NS R)2 0.136 (0.130, 0.143)

Model: σcorr = α + β1(NS R) + β2(NS R)2 + ε
ε ∼ N(0, σ2)

Figure 6: The impact of measurement noise on estimated dFC, measured by the SD of the correlation time series, between (a) statically connected regions (within-
module), (b) unconnected regions (between-module), and (c) dynamically connected regions (module change), with (d) the results of a multiple regression. Ri refers
to Region i. Region pair R1-R4 has a dynamic connection so the true dFC should be higher than region pairs R1-R2 and R1-R3, which have a static connection.
Increased measurement noise resulted in decreased observed dFC for the three types of region pairs. This effect was particularly pronounced for the dynamically
connected regions (module change). The multiple regression assesses the impact of measurement noise on estimated dFC with a statistically significant effect
indicated by a 95% confidence interval (CI) in bold type. The solid lines in (a-c) correspond to the fitted values of the multiple regression.

leads to artifactual differences in dFC between groups. One
might think that fitting the two groups separately would solve
this problem. Figure 7b demonstrates a modest improvement in
the error in number of FC state transitions for G1 (yellow line)
when k was underestimated, but a steep increase in error for G2
when k was overestimated. This deterioration when k > 6 is
to be expected because the k-means algorithm had to identify
more FC states than are actually present in the G2. We see in
Figure 7d that for the separate analysis, incorrect group differ-
ences were again found when k was overestimated or grossly
misspecified for either group.

Figures 7e and 7f illustrate the differences between the
groups for both analyses in mean centroid error, which is a mea-

sure of how well the complete space-time connectivity structure
is recovered. In this case, the combined analysis performed
better for the young group than the old group when k was un-
derestimated (k < 9), indicating that the recovered centroids
were biased towards the 6 joint states. In contrast, if k was cor-
rectly specified or only slightly misspecified for either group,
the separate analyses had a similar error in recovered connec-
tivity structure. While these results suggest that the separate
analyses did yield some improvement on the combined analy-
sis, we caution that the problem of estimating k for both groups
still needs to be addressed. As shown in Figure 7c and 7d, with-
out an accurate estimation of k, one is likely to incorrectly in-
fer the size of differences in dFC across groups, even for cases
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Figure 7: The true number of FC state transitions in this simulation is 3. Individuals in G1 could reach 9 FC states while individuals in G2 could reach only 6 of
these 9 FC states. (a) When k < 9, the combined analyses underestimated the number of FC state transitions for G1 (solid yellow line), while the number of FC state
transitions for G2 (solid purple line) was recovered more accurately. (b) The separate analysis showed an improvement in the error in number of FC state transitions
for G1 (dotted yellow line) when k was underestimated. (c) Unless k was correctly estimated, the combined analysis yielded an incorrect group difference in number
of FC state transitions. (d) For the separate analysis, incorrect group differences were only found when k was overestimated or grossly misspecified for either group.
(e) In terms of recovered space-time connectivity structure, the combined analysis performed better for G2 (solid purple line) than G1 (solid yellow line) when k
was underestimated. (f) If k was correctly specified or only slightly misspecified for either group, the separate analyses had a similar error in recovered connectivity
structure. Asterisks in (a-d) indicate a statistically significant (p < 0.05) difference from zero, according to a Wilcoxon signed-rank test, while asterisks in (e-f)
indicate a statistically significant (p < 0.05) difference between the two groups, according to a two-sample Wilcoxon rank-sum test.
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Figure 8: The RSS plots for the separate analysis of G2 has a clear elbow at
k = 6 but there is no obvious elbow for the separate analysis of G1 or the
combined analysis of both groups.

where there is no true difference. A common method for es-
timating the number of clusters, k, is the elbow plot shown in
Figure 8. This demonstrates that it is not always straightfor-
ward to estimate k accurately: while we see a clear elbow for
the separate analysis of G2 (purple dotted line), there is no ob-
vious elbow for the separate analysis of G1 (yellow dotted line)
or the combined analysis (solid black line).

4.6. Multilayer modularity

While the k-means method represents an approach which ag-
gregates data across subjects in order to glean information about
functional connectivity dynamics, other methods analyse fMRI
data on a subject-by-subject basis. For example, the multilayer
modularity approach (Bassett et al. (2011)) characterises the
correlation matrices for a single subject obtained from a sliding-
window analysis as a multi-layered network. Each region in
each window is assigned a module label by maximising a mod-
ularity index which depends on two hyperparameters γ and ω
(see section 3.6 for details).

In this simulation, we again generated data for two groups
of 50 individuals: those in G1 experienced one FC state tran-
sition while those in G2 experienced three FC state transitions.
We applied the multilayer algorithm for all 100 individuals for
γ = 0.75, 1, . . . , 2.5 and ω = 0.25, 0.5, . . . , 4. One measure
of dFC in this approach is the mean “flexibility” of each brain
region (see Methods). Thus, we now simulated a true group
difference in the number of FC state transitions, and examined
how accurately the FC states were recovered as a function of
the methods hyperparameters. We also examined the error in
the true vs estimated mean flexibility for each group.

Figure 9 illustrates the importance of parameter selection for
the multilayer modularity approach. Figures 9a and 9c show
that, in terms of the complete space-time connectivity dynam-
ics, the optimal value for ω differed between the two groups. A
lower value for ω generally resulted in more changes in module
assignment across consecutive time windows. Since an individ-
ual in G1 experienced fewer FC state transitions, brain regions

had fewer changes in module assignment across the course of
the scan. Thus for G1, a higher value for ω was more effective
in recovering the spatio-temporal connectivity structure.

We note that the optimal value for γ appears to be broadly
the same for both groups. The parameter γ influences the reso-
lution of the recovered network. A higher value for γ partitions
the brain regions into more modules. Since ROIs were always
partitioned into 5 modules for both groups, we would not expect
the optimal value of γ to differ between the groups.

Figures 9b and 9d show that larger values of ω yield higher
recovered mean flexibility for both G1 and G2. This effect,
however, does not occur at the same rate for both groups. Fig-
ure 10 shows that different values of γ and ω result in different
group differences in mean flexibility, to the extent that G1 is
incorrectly found to be more flexible for some values of the hy-
perparameters. Note that the true difference in flexibility was
approximately 0.14 (see Section 3.6) and this was not captured
for any values of γ and ω. This suggests that caution should be
taken when computing group differences, especially when an
assumption of homogeneity is made.

5. Discussion

In this article, we have illustrated some of the limitations
of current dFC methods when dealing with heterogeneity. We
used a generic simulation framework to isolate various sources
of heterogeneity, and showed that observed connectivity dy-
namics may be due to factors other than true changes in con-
nectivity.

To investigate the effects of individual differences in neu-
ral autocorrelation, HRF shape, connectivity strength and mea-
surement noise, we used the SD of correlation values across
sliding windows as our measure of dFC. We calculated this
measure for three types of connectivity: static, positively con-
nected; static, unconnected; and dynamically connected (posi-
tively connected to unconnected). Increased neural autocorrela-
tion resulted in higher dFC for statically connected regions but
lower dFC for dynamically connected regions. A more tempo-
rally dispersed HRF produced higher dFC for all three connec-
tivity types. In contrast, increased measurement noise yielded
lower dFC across the three types of connectivity. Increased con-
nectivity strength resulted in higher dFC for the dynamically
connected regions but lower dFC for the positively statically
connected regions. Together, these findings demonstrate that
individual differences in dFC can be caused by various prop-
erties of the fMRI signal that are unrelated to the underlying
neural connectivity dynamics.

We also demonstrated that common dFC methods may detect
artifactual group differences in dynamic connectivity due to the
assumptions that are made. For example, in a k-means analysis,
it is often assumed that all individuals may attain the same set of
FC states. If the hyperparameter k is incorrectly estimated, an
incorrect group difference in the number of FC state transitions
experienced may be detected if one group can attain more FC
states than the other group. We note that these issues could
in principle affect any FC state-based method which assumes
homogeneity in attainable FC states across individuals.
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(d) G2: error in flexibility
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Figure 9: The effect of varying parameters γ and ω on performance of the multilayer modularity approach. Individuals in G1 experience 1 state transitions while
individuals in G2 experienced 3 state transitions. Percentage error in connectivity structure is defined as the percentage of entries in the recovered incidence matrix
that are equal to the corresponding entries of the true incidence matrix. A red cross indicates the pair of parameter values (γ, ω) which minimised the mean (across
individuals) percentage error in connectivity structure. The flexibility of a region is defined as the number of times the region changes module assignment divided by
the total possible number of module changes. (a) For G1, the optimal parameter values for recovering the connectivity structure were γ = 1.25, ω = 2. (b) Increasing
ω resulted in decreased recovered flexibility for G1. (c) For G2, the optimal parameter values for recovering the connectivity structure were γ = 1.5, ω = 1. Thus,
the optimal value for ω was markedly lower for G2 than for G1 while the optimal value for γ was slightly higher for G2 compared to G1. (d) Increasing ω also
resulted in decreased recovered flexibility for G2, but at a greater rate than for G1.

More generally, care should be taken with any method that
requires the selection of hyperparameters by the user. In par-
ticular, we demonstrated that group differences in mean flexi-
bility detected by a multilayer modularity approach were regu-
lated by the choice of hyperparameters. While one would ex-
pect individual-based methods such as the multilayer modular-
ity approach to be more robust to heterogeneity, spurious group
differences can nonetheless be found if hyperparameters are as-
sumed constant across individuals.

One could attempt to optimise the choice of hyperparameters
using the data. For example, in a k-means analysis, the num-
ber of clusters, k, could be estimated by a Variational Bayesian
approach (Ghahramani et al. (1999)). For the multilayer modu-
larity approach, one could use cross-validation across indepen-
dent scans in an attempt to maximise stability of the recovered
connectivity structure, though this assumes that dynamics are
invariant across scans on the same individual. Alternatively,
Bassett et al. (2013a) suggest choosing the values of γ and ω

which yield connectivity structure that is most different from
particular null models. Hyperparameter optimisation could be
investigated in the future work, though our point is that such
optimisation should allow for heterogeneity across individuals.

We focused on a number of likely sources of heterogeneity in
fMRI signals, using effects of age to illustrate some of our ex-
amples. This is based on recent evidence of group differences
in signal autocorrelation (Geerligs et al. (2016), Arbabshirani
et al. (2014a)), HRF shape (Hanlon et al. (2016), Huettel et al.
(2001), Aizenstein et al. (2004), D’Esposito et al. (1999)), and
non-neural physiological noise levels (Geerligs et al. (2015),
Mark et al. (2015)). Nevertheless, our findings apply in any
situation where such heterogeneity may arise between individ-
uals. Furthermore, there may be other sources of heterogeneity
not investigated here that could have spurious effects on ob-
served dFC. For example, we only considered variability in 2
out of the 7 HRF parameters; it is plausible that the remain-
ing parameters also have an effect on estimated dFC. Similarly,
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Figure 10: The effect of varying parameters γ and ω in the multilayer mod-
ularity approach on the recovered group difference in mean (across regions)
flexibility. Individuals in G1 experience 1 state transitions while individuals
in G2 experienced 3 state transitions. The flexibility of a region is defined as
the number of times the region changes module assignment divided by the total
possible number of module changes. Different values of γ and ω yield different
group differences in mean flexibility. Note that the true difference here is 0.14,
which is not attained for any values of the parameters.

we assumed that brain regions partition into 5 modules in each
FC state, whereas it is conceivable that this could differ among
individuals.

We note that certain aspects of the simulation framework
represent simplifications of the physical and physiological pro-
cesses involved in fMRI neuroimaging. For example, the ad-
dition of white measurement noise is not realistic and noise
related to head motion or vascular effects may have more re-
gionally specific effects on connectivity estimates (Power et al.
(2012)). Therefore the noise simulation should be interpreted
as a cautionary result, and not as an illustration of effects of
real noise sources in fMRI. We also assumed that the HRF is
the same for all regions, although the shape of the HRF has
been shown to vary from region to region (e.g. Schacter et al.
(1997)). These assumptions, however, allowed us to isolate the
impact of unaccounted heterogeneity. In particular, our current
simulation framework had the distinct benefit of separating the
underlying dFC structure from sources of heterogeneity such
as neural autocorrelation, noise and HRF shape. We were thus
able to manipulate dFC and these other sources of variation in-
dependently and show how observed dFC is affected. Further,
in the Supplementary Material, we demonstrate that the effects
of unrelated sources of variation persist across a range of pa-
rameter values, suggesting that these effects of dFC are not spe-
cific to this simulated dataset, but are in fact a more general
phenomenon.

In this article, we do not address what drives these changes in
functional connectivity. Recent observations suggest that dFC
can be explained in terms of sparse brief events (Allan et al.

(2015), Karahanoğlu and Van De Ville (2015), Liu and Duyn
(2013), Tagliazucchi et al. (2012)). Our simulation framework
is based on work by Allen et al. (2012) which attempts to find
periods of recurrent patterns of functional connectivity, or FC
states, across time and individuals. It may be that these periods
are longer than the underlying neural processes due to the tem-
poral limitations of fMRI. Many FC state-based studies work
on the basis of certain assumptions about FC states regarding,
for example, their discreteness and typical duration. However,
little is actually known about the nature of FC states and fu-
ture work is required to better understand how these neural pro-
cesses drive observed FC states.

To illustrate the effects of heterogeneity in the number of at-
tainable states and the number of state changes, we simulated
binary differences between two groups of individuals. This rep-
resents a simplification since, in reality, it is likely that differ-
ences between individuals fall on a continuous spectrum and
so we caution against dichotomising between groups. It should
also be emphasised that while here we have isolated the impacts
of different sources of heterogeneity, in reality they may appear
in combination. Future work could investigate how different
types of heterogeneity interact, or even counteract, to produce
differences in observed dFC.

Although we have chosen to illustrate the above points with
only a few methods, the issues should in general extend to other
approaches. For example, we used Fisher-transformed Pearson
correlation as our basic measure of functional connectivity be-
cause this is currently the most commonly used metric. Alterna-
tive connectivity measures, such as coherence or multiplication
of temporal derivatives (Shine et al. (2015)), may be less sus-
ceptible to certain types of unaccounted heterogeneity: for ex-
ample, it has been shown that coherence is robust against vari-
ability in the shape of the HRF between regions (Ashby (2011)).
Nonetheless, the issues of hyperparameter selection in dFC
methods still need to be addressed regardless of the connectiv-
ity metric used. With this aim, we provide the Matlab code used
for the present simulations here: http://www.mrc-bsu.cam.
ac.uk/software/miscellaneous-software/. We encour-
age interested readers to explore alternative metrics and dFC
analysis methods.

6. Concluding remarks

We use simulated fMRI data to demonstrate the effect of vari-
ous sources of heterogeneity on observed dFC. Our results show
that individual differences in dFC may be due to non-dynamic
features of the data. The choice of hyperparameters in common
methods is also important: these are often assumed constant
across individuals, which can result in spurious group differ-
ences in dFC. We recommend that future studies consider im-
plicit assumptions of homogeneity in their analysis.
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