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Abstract:	Quantitative	analysis	of	neuronal	morphology	is	critical	in	cell	type	classification	and	

for	deciphering	how	structure	gives	rise	to	function	in	the	brain.	Most	current	approaches	to	

imaging	and	tracing	neuronal	3D	morphology	are	data	intensive.	We	introduce	SmartScope2,	

the	first	open	source,	automated	neuron	reconstruction	machine	integrating	online	image	

analysis	with	automated	multiphoton	imaging.	SmartScope2	takes	advantage	of	a	neuron’s	

sparse	morphology	to	improve	imaging	speed	and	reduce	image	data	stored,	transferred	and	

analyzed.	We	show	that	SmartScope2	is	able	to	produce	the	complex	3D	morphology	of	human	

and	mouse	cortical	neurons	with	six-fold	reduction	in	image	data	requirements	and	three	times	

the	imaging	speed	compared	to	conventional	methods.		
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Introduction	

	

The	forefront	of	bioimaging	technology	is	often	driven	by	a	desire	for	faster	collection	of	larger	image	

volumes,	with	increased	spatial	and	temporal	resolution.	This	has	led	to	numerous	technological	

developments,	including	great	strides	in	optical	engineering,	new	optical	techniques	such	as	

multiphoton	fluorescence	microscopy1,	light-sheet	imaging2,	and	several	modes	of	super-resolution	

microscopy3.	This	trend	creates	large	and	complex	biological	image	data	sets,	leading	to	ongoing	

challenges	in	image	visualization	and	analysis4.	As	these	computational	challenges	are	encountered	and	

overcome,	it's	worth	recalling	that	imaging	is	not	an	end	in	itself,	but	is	rather	a	means	for	obtaining	

data	and	scientific	understanding	from	biological	systems.	In	this	context,	the	integration	of	

computational	processing	with	automated	microscopy	methods	has	the	potential	to	allow	efficient	

collection	of	optimal	datasets	in	complex	imaging	experiments	with	far	less	hands-on	involvement	than	

in	the	past.	One	recent	example	of	research	in	this	direction	is	adaptive	optimization	of	light	sheet	

microscopy5,	which	improves	light	sheet	imaging	by	automatically	determining	the	imaging	parameters	

over	time	to	yield	consistent,	optimal	image	quality	despite	spatially	and	temporally	variable	imaging	

conditions.	Additionally,	recent	improvements	in	acousto-optical	deflector	(AOD)	instrumentation6–8	

have	enabled	continuing	development	of	rapid,	random-access	two-photon	microscopes.	The	speed	and	

flexibility	of	AOD	systems	has	provided	a	useful	avenue	for	online	motion-correction	and	imaging	

fluorescent	activity	sensors	from	arbitrary	scan	volumes.	Other	researchers	have	recognized	the	

importance	of	these	capabilities,	and	similar	efforts	to	optimize	image	data	collection	are	being	made	

without	AOD	technology9,10.	Despite	the	ongoing	interest	in	adaptive	imaging	experiments,	we	are	
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unaware	of	any	existing	approaches	to	apply	online	computational	processing	to	an	important	factor	in	

neuronal	cell	type	identification:	imaging	and	reconstruction	of	neuronal	morphology11.	

	

The	morphology	of	neurons	is	often	sparse;	the	neuron	occupies	only	a	small	fraction	of	the	total	

volume	explored	by	its	dendrites	and	axons.	Because	of	this	sparsity,	imaging	the	total	volume	bounding	

a	neuron	is	highly	inefficient.		Additionally,	the	topology	of	all	neurites	emanating	from	the	cell	body	

provides	a	means	to	access	and	trace	the	full	morphology	starting	from	the	soma.	Consequently,	we	set	

about	to	use	the	neuronal	structure	itself	to	guide	image	collection	and	extract	neuronal	morphology	

without	imaging	the	large	volumes	devoid	of	signal.	In	this	paradigm,	both	image	data	and	imaging	time	

are	reduced	by	tailoring	the	spatial	distribution	of	imaging	areas	to	the	sample	through	on-line	

processing.	

	

Our	system,	SmartScope2	(denoted	as	“S2”	below	for	simplicity),	is	illustrated	in	Fig.	1.		S2	is	an	open-

source	software	module	that	combines	control	of	a	two-photon	(2p)	microscope	with	simultaneous	

analysis	of	neuronal	morphology	in	3D	image	volumes,	following	the	similar	concept	of	automated	

analysis-based	imaging	on	the	confocal	SmartScope	system12.	The	software	is	a	plugin	for	Vaa3D13,	an	

open-source,	cross-platform	application	for	image	visualization	and	analysis	of	3D	image	data.	We	

designed	S2	to	communicate	with	a	commercial	2p	microscope	via	transmission	control	protocol	/	

internet	protocol	(TCP/IP)	connections,	enabling	S2	to	be	operated	remotely	and	flexibly	to	analyze	

image	data	transferred	from	the	microscope	to	an	S2	client	workstation.	Remote	operation	of	S2	also	

removes	the	computational	load	of	neural	reconstruction	from	the	data	acquisition	microscope,	and	

thus	could	facilitate	cloud-based	automated	microscopy	and	morphological	reconstruction	tasks.	
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To	reconstruct	3D	neuronal	morphology	with	minimal	imaging,	we	utilized	the	S2	scan	strategy	(Fig.	1,	

Methods).	First,	a	low-resolution	overview	scan	is	collected	where	a	target	neuron	cell-body	is	chosen	by	

the	user	(or	determined	automatically	using	existing	algorithms14).	Second,	a	3D	image	stack	(“tile”)	

centered	on	the	target	cell	body	is	scanned	and	an	automatic	tracing	algorithm	(the	“base	tracer”)	is	

applied	to	that	tile	data.		Third,	the	resulting	3D	digital	reconstruction	is	analyzed	to	determine	if	any	

tips	of	the	neuron	structure	extend	to	the	edges	or	corners	of	the	tile.	Fourth,	the	next	tile	containing	

those	tip	locations	is	imaged	and	the	3D	reconstruction	process	is	continued	in	the	next	tile.	The	imaging	

and	reconstruction	processes	are	iterated	until	all	traced	structures	have	terminated	within	an	imaged	

tile.	The	process	is	automatic,	proceeding	until	all	of	the	neuron’s	morphology	in	the	sample	captured	by	

the	base	tracer	has	been	reconstructed.	

	

Instead	of	implementing	the	S2	scan	in	a	serial	fashion	where	image	collection	and	reconstruction	

alternate	in	time,	our	software	design	decouples	image	collection	from	image	analysis	to	minimize	the	

impact	of	computational	time	on	the	total	S2	scan	time.	Specifically,	any	new	tile	locations	generated	

from	analysis	of	a	3D	tile	are	added	to	a	queue	of	tile	locations	to	be	scanned,	and	S2	monitors	this	

queue	and	initiates	imaging	a	new	tile	whenever	the	microscope	is	not	imaging.	This	design,	combined	

with	dedicated	threads	for	image	analysis,	minimizes	the	idle	time	of	the	microscope.	

	

We	first	tested	S2	on	individual	neurons,	simultaneously	producing	sparse	volumetric	image	data	and	

neuronal	reconstructions.	These	scans	included	EGFP-expressing	neurons	from	mouse	cortex	(Fig.	2A,	

Fig.	2B,	Fig.	S1A,	Table	S1	scans	1-3).	The	reconstructions	show	tracing	of	dendrites,	including	the	basal	

skirt	and	apical	tuft	of	a	deep-layer	pyramidal	cell,	as	well	as	descending	axons	of	genetically-labeled	

mouse	neurons.	These	S2	scans	resulted	in	an	average	of	4.6-fold	reduction	in	imaged	volume	compared	

to	a	rectangular	bounding	box	surrounding	the	same	structure	(N	=	3	individual	neurons,	S2	scans	1-3	in	
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Table	S1).	The	summed	area	of	all	tiles,	including	a	user-defined	10%	overlap	between	adjacent	tiles,	

was	also	reduced	by	4.0-fold	relative	to	the	bounding	box	approach.	This	reduction	in	image	area	can	be	

regarded	as	a	conservative	estimation	of	S2’s	ability	to	reduce	imaging	load	for	neuronal	reconstruction.		

To	define	this	rectangular	bounding	box	without	S2,	either	a	human	operator	would	have	to	manually	

follow	dendrites	from	the	cell	body	until	they	terminate	or	leave	the	sample,	or	some	automated	

method	would	have	to	be	deployed	to	identify	the	ends	of	all	of	the	connected	structures.	The	latter	

choice	was	exactly	the	stopping	criteria	for	the	S2	scan,	and	we	are	unaware	of	any	other	methods	that	

accomplish	this.	Therefore,	a	more	realistic	comparison	is	to	use	an	“integer	bounding	box”	made	of	an	

integer	number	of	tiles	that	are	the	maximum	size	for	our	microscope	at	this	resolution.	This	

comparison	reveals	scan	area	reductions	of	eightfold	for	the	EGFP-expressing	cortical	neurons	(8.26,	N	=	

3)	(Table	S1,	scans	1-3).	This	improvement	in	scan	area	also	results	in	a	reduction	of	image	data	

averaging	7.1-fold,	which	includes	the	overlap	between	adjacent	tiles	(Table	S1,	"Area	Efficiency").	

	

The	reduction	in	scan	area	and	image	data	we	achieved	suggests	S2	scan	could	also	shorten	imaging	

time.	In	fact,	the	S2	scans	on	the	EGFP-expressing	mouse	neurons	were	accomplished	an	average	of	3.5	

times	faster	than	the	time	to	image	the	integer	bounding	box	with	the	same	input	laser	power.	Ideally,	

the	imaging	time	should	improve	by	exactly	the	same	factor	as	the	image	data,	but	in	practice	this	is	not	

the	case	due	to	three	factors.		First,	the	effective	imaging	time	per	pixel	is	not	exactly	constant	across	

image	tile	sizes.	For	example,	if	there	were	a	fixed	time	overhead	per	line	(as	might	be	the	case	for	

unidirectional	non-resonant	galvo	scanning)	or	per	plane	(e.g.	due	to	fixed	settling	time	of	z	movement),	

the	effect	of	these	fixed	times	would	be	proportionally	greater	for	smaller	tiles.		We	observed	this	effect	

in	a	test	consisting	of	N	=	20	sparsely-labeled	neurons	in	50-µm	sections	(Fig.	S3	and	Supplemental	Text).	

For	the	current	data	set	in	Fig.	2	and	Table	S1,	we	used	bidirectional	resonant	scanning	and	zero-delay	

piezo	z-actuator	movement	to	eliminate	these	effects.	Second,	any	software	or	hardware	overhead	per	
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tile	can	easily	accrue	into	a	substantial	time	cost	as	the	number	of	tiles	becomes	large.	Third,	the	

computational	time	associated	with	reconstructing	each	tile	can	affect	the	total	imaging	time,	especially	

if	the	computation	is	serially	interleaved	with	imaging.	Our	strategy	of	queuing	locations	to	avoid	

microscope	idle	time	is	key	to	minimizing	this	factor.	For	EGFP-expressing	mouse	neurons,	single-thread	

computational	analysis	time	was	77%	of	imaging	time,	thus	a	simple	serially	interleaved	imaging	and	

analysis	paradigm	would	require	1.77	fold	longer	than	the	imaging	time	alone.	However,	our	

optimization	of	asynchronous	imaging	and	parallel	processing	reduced	the	effect	of	analysis	time	such	

that	S2	scans	took	only	9.5%	longer	than	the	total	imaging	time.	 

	

In	addition	to	imaging	and	reconstructing	mouse	cortical	neurons,	we	applied	the	S2	system	to	a	human	

neuron	filled	with	a	fluorescent	dye	in	an	acute	slice	preparation	from	re-sectioned,	surgically-excised	

neocortical	tissue	(Fig.	2C,	Table	S1	Scan	4).	Imaging	and	reconstruction	of	fluorescently	labeled	cells	in	

adult	human	cortical	tissue	can	be	challenging	because	of	the	presence	of	auto-fluorescent	lipofuscin	

granules	in	neuronal	cell	bodies.		The	broad	emission	spectrum	of	lipofuscin	spans	green	and	red	

emission	bands,	manifesting	as	bright	puncta	in	both	red	and	green	channels.	Before	S2	scanning	in	

human	tissue,	we	tuned	the	red	channel	PMT	gain	so	mean	intensity	values	from	lipofuscin	fluorescence	

were	equal	in	both	red	and	green	channels.	We	then	implemented	an	on-line	intensity	subtraction	so	

the	S2	base	tracer	operated	on	a	linear	unmixed	channel	G-αR,	reducing	the	impact	of	lipofuscin	

fluorescence	on	S2	auto-tracing	of	Alexa	488-filled	cells.	For	the	human	neuron	data	presented	here,	α	=	

1.0,	but	the	parameter	is	user-adjustable	in	the	S2	user	interface.		For	the	layer	2	pyramidal	neuron	in	S2	

Scan	4	(Fig.	2C),	the	dendritic	morphology	was	relatively	compact,	but	the	sum	of	the	S2	tiles	was	still	

4.0-fold	less	area	than	the	integer	bounding	box.	The	combined	human	and	mouse	neurons	(S2	scans	1-

4	in	Supplemental	Table	S1)	have	an	average	area	efficiency	of	6.35	and	average	speed	improvement	of	

3.1	compared	to	the	integer	bounding	box.	
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We	used	two	approaches	to	evaluate	the	reconstruction	accuracy	of	S2.	First,	for	three	isolated	EGFP-

expressing	neurons	in	mouse	(Supplemental	Table	S1,	Scans	1-3),	we	compared	S2	to	manual	

reconstructions	generated	by	three	annotators	who	traced	the	neuron	structure	manually	using	Vaa3D-

Terafly15.	We	compared	the	similarity	between	the	S2	reconstruction	and	the	manual	reconstructions	as	

well	as	the	similarity	among	manual	reconstructions,	using	the	best	average	spatial	distance	score	d16	

(Supplemental	Text	and	Table	S2).	Overall,	the	average	bi-directional	distance	scores	between	S2	and	

three	manual	reconstructions	are	very	close	to	the	respective	scores	between	three	pairs	of	manual	

reconstructions:	dS2-manual	=	{5.74,	8.62,	4.09}	and	dmanual-manual	=	{5.25,	5.42,	3.63}	voxels	in	scans	{1,2,3}.	

In	scan	2,	the	high	bi-directional	score	was	actually	due	to	a	high	average	directional	distance	score	from	

S2	to	manual	(13.42	voxels	vs	3.83	voxels)	on	average,	indicating	that	in	that	particular	case,	S2	

reconstructions	actually	captured	more	neurite	segments	than	human	annotators.	We	applied	our	

second	approach	to	verify	S2	accuracy	to	the	human	neuron	shown	in	Fig.	2C.		Here,	we	collected	four	

large	tiles	of	image	data	encompassing	the	entire	labeled	structure	and	overlaid	the	S2	scan	and	its	

reconstruction	onto	the	tiled	imaged,	as	seen	in	Fig.	2C.	The	resulting	image	shows	that	S2	

reconstruction	may	not	trace	the	morphology	at	the	distal	tips	of	dendrites	that	exhibit	some	beading	

(Fig.	S6),	but	accurately	includes	all	the	continuously	labeled	dendrites,	while	avoiding	the	neurites	of	a	

nearby	aspiny	neuron	that	was	also	filled	in	this	sample.		

	

After	demonstrating	S2	scanning	of	individual	neurons,	we	also	targeted	S2	to	areas	with	structures	

from	multiple	labeled	neurons	in	close	proximity	(Fig.	2D	and	E,	Fig.	S1	B).		Such	samples	could	be	

generated	by	sparse	Cre	recombination	in	a	fluorescent	protein	reporter	mouse	line	(as	here),	from	

multi-patch	experiments	in	acute	brain	slices	or	from	sparse	viral	labeling	in	cultured	brain	slices.		The	

current	version	of	S2	will	image	and	connect	all	structures	that	are	contiguous	with	structures	traced	in	
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the	first	tile.	In	this	way,	labeled	neurons	with	closely	apposed	neurites	will	all	be	imaged	and	traced	by	

S2.	In	Fig.	2D,	initiating	tracing	on	a	pyramidal	cell	led	to	additional	tracing	of	an	ascending	axon	and	a	

collateral	of	a	descending	axon	from	a	neighboring	neuron	whose	cell	body	was	in	an	adjacent	slice.	The	

extremely	sparse	nature	of	these	neurites	led	to	an	increased	benefit	of	S2	scanning	compared	to	

conventional	imaging:	8.5	times	smaller	data	size	and	3.7	times	faster	acquisition	than	a	comparable	

bounding	box	scan.	Targeting	other	multi-neuron	samples	led	to	large	datasets	spanning	up	to	2	mm	

and	including	up	to	19	neurons.		Even	for	multi-neuron	scans,	the	output	of	S2	is	a	connected	structure	

by	design,	which	could	potentially	be	dissected	into	separate	neuron	trees	post-hoc	using	analysis	

methods	targeted	specifically	to	this	problem17.	Using	S2	to	image	multi-neuron	samples	is	appealing	for	

its	automatic	reconstruction	of	multiple	neurons,	but	may	be	limited	in	improving	acquisition	speed	

because	some	samples	with	multiple	neurons	(e.g.	S2	scans	5	and	6	in	Table	S1.)	have	less	dramatic	

sparsity	than	individual	neurons.		
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Figure	1.	S2	schematic	and	workflow.	S2	operation	starts	by	collecting	a	low-resolution	overview	stack	covering	the	full	scan	field	of	the	

microscope.	After	the	user	selection	of	cell-bodies	using	single-click	‘virtual	finger’	selection	in	Vaa3D,	the	cell	body	becomes	the	starting	point	

for	the	S2	scan	process	and	the	first	tile	added	to	the	3D	Image	Tile	Queue.		S2	constantly	monitors	the	queue,	and	if	the	microscope	is	not	

imaging	and	there	is	a	location	in	the	queue,	a	3D	image	stack	is	initiated	at	that	location.		Image	data	from	the	microscope	is	traced	using	a	

user-chosen	tracing	method,	automatically	generating	a	3D	reconstruction	of	the	neuron	within	the	image	tile.	If	this	reconstruction	contains	

any	elements	near	the	tile	borders,	those	tip	locations	are	used	to	define	a	new	tile	location.		This	tile	location	(with	accompanying	tip	

locations)	is	passed	to	the	3D	Image	Tile	Queue.	This	process	continues	until	all	tiles	have	been	imaged	and	processed.	The	lower	right	panel	is	a	

composite	illustration	of	the	alpha-projection,	maximum-intensity	projection	and	the	S2	reconstruction	of	S2	Scan	2	in	Table	S1.	
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Figure	2.		S2	scans	showing	sparse	imaging	of	cortical	neurons.	A.	A	layer	2/3	pyramidal	cell,	with	extensive	tracing	of	
descending	axon.		B.	Deep-layer	pyramidal	neuron	in	mouse	successfully	reconstructing	apical	tufts,	basal	dendrites	and	
descending	axon.		C.	S2	scan	of	a	human	cortical	pyramidal	neuron	filled	with	Alexa	488	during	whole-cell	recording.	S2	scan	
tiles	(red)	and	S2	reconstruction	(green)	are	overlaid	on	a	traditional	raster-scanned	image	(cyan).	The	S2	scan	successfully	
traced	continuous	signal	in	apical	and	basal	dendrites	without	crossing	over	to	trace	processes	from	the	nearby	labeled	aspiny	
cell.	D.	S2	scan	in	mouse	cortex	initiated	at	the	soma	of	the	deep-layer	cell	on	the	right.	S2	followed	the	dendrites	of	this	cell	
onto	nearby	axons	from	two	other	cells.	E.	S2	scan	in	mouse	cortex	with	relatively	dense	labeling.		S2	followed	dendrites	and	
axons	of	several	cells	spanning	the	depth	of	cortex.	Yellow	scale	bars	are	36	µm.		
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Discussion	

S2	provides	a	means	of	rapidly	imaging	and	tracing	morphology	of	fluorescent	neurons	in	sparsely-

labeled	samples.	S2	is	currently	implemented	with	a	multiphoton	microscope	designed	for	imaging	of	

fixed	samples	up	to	~350	µm	thick,	but	the	S2	concept	could	in	principle	be	extended	to	any	imaging	

modality	where	data	collection	can	be	spatially	localized	within	a	sample.	AOD-based	random-access	

microscopes	are	natural	targets	for	implementing	future	versions	of	S2	because	the	truly	random-access	

imaging	of	AODs	can	allow	for	fast	data	acquisition	in	arbitrary	volumes.	Also,	a	stage-based	scanning	

approach	such	as	the	one	used	to	collect	the	data	in	Fig.	2	can	compensate	for	the	relatively	limited	

scanning	fields	of	view	associated	with	current	AOD	systems.		The	sample	slice	thickness	used	here	

(which	is	typical	for	electrophysiology)	is	expected	to	result	in	some	loss	of	dendritic	and	axonal	arbors	

due	to	truncation	by	physical	sectioning.		Previous	work	quantifying	these	losses	suggests	that	rat	layer	

2/3	pyramidal	cells	can	expect	89%	complete	dendrites	and	60%	complete	local	axonal	arbors	in	300	

µm-thick	samples18.	While	thicker	samples	could	enable	marginal	gains	in	the	completeness	of	local	

structures,	the	ideal	neuronal	reconstruction	would	include	the	entire	dendritic	and	axonal	arbors	that	

can	extend	to	numerous	brain	areas	and	across	several	millimeters	in	the	mouse.	Imaging	across	

millimeter	length	scales	while	maintaining	the	high	resolution	needed	to	reconstruct	neuronal	

morphology	typically	implies	terabytes	of	image	data,	most	of	which	contains	no	signal	from	the	

neurons	of	interest.		Existing	terabyte-scale	datasets	can	be	processed	using	specialized	analysis	tools	

such	as	the	recently	developed	Ultratracer19,	which	shares	the	same	underlying	operational	philosophy	

as	S2.		One	avenue	to	efficiently	image	entire	neurons	in	larger	samples	would	be	to	combine	S2	with	

random	access	large-scale	imaging	techniques	such	as	tiled	SPIM20	to	achieve	whole-neuron	

reconstructions	while	imaging	only	a	fraction	of	the	sample	volume.	
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S2	provides	a	platform	for	further	development	of	global	analysis	of	neuronal	structure	and	imaging	

parameters	in	an	online	manner.	Furthermore,	this	approach	may	also	improve	efficiency	in	other	

imaging	modalities	where	sparse,	continuous	structures	can	automatically	guide	data	collection.	The	

modular	implementation	of	S2	that	remotely	connects	software	user	interface,	data	storage,	data	

analysis,	and	hardware	design	together	will	allow	more	sophisticated	smart	imaging	paradigms	to	be	

established	based	on	S2.	

	

METHODS	

Microscope	Hardware	and	Configuration	

The	SmartScope2	system	was	implemented	using	an	upright	resonant-scanning	two-photon	microscope	

(Investigator,	Bruker	FM)	with	one	resonant	galvanometer	mirror	and	two	non-resonant	galvanometer	

mirrors	in	series.	Imaging	was	performed	using	a	tunable	pulsed	laser	(Coherent	Chameleon	Ultra	II)	at	

920	nm	and	intensity-controlled	with	a	Pockels	cell.	To	maximize	fluorescence	collection	from	tissue	

slices,	the	microscope	was	configured	with	both	epi-	and	trans-detectors,	including	a	high-numerical	

aperture	oil	condenser	to	maximize	trans-collection	efficiency.	The	S2	hardware	includes	a	400	µm-

travel	piezo	z-actuator	for	the	objective	lens	(Nikon	16x	water	immersion,	NA	=	0.8,	or	Olympus	25x	

water	immersion,	NA	=	1.05	which	was	used	for	the	scans	shown	here),	allowing	rapid,	resonant-

scanned	z-stacks	to	be	positioned	at	any	location	within	the	field	of	view.	It	is	able	to	rapidly	image	

fluorescence	signal	over	the	entire	depth	of	acute	brain	slices	(typically	300~350	µm	thick),	scan	both	

small	volumes	(~36x36x300	µm)	and	large	areas	in	resonant	mode	(474	x	474	µm	for	the	25x,	800x800	

for	16x),	and	allow	simple,	remote	control	of	high-level	microscope	functions.	The	ability	to	position	a	

resonant-scanned	3D	region-of-interest	(ROI)	at	arbitrary	locations	using	either	galvanometer	steering	
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or	stage	movements	allows	us	to	execute	the	S2	scan	within	the	microscope	field-of-view	(FoV)	or	to	

follow	neuron	morphology	laterally	beyond	a	single	field	of	view	to	the	millimeter	scale,	practically	

limited	only	by	the	size	of	the	sample.		

	

S2	Software	and	Code	Availability	

The	S2	microscope	control	module	was	written	in	C++	as	a	plugin	to	Vaa3D.	S2	source	is	available	at	

https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/brl/s2 In	addition	to	being	available	

as	source,	the	S2	plugin	will	be	included	as	a	plugin	in	future	binary	releases	of	Vaa3D.	

Currently,	the	user	can	select	between	three	tracing	methods,	APP214,	MOST21,	and	Neutube22		The	data	

collected	here	utilized	Neutube	as	the	base	tracer.	

	

The	low-level	microscope	control	(e.g.	scan	voltage	waveforms,	digital-to-analog	conversion,	etc)	was	

handled	by	alpha-release	microscope	control	software	from	Bruker	(PrairieView	version	5.4	alpha),	

which	allows	high-level	control	of	the	microscope	via	TCP/IP	connection.		Using	two	dedicated	TCP/IP	

connections,	the	microscope	was	polled	for	current	state	information	over	one	connection	while	a	

separate	connection	was	reserved	for	sending	commands	to	initiate	image	tile	collection	at	specified	

locations.	In	principle,	the	S2	software	design	allows	for	this	approach	to	be	extended	to	other	

microscopes,	provided	that	the	microscope	can	be	externally	controlled	through	C++	code.			

Imaging	Parameters	

Overview	scans	are	collected	at	1x	optical	zoom	(512x512	pixels)	over	the	entire	sample	depth	with	20	

micron	z-steps.	Tile	scans	were	typically	collected	at	13x	zoom	(the	highest	stable	resonant	zoom	
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available	on	our	system)	with	a	voxel	size	of	0.23	x	0.23	x	1.0	µm	to	sample	the	25x	objective	point	

spread	function	at	roughly	twice	the	full-width-at-half-maximum	(FWHM)	values	along	x,	y	and	z.	S2	tiles	

were	imaged	without	averaging,	but	under	these	imaging	parameters	the	acquisition	software	uses	11	

samples	from	the	photomultiplier	tube	readout	to	generate	each	of	the	157	pixels	per	line.		The	time	for	

maximum-sized	tiles	(1.18x	optical	zoom,	1730x1730	pixels)	was	determined	by	imaging	at	the	same	

laser	power	as	the	S2	tiles	and	averaging	8	times	frame-by-frame	to	emulate	the	11x	multisampling	of	

the	S2	image	tiles	(8x	averaging	is	the	largest	value	available	in	software	without	exceeding	the	11x	

multisampling).	This	approach	maintains	the	approximate	excitation	dose	per	pixel	with	constant	laser	

power.	Individual	target	neurons	were	selected	visually	for	brightness,	local	sparsity	of	labeling	and	

completeness	of	the	morphology	within	the	slice.		

	

Mouse	neuron	labeling	

Ai139	mice	(manuscript	in	preparation)	were	injected	with	an	AAV	viral	vector	that	generates	sparse	Cre	

recombination	(manuscript	in	preparation)	using	a	Nanoject	II	microinjector	(Drummond	Scientific,	

Broomall,	PA)	within	neocortex.	Four	weeks	following	injections	animals	were	perfused	and	300	um	

slices	were	prepared	for	imaging.	

	

Human	ex	vivo	brain	slices	

The	human	neocortical	tissue	specimen	was	obtained	during	brain	surgery	for	a	patient	with	intractable	

epilepsy.	It	was	necessary	to	remove	the	overlying	neocortical	tissue	to	gain	access	to	the	underlying	

diseased	tissue.	Informed	patient	consent	was	obtained	for	use	of	neocortical	tissue	for	research	

purposes	under	a	protocol	approved	by	the	institutional	review	board	of	Swedish	Medical	Center	
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(Seattle,	WA).		Brain	slices	of	350	µm	thickness,	spanning	the	majority	of	a	gyrus	and	in	a	plane	

perpendicular	to	the	pial	surface	were	prepared	using	a	Compresstome	VF200	(Precisionary	

Instruments)	using	the	previously	described	NMDG	protective	recovery	method23.			

 

Single human neuron cell filling via patch clamp recording 

Human	neocortical	pyramidal	neurons	were	targeted	for	whole-cell	patch	clamp	recording	using	infra-

red	differential	interference	contrast	optics	and	a	0.8	NA	40X	water-immersion	objective	(Olympus	

America)	and	were	filled	intracellularly	by	inclusion	of	a	saturating	concentration	of	Alexa	488	hydrazide	

in	the	patch	pipette.		The	intracellular	pipette	solution	composition	was	(in	mM):	130	K-Gluconate,	4	

KCl,	10	HEPES,	0.3	EGTA,	10	phosphocreatine-Na2,	4	MgATP,	0.3	Na2-GTP.	The	pH	was	adjusted	to	7.35	

with	1M	KOH	and	the	osmolality	is	adjusted	to	285-290	mOsm/Kg	using	sucrose	as	needed.		The	

duration	of	whole	cell	recording	was	15-20	minutes	in	order	strike	the	best	compromise	between	

achieving	completeness	of	cell	filling	and	preserving	neuron	health	and	membrane	integrity.		Upon	

termination	of	the	recording	session,	the	human	brain	slices	were	fixed	in	4%	PFA	for	~20	hours	and	

then	transferred	into	1X	PBS	plus	0.05%	sodium	azide	for	storage	prior	to	imaging.		Human	cortical	

tissue	was	obtained	from	patients	undergoing	surgery	to	treat	medically	refractory	epilepsy.	Patients	

underwent	standard	surgery	for	temporal	lobe	epilepsy	and	provided	informed	consent	to	have	their	

tissue	studied	under	an	IRB	approved	protocol.	All	samples	were	mounted	in	Fluormount	G	(Southern	

Biotech)	before	imaging.	

Analysis	and	Statistics	

To	characterize	the	ability	of	S2	to	track	structures	across	tiles,	we	developed	the	S2	quality	index	𝑄!! 	

given	by	𝑄!!  = 1 −  (𝑁!"#! !"#$ − 𝑁!"#$𝑓!"#!)/𝑁!"#$ 	Where	fedge	is	the	fraction	of	tile	area	considered	

edge	-	here	we	use	the	area	within	5%	of	each	edge,	totaling	19%	of	the	tile	area,	so	19%	of	randomly	
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distributed	tips	are	expected	to	be	identified	as	edge	tips	purely	by	chance.		𝑁!"#$	is	the	number	of	

terminal	tips	of	a	single	reconstructed	neuron	tree.	Within	𝑁!"#$,	𝑁!"#! !"#$ is	the	number	of	terminal	

tips	located	in	the	edge	area.	The	edge	tips	in	excess	of	the	expected	number	are	presumed	to	result	

from	failures	to	continue	tracing	across	tile	boundaries,	so	a	scan	with	no	excess	edge	tips	will	have	a	

quality	index	of	1.0	while	a	scan	with	three	times	as	many	edge	tips	as	expected	would	result	in	quality	

index	of	0.62.	

All	average	values	for	S2	performance	are	from	three	individual	mouse	neurons	(S2	scans	1	and	2	shown	

in	Fig.	2	A	and	B,	and	scan	3	in	Figure	S1),	with	the	complete	information	for	each	scan	displayed	in	

Table	S1.	
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