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	 The	confluence	of	microfluidic	and	sequencing	technologies	has	enabled	profiling	of	the	1	

transcriptome1,	2,	epigenome3,	and	chromatin	conformation	of	single	cells4	at	an	2	

unprecedented	scale.	Initial	applications	of	single	cell	RNA-sequencing	have	characterized	3	

cellular	heterogeneity	in	tumors5,	6,	tissues7,	8,	and	response	to	stimulation9.	More	recently,	4	

droplet-based	technologies	have	significantly	increased	the	throughput	of	single	cell	capture	5	

and	library	preparation1,	10,	enabling	transcriptome	sequencing	of	thousands	of	cells	from	one	6	

microfluidic	reaction.	7	

While	improvements	in	biochemistry11,	12	and	microfluidics13,	14	continue	to	increase	the	8	

number	of	cells	that	can	be	sequenced	per	sample,	for	many	applications	(e.g.	differential	9	

expression	and	genetic	studies),	sequencing	thousands	of	cells	each	from	many	individuals	10	

would	better	capture	interindividual	variability	than	sequencing	more	cells	from	a	few	11	

individuals.	However,	in	standard	workflows,	running	a	separate	microfluidic	reaction	for	each	12	

sample	remains	cost	prohibitive15.	Multiplexing	could	significantly	reduce	the	per	sample	cost	13	

by	allowing	cells	from	several	individuals	to	be	processed	simultaneously,	and	reduce	the	per	14	

cell	cost	by	allowing	higher	flow	rates	due	to	the	ability	to	detect	and	exclude	doublets	that	15	

contain	cells	from	two	different	individuals.	Further,	sample	multiplexing	limits	the	technical	16	

variability	associated	with	sample	and	library	preparation,	improving	statistical	power	to	17	

accurately	estimate	true	biological	effects16.		18	

We	present	a	simple	experimental	design	and	computational	algorithm,	demuxlet,	to	19	

multiplex	samples	in	dscRNA-seq	without	additional	experimental	modification	(Fig.	1A).	While	20	

strategies	to	demultiplex	cells	from	different	species1,	10,	17	or	host	and	graft	samples17	have	21	

been	reported,	no	method	is	available	for	simultaneous	demultiplexing	and	doublet	detection	22	
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of	cells	from	>	2	individuals.	Inspired	by	models	and	algorithms	developed	for	contamination	23	

detection	in	DNA	sequencing	data18,	demuxlet	is	fast,	accurate,	scalable	and	works	with	24	

standard	input	formats17,	19,	20.		25	

At	the	heart	of	our	strategy	is	a	statistical	model	for	predicting	the	probability	of	26	

observing	a	consistent	‘genetic	barcode’,	a	set	of	single	nucleotide	polymorphisms	(SNPs),	in	27	

the	RNA-seq	reads	of	a	single	cell	and	the	genotypes	(from	SNP	genotyping,	imputation	or	DNA	28	

sequencing)	of	donor	samples.	The	model	accounts	for	the	base	quality	score	of	the	RNA-29	

sequencing	reads	as	previously	described18	and	genotype	uncertainties	at	unobserved	SNPs	30	

from	imputation	to	large	reference	panels21.	It	then	uses	maximum	likelihood	to	determine	the	31	

most	likely	sample	identity	for	each	cell	using	a	mixture	model.	A	small	number	of	reads	32	

overlapping	common	SNPs	is	sufficient	to	accurately	identify	the	sample	of	origin.	For	a	pool	of	33	

8	samples,	4	SNPs	can	uniquely	assign	a	cell	to	the	donor	of	origin	(Fig.	1B),	and	20	SNPs	each	34	

with	minor	allele	frequency	(MAF)	of	50%	can	distinguish	every	sample	with	98%	probability.	35	

The	mixture	model	in	demuxlet	also	uses	genetic	information	to	identify	doublets	36	

containing	two	cells	from	different	individuals,	which	comprise	most	droplets	containing	37	

multiple	cells.	By	multiplexing	even	a	small	number	of	samples,	a	doublet	will	have	a	high	38	

probability	(1	–	1/N,	e.g.	87.5%	for	N	=	8	samples)	of	containing	cells	from	two	individuals	which	39	

is	detectable	by	the	demuxlet	model	(Fig.	1C).	The	ability	to	recover	the	sample	identity	of	each	40	

cell	(“demuxing”)	and	identify	most	doublets	enables	experimental	designs	that	significantly	41	

increase	the	per	sample	throughput	of	current	dscRNA-seq	workflows.	42	

We	first	assess	the	feasibility	of	our	strategy	and	the	performance	of	demuxlet	by	43	

analyzing	multiplexed	peripheral	blood	mononuclear	cells	(PBMCs)	from	8	patients	with	44	
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systemic	lupus	erythematosus	(SLE).	Using	a	sequential	pooling	strategy,	three	pools	of	45	

equimolar	concentrations	of	cells	were	generated	(W1:	patients	S1-S4,	W2:	patients	S5-S8	and	46	

W3:	patients	S1-S8)	and	each	loaded	in	a	well	on	a	10X	Chromium	Single	Cell	instrument	(Fig.	47	

2A).	3,645,	4,254	and	6,205	single	cells	were	obtained	from	each	well	and	sequenced	to	an	48	

average	depth	of	23k,	17k	and	13k	reads	per	cell.		49	

Demuxlet	identified	91%	(3332/3645),	91%	(3864/4254),	and	86%	(5348/6205)	of	50	

droplets	as	singlets	from	wells	W1,	W2	and	W3,	respectively.	25%	(+/-	2.6%),	25%	(+/-	4.6%)	51	

and	12.5%	(+/-	1.4%)	of	singlets	from	wells	W1,	W2	and	W3	mapped	to	each	donor,	consistent	52	

with	equal	mixing	of	8	individuals.	We	estimate	an	error	rate	(number	of	cells	assigned	to	53	

individuals	not	in	the	mixture)	of	2/3332	(W1)	and	0/3864	(W2)	singlets	by	analyzing	wells	W1	54	

and	W2,	each	containing	cells	from	two	disjoint	sets	of	4	individuals	(Fig.	2B),	suggesting	>	99%	55	

of	singlets	were	assigned	to	individuals	correctly.		56	

We	next	assess	the	ability	of	demuxlet	to	detect	doublets	in	both	simulated	and	real	57	

data.	466/3645	(13%)	cells	were	simulated	as	synthetic	doublets	by	setting	the	cellular	58	

barcodes	of	two	sets	of	466	cells	from	individuals	S1	and	S2	to	be	the	same.	Applied	to	the	59	

simulated	data,	demuxlet	identified	91%	(426/466)	of	synthetic	doublets	as	doublets	or	60	

ambiguous,	correctly	recovering	the	sample	identity	of	both	cells	in	403/426	(95%)	doublets	61	

(fig.	S1).	Applied	to	real	data	from	W1,	W2	and	W3,	demuxlet	identified	138/3645,	165/4254,	62	

and	384/6205	doublets,	corresponding	to	5.0%,	5.2%	and	7.1%,	consistent	with	the	linear	63	

relationship	between	the	number	of	cells	sequenced	and	doublet	rates	estimated	using	a	mixed	64	

species	experiment	(Fig.	2C).	65	
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Sample	demultiplexing	enables	individual-specific	visualization	of	single	cell	data	we	call	66	

‘drop	prints’.	While	both	variability	in	cell	type	proportion	and	gene	expression	have	been	67	

previously	observed	in	PBMCs,	it	has	not	been	possible	to	fully	control	for	batch	effects	due	to	68	

separate	processing	of	samples22,	23.	Singlets	identified	by	demuxlet	in	all	three	wells	cluster	69	

into	known	PBMC	subpopulations	(Fig.	2D)	and	are	not	confounded	by	well	to	well	effects	(fig.	70	

S2A).	While	we	found	6	differentially	expressed	genes	(FDR	<	0.05)	between	wells	W1	and	W2,	71	

only	2	genes	were	differentially	expressed	in	well	W3	between	W1	and	W2	individuals	(FDR	<	72	

0.05)	(fig.	S2B)	suggesting	sample	multiplexing	could	reduce	confounding	such	as	library	73	

preparation	batch	effects.	Furthermore,	for	the	same	individuals,	drop	prints	from	two	74	

different	wells	are	qualitatively	consistent,	the	estimates	of	cell	type	proportions	for	the	same	75	

individuals	in	W1	or	W2	and	W3	are	highly	correlated	(R	=	0.99)	(Fig.	2E	and	fig.	S3),	and	the	76	

inferred	cell	type-specific	expression	profiles	are	correlated	with	bulk	sequencing	of	sorted	cell	77	

populations	(R=0.76-0.92)	(fig.	S4).	These	results	demonstrate	that	demuxlet	recovers	the	78	

sample	identity	of	single	cells	with	high	accuracy,	identifies	doublets	at	the	expected	rate,	and	79	

can	allow	for	comparison	of	individuals	within	and	across	wells.	80	

Demuxlet	enables	multiplexed	experimental	designs	that	increase	the	sample	81	

throughput	for	profiling	of	interindividual	responses	across	a	variety	of	conditions.	We	applied	82	

such	a	multiplexing	strategy	to	characterize	cell	type-specific	responses	to	IFN-β,	a	potent	83	

cytokine	that	induces	genome-scale	changes	in	the	transcriptional	profiles	of	immune	cells24,	25.	84	

From	8	lupus	patients,	1M	PBMCs	each	were	isolated,	sequentially	pooled,	and	divided	in	two	85	

aliquots.	One	sample	was	activated	with	recombinant	IFN-β	for	6	hours,	a	time	point	we	86	

previously	found	to	maximize	the	expression	of	interferon-sensitive	genes	(ISGs)	in	dendritic	87	
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cells	(DCs)	and	T	cells26,	27.	A	matched	control	sample	was	also	cultured	for	6	hours.		From	this	88	

experiment,	we	captured	and	sequenced	14,619	control	and	14,446	stimulated	cells.	89	

In	control	and	stimulated	experiments,	demuxlet	identified	83%	(12138/14619)	and	84%	90	

(12167/14446)	of	droplets	as	singlets,	and	recovered	the	sample	identity	of	99%	(12127/12138	91	

and	12155/12167)	of	singlets.	Detected	doublets	form	distinct	clusters	in	t-SNE	space	at	the	92	

periphery	of	other	cell	types,	indicative	of	the	expected	enrichment	of	doublets	for	mixed	cell	93	

types	in	a	heterogeneous	population	(fig.	S5).	The	estimated	doublet	rate	of	10.9%	is	consistent	94	

with	predicted	rates	based	on	the	number	of	cells	recovered,	and	the	observed	proportion	of	95	

doublets	from	each	pair	of	individuals	is	highly	correlated	with	the	expected	proportions	96	

(R=0.98)	(Fig.	2C	and	fig.	S6).		97	

	 Demultiplexing	individuals	enables	the	use	of	the	8	samples	within	a	pool	as	biological	98	

replicates	to	quantitatively	assess	cell	type-specific	responses	to	IFN-β	stimulation.	Consistent	99	

with	previous	reports	from	bulk	RNA-sequencing	data,	IFN-β	stimulation	induces	widespread	100	

transcriptomic	changes	observed	as	a	shift	in	the	t-SNE	projections	of	singlets	(Fig.	3A)24.	After	101	

assigning	each	singlet	to	a	reference	cell	population17,	we	identified	2,686	differentially	102	

expressed	genes	(logFC	>	2,	FDR	<	0.05)	in	at	least	one	cell	type	in	response	to	IFN-β	stimulation	103	

(table	S1).	These	genes	cluster	into	modules	of	cell	type-specific	responses	enriched	for	distinct	104	

gene	regulatory	processes	(Fig.	3B,	table	S2).	For	example,	the	two	clusters	of	upregulated	105	

genes,	pan-leukocyte	(Cluster	III:	401	genes,	logFC	>	2,	FDR	<	0.05)	and	CD14+	specific	(Cluster	I:	106	

767	genes,	logFC	>	2,	FDR	<	0.05),	were	enriched	for	general	antiviral	response	(e.g.	KEGG	107	

Influenza	A:	Cluster	III	P	<	1.6x10-5),	chemokine	signaling	(Cluster	I	P	<	7.6x10-3)	and	genes	108	

implicated	in	SLE	(Cluster	I	P	<	4.4x10-3).	The	five	clusters	of	downregulated	genes	were	109	
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enriched	for	antibacterial	response	(KEGG	Legionellosis:	Cluster	II	monocyte	down	P	<	5.5x10-3)	110	

and	natural	killer	cell	mediated	toxicity	(Cluster	IV	NK/Th	cell	down:	P	<	3.6x10-2).	The	111	

differential	expression	using	cell	type-specific	estimates	from	single	cell	data	recovers	known	112	

gene	regulatory	programs	affected	by	interferon	stimulation.	113	

We	next	characterize	interindividual	variability	in	PBMC	expression	at	baseline	and	in	114	

response	to	IFN-β	stimulation.	In	both	control	and	stimulated	cells,	the	variance	of	mean	115	

expression	among	individuals	is	substantially	higher	than	expected	from	synthetic	replicates	116	

(Fig.	3C).	As	previously	reported22,	28,	cell	type	proportion	varied	significantly	among	individuals	117	

and	contributes	to	variability	in	gene	expression	(fig.	S7).	The	variance	estimated	from	synthetic	118	

replicates	with	matched	cell	type	proportions	is	more	concordant	with	the	observed	variance	119	

(Lin’s	concordance	=	0.54	versus	0.022,	Pearson	correlation	=	0.78	versus	0.69,	Fig.	3C-D).	120	

However,	comparing	mean	expression	from	synthetic	replicates	within	cell	types	(Lin’s	121	

concordance	=	0.007	-	0.20,	Pearson	correlation	=	0.27	–	0.68)	shows	that	there	is	122	

interindividual	variability	not	explained	simply	by	cell	type	proportion	(fig.	S8).	123	

We	then	explored	interindividual	variability	in	expression	within	one	cell	type,	124	

CD14+CD16-	monocytes.	The	correlation	of	mean	expression	between	pairs	of	synthetic	125	

replicates	from	the	same	individual	(>99%)	was	greater	than	between	different	individuals	126	

(~97%),	indicating	variation	beyond	sampling	(Fig.	3E).	We	found	585	genes	that	have	127	

significant	interindividual	variability	in	stimulated	CD14+	CD16-	monocytes	and	827	in	control	by	128	

correlating	the	synthetic	replicates	across	individuals	(Pearson	correlation,	FDR	<	0.05).	The	129	

variable	genes	in	stimulated	CD14+CD16-	monocytes	and	to	a	lesser	extent	in	CD4+	T	cells	(P	<	130	

9.3x10-4	and	4.5x10-2,	hypergeometric	test,	Fig.	3F)	are	enriched	for	differentially	expressed	131	
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genes,	consistent	with	our	previous	discovery	of	more	IFN-β	response-eQTLs	in	monocyte-132	

derived	dendritic	cells	than	CD4+	T	cells26,	27.	We	hypothesize	that	natural	genetic	variation	133	

could	explain	interindividual	variability	in	gene	expression	in	our	multiplexed	data.	For	example,	134	

schlafen	family	member	5	(SLFN5)	and	guanylate	binding	protein	3	(GBP3)	expression	are	highly	135	

correlated	between	replicates	after	IFN-β	stimulation	(R=0.92,	P	<	0.0011	and	0.80,	P	<	0.017).	136	

The	average	expression	of	the	two	synthetic	replicates	are	associated	with	known	eQTLs	in	137	

CD14+	monocytes	and	lymphoblastoid	cell	lines,	respectively	(SLFN5:	rs11080327	P	<	3.1x10-4,	138	

GBP3:	rs10493821	P	<	2.1x10-2,	Fig.	3G)26,	29.	These	results	suggest	that	single	cell	sequencing	139	

recovers	repeatable	interindividual	variation	in	gene	expression	and	in	two	genes,	is	associated	140	

with	known	genetic	determinants.		141	

We	introduce	demuxlet,	a	new	computational	method	that	enables	simple	and	efficient	142	

sample	multiplexing	for	dscRNA-seq,	validate	its	performance	in	simulated	and	real	data,	and	143	

characterize	single	cell	expression	of	PBMCs	from	SLE	patients	in	several	different	conditions.	144	

Our	results	demonstrate	demuxlet	provides	reliable	estimation	of	cell	type	proportion	across	145	

individuals,	recovers	cell	type-specific	transcriptional	programs	from	mixed	populations	146	

consistent	with	previous	reports,	and	identifies	genes	with	interindividual	variability24.	The	147	

capability	to	demultiplex	and	identify	doublets	using	natural	genetic	variation	significantly	148	

reduces	the	per-sample	and	per-cell	cost	of	single-cell	RNA-sequencing,	does	not	require	149	

synthetic	barcodes	or	split-pool	strategies30-34,	and	captures	biological	variability	among	150	

individual	samples	while	limiting	the	effects	of	unwanted	technical	variability.		151	

The	application	of	single	cell	sequencing	methods	such	as	dscRNA-seq	to	larger	numbers	152	

of	individuals	is	a	promising	approach	to	characterizing	cellular	heterogeneity	among	153	
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individuals	at	baseline	and	in	different	environmental	conditions,	a	crucial	area	for	further	154	

understanding	of	health	and	disease35-37.	Experimental	and	computational	methods	for	reliable	155	

and	efficient	sample	multiplexing	could	enable	broad	adoption	of	droplet-based	RNA-seq	for	156	

population-scale	studies,	facilitating	genetic	and	longitudinal	analyses	in	relevant	cell	types	and	157	

conditions	across	a	range	of	sampled	individuals38.	 	158	
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	159	

Figure	1	–	Demuxlet:	demultiplexing	and	doublet	identification	from	single	cell	data.		160	

A)	Pipeline	for	experimental	multiplexing	of	unrelated	individuals,	loading	onto	droplet-based	161	

single	cell	RNA-sequencing	instrument,	and	computational	demultiplexing	(demux)	and	doublet	162	

removal	using	demuxlet.	Assuming	equal	mixing	of	8	individuals,	B)	4	genetic	variants	can	163	

recover	the	sample	identity	of	a	cell,	and	C)	87.5%	of	doublets	will	contain	cells	from	two	164	

different	samples.	 	165	
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	166	

Figure	2	–	Performance	of	demuxlet.	A)	Experimental	design	for	equimolar	pooling	of	cells	167	

from	8	unrelated	samples	(S1-S8)	into	three	wells	(W1-W3).	W1	and	W2	contain	cells	from	two	168	

disjoint	sets	of	4	individuals.	W3	contains	cells	from	all	8	individuals.	B)	Demultiplexing	single	169	

cells	in	each	well	recovers	the	expected	individuals.	C)	Estimates	of	doublet	rates	versus	170	

previous	estimates	from	mixed	species	experiments.	D)	Cell	type	identity	determined	by	171	

prediction	to	previously	annotated	PBMC	data.	E)	t-SNE	plot	of	two	individuals	(S1	and	S5)	from	172	

different	wells	are	qualitatively	concordant.		173	
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	174	

Figure	3	–	Interindividual	variability	in	IFN-β	response.	A)	t-SNE	plot	of	unstimulated	(blue)	and	175	

IFN-β-stimulated	(red)	PBMCs	and	the	estimated	cell	types.	B)	Cell	type-specific	expression	in	176	

stimulated	(left)	and	unstimulated	(right)	cells.	Differentially	expressed	genes	shown	(FDR	<	177	

0.05,	|log(FC)|	>	1).	Each	column	represents	cell	type-specific	expression	for	each	individual	178	

from	demuxlet.	C)	Cell	type	proportions	for	each	individual	in	unstimulated	and	stimulated	179	

cells.	D)	Observed	variance	(y-axis)	in	mean	expression	over	all	PBMCs	from	each	individual	180	

versus	expected	variance	(x-axis)	over	synthetic	replicates	sampled	across	all	cells	(light	blue,	181	

pink)	or	replicates	matched	for	cell	type	proportion	(blue,	red).	E)	Correlation	between	sample	182	

replicates	in	control	and	stimulated	cells.	F)	Number	of	significantly	variable	genes	in	each	cell	183	

type	and	condition.	G)	Mean	expression	of	SLFN5	and	GPB3	in	two	sample	replicates	labeled	by	184	

genotype.		 	185	
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Methods	186	

Identifying	the	sample	identity	of	each	single	cell.	187	

We	first	describe	the	method	to	infer	the	sample	identity	of	each	cell	in	the	absence	of	188	

doublets.	Consider	RNA-sequence	reads	from	C	barcoded	droplets	multiplexed	across	S	189	

different	samples,	where	their	genotypes	are	available	across	V	exonic	variants.	Let	𝑑"#	be	the	190	

number	of	unique	reads	overlapping	with	the	v-th	variant	from	the	c-th	droplet.	Let	𝑏"#% ∈191	

𝑅, 𝐴, 𝑂 , 𝑖 ∈ 1,⋯ , 𝑑"# 	be	the	variant-overlapping	base	call	from	the	i-th	read,	representing	192	

reference	(R),	alternate	(A),	and	other	(O)	alleles	respectively.	Let		𝑒"#% ∈ 0,1 	be	a	latent	193	

variable	indicating	whether	the	base	call	is	correct	(0)	or	not	(1),	then	given	𝑒"#% = 0, 𝑏"#% ∈194	

𝑅, 𝐴 	and		~	Binomial 2, ;
<
	when	𝑔 ∈ {0,1,2}	is	the	true	genotype	of	sample	corresponding	195	

to	c-th	droplet	at	v-th	variant.	When	𝑒"#% = 1,	we	assume	that	Pr(𝑏"#%|𝑔, 𝑒"#%)	follows	table	S3.	196	

𝑒"#% 	is	assumed	to	follow	Bernoulli 10G
HIJK
LM 	where	𝑞"#% 	is	a	phred-scale	quality	score	of	the	197	

observed	base	call.	198	

	 We	allow	uncertainty	of	observed	genotypes	at	the	v-th	variant	for	the	s-th	sample	199	

using	𝑃P#
(;) = Pr(𝑔|DataP#),	the	posterior	probability	of	a	possible	genotype	𝑔	given	external	200	

DNA	data	DataP#	(e.g.	sequence	reads,	imputed	genotypes,	or	array-based	genotypes).	If	201	

genotype	likelihood	Pr(DataP#|𝑔)	is	provided	(e.g.	unphased	sequence	reads)	instead,	it	can	be	202	

converted	to	a	posterior	probability	scale	using	𝑃P#
(;) = Pr	(DataP#|𝑔)Pr	(𝑔)	where	203	

Pr 𝑔 ~Binomial 2, 𝑝# 	and	𝑝#	is	the	population	allele	frequency	of	the	alternate	allele.	To	204	

allow	errors	𝜀	in	the	posterior	probability,	we	replace	it	to	(1 − 𝜀)𝑃P#
(;) + 𝜀Pr	(𝑔).	The	overall	205	

likelihood	that	the	c-th	droplet	originated	from	the	s-th	sample	is	206	
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	 𝐿" 𝑠 = Pr(𝑏"#%|𝑔, 𝑒)Y
Z[\ 𝑃P#

(;)]IJ
%[Y

<
;[\

^
#[Y 		 (1)	

In	the	absence	of	doublets,	we	use	the	maximum	likelihood	to	determine	the	best-matching	207	

sample	as	argmaxP 𝐿" 𝑠 .	208	

	209	

Screening	for	droplets	containing	multiple	samples.	210	

To	identify	doublets,	we	implement	a	mixture	model	to	calculate	the	likelihood	that	the	211	

sequence	reads	originated	from	two	individuals,	and	the	likelihoods	are	compared	to	determine	212	

whether	a	droplet	contains	cells	from	one	or	two	samples.	If	sequence	reads	from	the	c-th	213	

droplet	originate	from	two	different	samples,	𝑠Y, 𝑠<	with	mixing	proportions	 1 − 𝛼 ∶ 	𝛼,	then	214	

the	likelihood	in	(1)	can	be	represented	as	the	following	mixture	distribution18,		215	

𝐿" 𝑠Y, 𝑠<, α = 1 − α Pr 𝑏"#% 𝑔Y, 𝑒 + 𝛼Pr 𝑏"#% 𝑔<, 𝑒Y
Z[\ 𝑃P#

(;L)𝑃P#
(;d)]IJ

%[Y;L,;d
^
#[Y 		216	

	 To	reduce	the	computational	cost,	we	consider	discrete	values	of	α ∈ {αY,⋯ , αe},	(e.g.	217	

5	-	50%	by	5%).	We	determine	that	it	is	a	doublet	between	samples	𝑠Y, 𝑠<		if	and	only	if		218	

fghiL,id,j kI PL,Pd,l
fghikI P

≥ 𝑡	and	the	most	likely	mixing	proportion	is	estimated	to	be	219	

argmaxo𝐿" 𝑠Y, 𝑠<, 𝛼 .	We	determine	that	the	cell	contains	only	a	single	individual	s	if	220	

fghiL,id,j kI PL,Pd,l
fghikI P

≤ Y
q
	.	The	less	confident	droplets,	we	classify	cells	as	ambiguous.	While	we	221	

consider	only	doublets	for	estimating	doublet	rates,	we	remove	all	doublets	and	ambiguous	222	

droplets	to	conservatively	estimate	singlets.	Figure	S1	illustrates	the	distribution	of	singlet,	223	

doublet	likelihoods	and	the	decision	boundaries	when	t	=	2	was	used.		224	

	225	

Isolation	and	preparation	of	PBMC	samples.	226	
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Peripheral	blood	mononuclear	cells	were	isolated	from	patient	donors,	Ficoll	separated,	and	227	

cryopreserved	by	the	UCSF	Core	Immunologic	Laboratory	(CIL).	PBMCs	were	thawed	in	a	37°C	228	

water	bath,	and	subsequently	washed	and	resuspended	in	EasySep	buffer.	Cells	were	treated	229	

with	DNAseI	and	incubated	for	15	min	at	RT		before	filtering	through	a	40um	column.		Finally,	230	

the	cells	were	washed	in	EasySep	and	resuspended	in	1x	PBMS	and	0.04%	bovine	serum	231	

albumin.		Cells	from	8	donors	were	then	re-concentrated	to	1M	cells	per	mL	and	then	serially	232	

pooled.	At	each	pooling	stage,	1M	cells	per	mL	were	combined	to	result	in	a	final	sample	pool	233	

with	cells	from	all	donors.		234	

	235	

IFN-β	stimulation	and	culture.	236	

Prior	to	pooling,	samples	from	8	individuals	were	separated	into	two	aliquots	each.	One	aliquot	237	

of	PBMCs	was	activated	by	100	U/mL	of	recombinant	IFN-β	(PBL	Assay	Science)	for	6	hours	238	

according	to	the	published	protocol26.	The	second	aliquot	was	left	untreated.	After	6	hours,	the	239	

8	samples	for	each	condition	were	pooled	together	in	two	final	pools	(stimulated	cells	and	240	

control	cells)	as	described	above.		241	

	242	

Droplet-based	capture	and	sequencing.	243	

Cellular	suspensions	were	loaded	onto	the	10x	Chromium	instrument	(10x	Genomics)	and	244	

sequenced	as	described	in	Zheng	et	al17.	The	cDNA	libraries	were	sequenced	using	a	custom	245	

program	on	10	lanes	of	Illumina	HiSeq	2500	Rapid	Mode,	yielding	1.8B	total	reads	and	25K	246	

reads	per	cell.	At	these	depths,	we	recovered	>	90%	of	captured	transcripts	in	each	sequencing	247	

experiment.		248	

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118778doi: bioRxiv preprint 

https://doi.org/10.1101/118778


	
	

	249	

Bulk	isolation	and	sequencing.	250	

PBMCs	from	lupus	patients	were	isolated	and	prepared	as	described	above.	Once	resuspended	251	

in	EasySep	buffer,	the	EasyEights	Magnet	was	used	to	sequentially	isolate	CD14+	(using	the	252	

EasySep	Human	CD14	positive	selection	kit	II,	cat	#17858),	CD19+	(using	the	EasySep	Human	253	

CD19	positive	selection	kit	II,	cat	#17854),	CD8+	(EasySep	Human	CD8	positive	selection	kitII,	254	

cat#17853),	and	CD4+	cells	(EasySep	Human	CD4	T	cell	negative	isolation	kit	(cat	#17952)	255	

according	to	the	kit	protocol.	RNA	was	extracted	using	the	RNeasy	Mini	kit	(#74104),	and	256	

reverse	transcription	and	tagmentation	were	conducted	according	to	Picelli	et	al.	using	the	257	

SmartSeq2	protocol39,	40.	After	cDNA	synthesis	and	tagmentation,	the	library	was	amplified	with	258	

the	Nextera	XT	DNA	Sample	Preparation	Kit	(#FC-131-1096)	according	to	protocol,	starting	with	259	

0.2ng	of	cDNA.		Samples	were	then	sequenced	on	one	lane	of	the	Illumina	HiSeq	4000	with	260	

paired	end	100bp	read	length,	yielding	350M	total	reads.	261	

	262	

Alignment	and	initial	processing	of	single	cell	sequencing	data.	263	

We	used	the	CellRanger	v1.1	and	v1.2	software	with	the	default	settings	to	process	the	raw	264	

FASTQ	files,	align	the	sequencing	reads	to	the	hg19	transcriptome,	and	generate	a	filtered	UMI	265	

expression	profile	for	each	cell17.	The	raw	UMI	counts	from	all	cells	and	genes	with	nonzero	266	

counts	across	the	population	of	cells	were	used	to	generate	t-SNE	profiles.		267	

	268	

Cell	type	classification	and	clustering.	269	
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To	identify	known	immune	cell	populations	in	PBMCs,	we	used	the	Seurat	package	to	perform	270	

unbiased	clustering	on	the	2.7k	PBMCs	from	Zheng	et	al.,	following	the	publicly	available	271	

Guided	Clustering	Tutorial17,	41.	The	FindAllMarkers	function	was	then	used	to	find	the	top	20	272	

markers	for	each	of	the	8	identified	cell	types.	Cluster	averages	were	calculated	by	taking	the	273	

average	raw	count	across	all	cells	of	each	cell	type.	For	each	cell,	we	calculated	the	Spearman	274	

correlation	of	the	raw	counts	of	the	marker	genes	and	the	cluster	averages,	and	assigned	each	275	

cell	to	the	cell	type	to	which	it	had	maximum	correlation.	276	

	277	

Differential	expression	analysis.	278	

Demultiplexed	individuals	were	used	as	replicates	for	differential	expression	analysis.		For	each	279	

gene,	raw	counts	were	summed	for	each	individual.	We	used	the	DESeq2	package	to	detect	280	

differentially	expressed	genes	between	control	and	stimulated	conditions42.	Genes	with	281	

baseMean	>	1	were	filtered	out	from	the	DESeq2	output,	and	the	qvalue	package	was	used	to	282	

calculate	FDR	<	0.05	43.	283	

	284	

Estimation	of	interindividual	variability	in	PBMCs.	285	

For	each	individual,	we	found	the	mean	expression	of	each	gene	with	nonzero	counts.	The	286	

mean	was	calculated	from	the	log2	single	cell	UMI	counts	normalized	to	the	median	count	for	287	

each	cell.	To	measure	interindividual	variability,	we	then	calculated	the	variance	of	the	mean	288	

expression	across	all	individuals.	Lin’s	concordance	correlation	coefficient	was	used	to	compare	289	

the	agreement	of	observed	data	and	synthetic	replicates.	Synthetic	replicates	were	generated	290	

by	sampling	without	replacement	either	from	all	cells	or	cells	matched	for	cell	type	proportion.	291	
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Estimation	of	interindividual	variability	within	cell	types.	292	

For	each	cell	type,	we	generated	two	bulk	equivalent	replicates	for	each	individual	by	summing	293	

raw	counts	of	cells	sampled	without	replacement.		We	used	DESeq2	to	generate	variance-294	

stabilized	counts	across	all	replicates.	To	filter	for	expressed	genes,	we	performed	all	295	

subsequent	analyses	on	genes	with	5%	of	samples	with	>	0	counts.		The	correlation	of	replicates	296	

and	QTL	detection	was	performed	on	the	log2	normalized	counts.	Pearson	correlation	of	the	297	

two	replicates	from	each	of	the	8	individuals	was	used	to	find	genes	with	significant	298	

interindividual	variability.		299	

	300	

Single	cell	and	bulk	RNA-sequencing	data	has	been	deposited	in	the	Gene	Expression	Omnibus	301	

under	the	accession	number	GSE96583.	Demuxlet	software	is	freely	available	at		302	

https://github.com/hyunminkang/apigenome.		303	
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