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We hypothesize that regulatory mechanisms influenced by an environmental 

perturbagen may be identified with eQTL (expression quantitative trait locus) 

interactions, which alter the relationship between a genetic variant and transcript 

levels. In an anti-IL-6 clinical trial of 157 patients with systemic lupus 

erythematosus (SLE) we measured cell counts, interferon (IFN) signature, and 

drug exposure at three time points alongside genome-wide transcription. 

Repeated transcriptomic measurements detected 4,976 cis eQTLs, 63% more than 

detectable from single measurements. We identified 154, 185 and 126 nominal 

eQTL interactions with T cell count, IFN status and anti-IL-6 drug exposure 

respectively (more than expected by chance, p<0.001). IFN interactions are 

enriched for IRF1 motifs, and 91/126 drug-eQTL interactions are consistent with 

interactions using free IL-6 protein levels. This same approach can be easily used 

to define informative drug exposure scores, and can be applied to larger drug 

trials to further our understanding of the drug mechanisms. 

 

A cis eQTL contains a genetic variant that alters expression of a nearby gene. eQTLs 

are ubiquitous across the genome1 and while most are stable across tissues and 

conditions, environmental perturbations can alter a minority of them2–8. If a perturbation 

disrupts upstream regulatory mechanisms for a gene then it could magnify or dampen 

an eQTL effect, resulting in an environmental interaction. Therefore, if we observe a set 

of eQTL interactions due to a perturbagen (such as a drug), shared upstream regulatory 

mechanisms may represent key affected pathways. As the regulatory genome is 

mapped9,10, this approach to define environmental mechanisms will become more 

potent.  
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A clinical trial is an ideal cohort to detect eQTL interactions with drugs or other 

environmental perturbations and could lead to key insights about mechanisms of action. 

In a clinical trial, homogenous groups of subjects are randomly exposed to a drug in a 

structured study design that frequently includes biological samples collected at different 

time points with extensive clinical and physiological phenotyping. If RNA is queried at 

multiple time points under different exposure states, we speculated that repeat 

measurements could increase power to detect not only eQTLs, but also their 

interactions. 

 

As a proof of principle, we looked at the modulation of eQTL effects by anti-IL-6 

exposure using data from a phase II clinical trial to evaluate the safety and efficacy of a 

neutralizing IL-6 monoclonal antibody (PF-04236921) in 157 SLE patients11 (Online 

Methods).  Here, our clinical outcome of interest is a reduction in free IL-6 protein 

levels. We conducted whole blood high-depth RNA-seq profiling at 0, 12, and 24 weeks 

in anti-IL-6 exposed and unexposed individuals with the Illumina TruSeq protocol. We 

observed and quantified 20,253 gene features and genotyped 608,017 variants 

genomewide (Online Methods). Along with each RNA-seq assay, we documented drug 

exposure and quantified cell counts with FACS and IFN signature status with real-time 

PCR. 

 

We first mapped cis eQTLs (SNPs within 250kb of the transcription start site of the 

gene) and then tested those eQTLs for interactions with cell counts, IFN status and drug 
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exposure. eQTL interactions can be explored using our interactive visualization tool 

(http://baohongz.github.io/Lupus_eQTL). 

 

We used a linear mixed model, including repeat measurements with up to three RNA-

seq assays per patient (Fig. 1a, 379 samples from 157 patients, Online Methods). To 

maximize power, we adjusted for 5 population and 25 gene expression principal 

components (Online Methods). To ensure a set of highly confident eQTLs, we applied 

a stringent multiple hypothesis testing correction and identified 4,976 cis eQTL genes 

with p<2.3x10-8 (0.05/2,177,889 tests, Fig. 1b,1c, Supplementary Table 1). We 

observed that repeat samples increased our power by detecting 63% more cis eQTLs 

compared to using a single sample per individual (3,061 genes Fig. 1b). Our results are 

highly concordant with the BIOS cohort, a much larger dataset of 2,166 healthy 

individuals1. 85.4% of our SLE eQTL SNP-gene pairs are reported as eQTLs in BIOS 

(FDR<0.05). Of these, 99.1% showed consistent direction of effect (Fig. 1d). For each 

of the 4,976 cis eQTL genes, we tested the most significantly associated SNP for 

environmental interactions.  

 

We first tested a type of eQTL interactions that have been examined previously: cell 

counts12,13.  We obtained FACS data for 320 samples for which we had 

contemporaneous RNA-seq profiles (n=152 subjects). We determined the percentage of 

total lymphocytes that were T cells by gating (Fig. 2a). We found 154 T cell-eQTL 

interactions with nominal evidence (p<0.01, Supplementary Table 1), whereas from 

4,976 tests we would expect ~50 from chance alone. To ensure that our statistics were 

not inflated, we conducted 1,000 stringent permutations, where we reassigned T cell 
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percentages across samples and retested. This permutation preserved the main eQTL 

effect, while disrupting interactions that might be present in the data. In no instance did 

we observe 154 or more interactions at p<0.01 (maximum=133), suggesting that the 

number of observed interactions is highly unlikely to have happened by chance (Fig. 

2b, p=1/1,001 = <0.001).  

 

Interactions can be divided into magnifiers, where environmental exposure and eQTL 

effects are in the same direction, and dampeners where the effects work in the opposite 

direction (Supplementary Fig. 1, Fig. 2c). The NOD2 rs1981760 eQTL is an example 

of an interaction that is dampened by T cell count (Fig. 2d, p=6.5x10-5), and has 

separately been shown to vary across cell types12,13. For each percent increase in T cell 

proportion, the eQTL effect is reduced by 0.008 log2(cpm+1).  

 

Many patients with SLE exhibit high levels of genes induced by IFN alpha; these genes, 

known as the IFN signature, are a marker of disease severity14,15. We explored the 

influence of IFN alpha on gene regulation after determining the IFN status of every 

patient at each time point using real-time PCR of 11 IFN-inducible genes16 (Online 

Methods, Fig. 3a). We identified 185 IFN-eQTL interactions with p<0.01 

(Supplementary Table 1). Following the same permutation procedures as above, our 

observed interactions were unlikely to have occurred by chance (maximum permutation 

interactions=112, p<0.001) (Supplementary Fig. 2). We note that interactions with a 

proxy gene for IFN status have been described1 and we find overlap of genes with 

those reported interactions (Supplementary Fig. 3). For example, SLFN5 expression is 
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influenced by the rs12945522 SNP (1.3x10-10, Fig. 3b). This effect is magnified in IFN 

high samples.  

 

To define transcription factors that drive the response to IFN alpha, we sought to 

identify motifs that explain the differences between magnifier and dampener eQTLs 

(Supplementary Fig. 4). We applied HOMER17 to assess overlap with the interaction 

SNPs (or SNPs in high linkage disequilibrium (LD, r2>0.8)) in the cis window (Online 

Methods). We found significant enrichment of motifs for key transcription factors 

involved in IFN signaling including the IRF1 motif in eQTLs dampened in IFN low 

individuals (p=0.001, permutation p<0.002, Online Methods, Fig. 3c, Supplementary 

Table 2). An example is the GTF2A2 rs2306355 eQTL (p=8.7x10-3, Fig. 3d); rs2306355 

is in tight LD (r2=0.82 in Europeans) with rs6494127, which interrupts the GAAA core of 

the IRF1 motif (Fig. 3c), and likely disrupts IRF1 binding18. We observe greater 

expression in individuals with the rs2306355 A allele compared to G; this difference is 

dampened in IFN low individuals (Fig. 3d).  

 

We then examined whether IL-6 blockade alters the relationship between genomic 

variation and gene expression and induces drug-eQTL interactions. We observed 126 

drug-eQTL interactions with p<0.01 (Supplementary Table 1). Following the same 

permutation strategy as above, we found a median of 77 interactions with p<0.01 

(maximum=117) from 1,000 permutations. This suggests that about half of our drug-

eQTL interactions likely represent real biological phenomena, and not statistical artifact 

(Supplementary Fig. 5). These drug-eQTL interactions showed little overlap with the 

interactions observed for T cell count or IFN status (Supplementary Fig. 6). Again, 
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these interactions can be divided into magnifiers and dampeners (Supplementary Fig. 

7). Figure 4a highlights one of the most significant drug-eQTL interactions (p=6.5x10-4) 

for the gene KIAA2013. Of particular biological relevance is an interaction with IL10, an 

anti-inflammatory cytokine (Supplementary Fig. 8).  

 

A more common strategy to determine the effect of a perturbagen is to use differential 

gene expression. For differential expression following drug treatment, we identified 

1,161 genes with nominal statistical evidence (p<0.01) but modest effects (max fold 

change=1.3, Supplementary Fig. 9). Furthermore, only 8/126 drug-eQTL interaction 

genes also show evidence of differential gene expression. This suggests that eQTL 

interactions offer independent information from differential expression, which might 

contribute to defining mechanisms. 

   

To validate these interactions, we hypothesized that interactions due to drug exposure 

are likely driven by free IL-6 cytokine levels (our key clinical biomarker of interest). If this 

is the case, for eQTLs dampened by drug exposure, an increase in free IL-6 should 

elicit an opposite interaction effect and result in eQTL magnification. We assessed 

whether eQTL interactions with free IL-6 protein levels measured in the patient serum 

samples were consistent with those following IL-6 blockade. We observed enrichment in 

the overlap between cytokine interactions and drug interactions (91/126 interactions in 

consistent direction, Figure 4b, p=3.2x10-7, binomial test). We were concerned that free 

IL-6 and drug exposure are not independent in this dataset, and that this concordance 

might be in part due to the connection between free IL-6 protein levels and IL-6 

blockade (Supplementary Fig. 10). To assess whether free IL-6 offers independent 
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interaction effects that were consistent after accounting for drug effect, we modeled free 

IL-6 levels based on the presence or absence of drug and then assessed interactions 

with residual IL-6 levels. Again, we observed a significant number of interactions in a 

consistent direction  (p=0.03 Supplementary Fig. 11).  

 

For many biologic medications, predictive pharmacogenetics has been challenging; for 

example, studies to define genetic or non-genetic biomarkers of anti-TNF response 

have not been successful19,20. Identifying relevant SNP-gene pairs from eQTL 

interactions could offer an alternative molecular strategy to assess effective drug 

response in patients. We speculated that these drug-eQTL interactions could be used in 

a clinical pharmacogenetic context to assess effective drug exposure for patients.  

 

We defined a simple drug exposure score using the 126 drug-eQTL interactions (Online 

Methods). For each RNA-seq sample, we assessed whether the expression of the 

interaction gene was more consistent with the drug exposed or unexposed state for the 

corresponding interaction SNP genotype. Samples more consistent with the drug-

exposed state are assigned a larger drug exposure score. Unsurprisingly, we found a 

difference in drug exposure score between the unexposed and exposed samples 

(Supplementary Fig. 12) (rs=0.79, p=6.9x10-81); these differences reflect the fact that 

the eQTLs were themselves identified by examining samples with and without drug 

exposure. However, while we did not utilize actual drug dose to identify drug-eQTL 

interactions, we found a significant correlation between drug dose (10, 50 or 200mg) 

and drug exposure score (rs=0.16, p=0.018) in the drug-exposed samples (Fig. 4c).  
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Hence scores based on eQTL interactions might reflect the biological activity that a 

medication is having upon an individual, and may be modeling an effective medication 

activity level. Such a scoring system could be implemented easily in most phase III 

trials, where the numbers of samples are far in excess of this phase II trial, ensuring 

better powered and more accurate eQTL-interaction mapping. Such a strategy might be 

even more effective if appropriate cell-types or affected tissues were queried and could 

be modeled in conjunction with differential expression to obtain more power.  

 

Defining the downstream mechanism influenced by a drug is critical and might be a path 

to classifying individuals as responders or non-responders, understanding off-target 

effects, and finding more accurate biomarkers. Clinical trial data offers an excellent 

opportunity to identify mechanisms by examining eQTL effects and their environmental 

interactions. In this relatively modest phase II trial, we have identified eQTL interactions 

with clinical and physiological data, but more importantly, with drug exposure. It will 

become possible to connect interaction eQTLs as the specific transcription factors 

driving those interactions are defined by high throughput techniques such as ChIP-seq.  
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Online methods 

Patient recruitment 

SLE patients were recruited to a phase II clinical trial to test the efficacy and safety of an 

IL-6 monoclonal antibody (PF-04236921). The patient population recruited to this trial 

have been detailed extensively by Wallace et al11. 183 patients (forming a multiethnic 

cohort) were randomized to receive three doses of drug (10, 50 or 200mg) or placebo at 

three time points during the trial (weeks 0, 8 and 16).  

 

RNA-sequencing 

Peripheral venous blood samples were collected in PAXgene Blood RNA tubes 

(PreAnalytiX GmbH, BD Biosciences) for high-depth RNA-seq profiling at 0, 12, and 24 

weeks. Total RNA was extracted from blood samples using the PAXgene Blood RNA kit 

(Qiagen) at a contract lab using a customized automation method. The yield and quality 

of the isolated RNA were assessed using Quant-iT™ RiboGreen® RNA Assay Kit 

(ThermoFisher Scientific) and Agilent 2100 Bioanalyzer (Agilent Technologies), 

respectively. Following quality assessment, the RNA was sent to another contract lab 

for RNA sequencing: an aliquot of 500-1000 ng of each RNA was processed with a 

GlobinClear kit, Human (ThermoFisher Scientific) to remove globin mRNA. After globin 

mRNA depletion, the RNA samples were converted to cDNA libraries using TruSeq 

RNA Sample Prep Kit v2 (Illumina) and sequenced using Illumina HiSeq 2000 

sequencers. An average of 40M 100bp pair-end reads were generated per sample for 

downstream analysis. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118703doi: bioRxiv preprint 

https://doi.org/10.1101/118703


 
Davenport et al 

 11 

468 RNA-seq profiles were generated from 180 patients. Data were aligned to the 

reference genome and gene expression quantified using Subread21 and 

featureCounts22 respectively. The genes with mapped reads were filtered so only those 

with at least 10 reads (CPM>0.38) in at least 32 samples (minimum number of patients 

with both unexposed and exposed RNA-seq assays in a drug group) were retained prior 

to normalization. 20,253 transcripts were normalized using the trimmed mean of M-

values method and the edgeR R package23. Following quality control (QC), 4 samples 

were removed as outliers. Expression levels are presented as log2(cpm +1). 

 

Genotyping 

160 individuals were genotyped across 964,193 variants genome-wide with the Illumina 

HumanOmniExpressExome-8v1.2 beadchip. SNPs were removed if they deviated from 

Hardy-Weinberg Equilibrium (p < 1x10-7), had a minor allele frequency <5%, 

missingness >2% or a heterozygosity rate greater than 3 standard deviations from the 

mean (PLINK24,25). For mapping eQTLs, SNPs on the Y chromosome were removed. 

Following QC, 608,017 variants were used for further analysis. One sample had high 

missingness and was an outlier for heterozygosity rate so was removed from further 

analysis.  

 

Cell counts 

Blood samples were collected for cytometry analysis at weeks 0, 12 and 24. Samples 

were subjected to flow cytometry for T cell immunophenotyping. T cells (CD3+) were 
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counted as a percentage of lymphocytes (CD45+). FACS data were available for 320 

samples from 152 subjects.  

 

Interferon status 

The IFN status was classified using the expression of IFN response genes at each time 

point. The expression of 11 genes (HERC5, IFI27, IRF7, ISG15, LY6E, MX1, OAS2, 

OAS3, RSAD2, USP18, GBP5)16 was measured using TaqMan Low Density Arrays. 

Samples were classified as high or low IFN based on the first PCA score for the 

expression of these genes (Fig. 3a). IFN status was available for 376 samples from 157 

subjects. 

 

Drug exposure 

Samples were assigned as unexposed (placebo or week 0 samples) or drug exposed 

(week 12 and week 24 samples in the drug groups). When included in the model, 

unexposed samples were assigned as 0 and exposed samples as 1. 

 

Free IL-6 protein levels 

Free IL-6 protein levels were determined from serum using a commercial sandwich 

ELISA selected for binding only free IL-6. The assay was validated according to FDA 

biomarker and fit-for purpose guidelines. Free IL-6 protein levels were available for 311 

samples from 145 subjects. Samples were ranked in order of IL-6 protein levels and 

included in the model to identify cytokine-eQTL interactions.  
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Statistical analysis 

eQTL and interaction analysis 

157 patients (with 379 RNA-seq samples) had good quality gene expression and 

genotyping data for eQTL analysis. All statistical analyses were carried out in R26.  

 

We defined a cis eQTL as the SNP within 250kb either side of the GENCODE27 

transcription start site of the gene. We first applied a linear model for the first available 

time point to identify each eQTL using the first 25 principal components of gene 

expression and the first 5 principal components of genotyping as covariates. SNPs were 

encoded as 0, 1 and 2. To adjust for multiple testing during eQTL discovery we used a 

corrected p-value threshold of 2.3x10-8 (0.05/ 2,177,889 tests).  

 

To map eQTLs using multiple samples for each individual, we applied a random 

intercept linear mixed model using the first 25 principal components of gene expression 

and the first 5 principal components of genotyping as covariates and patient as a 

random effect:  

 

 

 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 

component m of genotyping for subject j. 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m
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We used the most significant SNP (with p<2.3x10-8) from the 4,976 identified eQTL 

genes to explore eQTL interactions. For each environmental interaction analysis, we 

further filtered these eQTLs to include only those with at least two individuals 

homozygous for the minor allele of the SNP being tested in each of the environmental 

factor groups. For example we required two of these individuals in each of the drug 

exposed and drug unexposed groups. To identify eQTL interactions, we added an 

additional covariate to the model for example drug exposure, and an interaction term 

between this covariate and the genotype of the SNP:  

 

 

 

Where Ei,j is gene expression for the ith sample from the jth subject, θ is the intercept, 

βgeno is the genotype effect (eQTL), (κj|i) is the random effect for the ith sample from the 

jth subject, pci,l is principal component l of gene expression for sample i, pcj,m is principal 

component m of genotyping for subject j, βdrug is the drug effect (differential gene 

expression) and βx is the interaction effect. 

 

A p-value for the interaction term was determined with a likelihood ratio test. 

 

To confirm the relative enrichment of eQTL interactions, we shuffled the interaction 

covariate (for example drug exposure) 1,000 times and calculated the number of 

Ei, j =θ +βgeno ⋅ gj + (κ j i)+ φl
l=1

25

∑ ⋅ pci,l + γm
m=1

5

∑ ⋅ pcj,m +

βdrug ⋅di +βx ⋅di ⋅ gj
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significant interactions observed in each permutation. For T cell counts and IFN 

high/low status, we shuffled across all samples. For drug interaction permutation 

analysis, we maintained the number of individuals in the drug group and the number of 

samples with exposure to drug.  

 

Concordance with an eQTL study in healthy individuals 

4,976 genes were classified as having a cis eQTL in the SLE cohort (p<2.3x10-8). The 

z-score for the most associated SNP for each of these genes was compared to the z- 

score from a previously published eQTL dataset from whole blood from 2,166 healthy 

individuals1. 4,250/4976 SNP-gene pairs (85.4%) were also reported in the BIOS 

dataset (FDR<0.05). After removing 60 SNPs, which could not be mapped to a strand 

4,154/4,190 (99.1%) had a z-score (eQTL effect) in a consistent direction.  

 

Magnifiers and Dampeners 

An eQTL interaction can either magnify or dampen the original eQTL effect. We 

multiplied the interaction z-score by the sign of the original eQTL effect (genotype beta) 

and defined magnifiers as interactions with an adjusted z-score > 0 and dampeners as 

interactions with an adjusted z-score < 0. 

 

Differential gene expression analysis 

To identify differentially expressed genes following drug exposure, we applied a random 

intercept linear mixed model using the first 25 principal components of gene expression 

and the first 5 principal components of genotyping as covariates and patient as a 

random effect. 
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Conditional analysis for IL-6 protein levels 

We modeled the relationship between free IL-6 protein levels and drug exposure using 

a linear model. We used the residuals from this model in our interaction linear mixed 

model to identify IL-6 protein interactions independent of drug exposure. 

 

Drug exposure score 

We used linear discriminant analysis to assign a drug exposure score for each sample.  

A score was calculated for each gene (see equation below) and then the final drug 

exposure score is the average across the 126 drug-eQTL genes. 

 

!"#$!!"#$%&'!!!"#$%!!"#!!"#"! = !12 (
!!− !!!"#$%

!" )! − 12 (
!!− !!"#

!" )!! 

 

Where G is gene expression for a given sample, GUnexp is predicted mean gene 

expression for unexposed samples of the relevant SNP genotype, GExp is predicted 

mean gene expression for exposed samples of the relevant SNP genotype and SE is 

standard error for the intercept term of the model (unexposed expression for genotype 

0). 

 

HOMER analysis for transcription factor binding motif enrichment 

We used the HOMER software suite17 to look for enrichment of transcription factor 

binding motifs in the 185 IFN eQTL interactions (p<0.01). Each eQTL interaction was 

identified using the most highly associated SNP for that eQTL. However, as this SNP is 
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not necessarily the functional SNP, we additionally considered all those with an r2� ������

1�
��   ��
���
0��2��.
	��.�.2
	1����� within 250kB of the transcription start site of 

the gene. We defined our motif search window as 20 bp on either side of each SNP (i.e. 

41 bp wide).  

 

We divided the eQTL interactions into magnifiers or dampeners and conducted two 

separate HOMER analyses: one with magnifiers in the foreground and dampeners in 

the background; the other with dampeners in the foreground and magnifiers in the 

background. HOMER reported the transcription factor motifs that were significantly 

enriched in the foreground relative to background. Motifs were plotted using the 

SeqLogo R library29.  

 

A permutation p value for enrichment of the IRF1 transcription factor binding motif in 

IFN dampeners was determined as follows. The motif is interrupted by interaction SNPs 

(or SNPs in LD) corresponding to 11 dampening genes and 2 magnifying genes. We 

permuted which genes were labeled as magnifiers or dampeners 10,000 times and 

counted the number of genes in each category with an IRF1 motif interrupted. We found 

18 occurrences from 10,000 trials with at least 11 dampening genes (p<0.002). 
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Figure 1. Identifying eQTLs in SLE patients (a) Clinical trial structure and sampling strategy. 

(b) Number of eQTL genes identified using a linear model (left) and a linear mixed model (right). 

(c) Volcano plot of eQTL effects for the most significantly associated SNP for each gene (red color 

indicates p<2.3x10-8) (d) Correlation of SLE eQTL effects (p<2.3x10-8) with eQTLs observed in the BIOS 

cohort1 of healthy individuals (FDR <0.05). Each point represents the most significant SNP-gene pair for 

the SLE eQTL.
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Figure 2. eQTL interactions with T cell percentages (a) Flow cytometry gating strategy to determine 
T cells as a percentage of lymphocytes. (b) Number of significant interactions (p<0.01) from 1,000 
permutations of T cell counts (median=85). (c) Effect of the T cell interaction on the original eQTL 
effect. (d) T cell interaction with the NOD2 eQTL. The eQTL effect is dampened as T cell percentage 
increases. 
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Figure 3. eQTL interactions with IFN status (a) Designation of IFN status for each 
sample from the real-time PCR expression of 11 genes (first principal component). (b) 
IFN status interaction with the SLNF5 eQTL plotted with respect to rs12945522 
genotype (left) and IFN status of the sample (right). (c) The IRF1 motif enriched among 
eQTLs dampened in IFN low samples. Arrows indicate positions of the motif interrupted 
by interaction SNPs (or SNPs in strong LD). (d) IFN status interaction with the GTF2A2 
eQTL plotted with respect to rs2306355 genotype (left) and IFN status of the sample 
(right).   
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Figure 4. eQTL interactions with drug exposure (a) Drug exposure interaction with the KIAA2013 eQTL 
plotted with respect to rs2236057 genotype (left) and drug exposure (right). (b) Concordance of free IL-6 
protein interaction effects with drug exposure interaction effects (grey indicates consistent direction). 
(c) Drug exposure score calculated from 126 drug-eQTL interactions. 
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