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Abstract

Motivation

There is much interest in using genome-wide expression time series to identify circadian genes.

However, the cost and effort of such measurements often limits data collection. Consequently,

it is difficult to assess the experimental uncertainty in the measurements and, in turn, to detect

periodic patterns with statistical confidence.

Results

We show that parametric bootstrapping and empirical Bayes methods for variance shrinkage

can improve rhythm detection in genome-wide expression time series. We demonstrate these

approaches by building on the empirical JTK CYCLE method (eJTK) to formulate a method

that we term BooteJTK. Our procedure rapidly and accurately detects cycling time series

by combining information about measurement uncertainty with information about the rank

order of the time series values. We exploit a publicly available genome-wide dataset with

high time resolution to show that BooteJTK provides more consistent rhythm detection than
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existing methods at typical sampling frequencies. Then, we apply BooteJTK to genome-wide

expression time series from multiple tissues and show that it reveals biologically sensible tissue

relationships that eJTK misses.

Availability

Bootstrap eJTK (BooteJTK) is implemented in Python and is freely available on GitHub at

https://github.com/alanlhutchison/BooteJTK .

1 Introduction

Periodic patterns (rhythms) are pervasive in biology at molecular, cellular, organismal, and eco-

logical scales. It can be challenging to detect these patterns genome-wide with confidence of their

significance, however, because biological dynamics are intrinsically noisy, and often it is feasible to

obtain only a few samples of a potentially periodic process. To address this issue, several statisti-

cal methods have recently been developed to identify genes with cycling expression patterns from

genome-wide time series [16, 30, 4, 36, 14, 18].

Empirical JTK CYCLE (eJTK) [14, 16] and RAIN [30] are non-parametric methods that ana-

lyze the rank order of measurements. While this approach makes them sensitive to waveforms of

arbitrary shape, it does not incorporate information about the measurement uncertainty. ANOVA

[18] is a parametric approach that does incorporate the variance of intra-time point measurements

when identifying differences in mean values, but it is less sensitive than eJTK because it does not

use information about the time order of the measurements [16]. ARSER [36] is likely the most

successful parametric method at present, but the fact that it fits a time series to a sinusoidal curve

by autoregressive spectral estimation makes it less sensitive to non-sinusoidal time series, as we

discuss below.

Either explicit or implicit in these methods is comparison of the variation in measurements at

each time point (i.e., across replicates/periods) to the variation from one time point to another

over the period of interest. The cost and effort of sample preparation and measurement limits the

number of replicates/periods obtained. As a result, the observed variation at each time point may

poorly represent the true variance. In particular, if the data yield an estimate of the variation that

is too small, a time series is more likely to be falsely identified as cycling because the apparent
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signal is large compared with the apparent noise. Properly accounting for small replicate numbers

in estimating the variation has the potential to provide substantial gains in accuracy of rhythm

detection and, in turn, aid in understanding periodic biological processes.

To this end, we introduce an empirical Bayes (eBayes) procedure [28, 21]. In this approach,

which is commonly employed in differential expression analysis [31, 26], information from across

a dataset is combined to estimate a prior distribution for the standard error, and this prior is

then used together with the individual measurements to estimate the variance at each time point.

This ‘shrinks’ the spread in variances (Fig. S1) [21]. Here, we use the empirical Bayes variance

estimates to generate parametric bootstrap time series samples and then apply a rhythm detection

algorithm to them. The parametric bootstrap [5] is also established in bioinformatics, and is

applied in packages for RNA-Seq quantification [2] and differential expression [25]. To the best of

our knowledge, this is its first application in rhythm detection.

While the strategy is general, we focus on its implementation with the empirical JTK CYCLE

(eJTK) method, which we have demonstrated to outperform most other algorithms [16]. eJTK

compares time series to a set of reference waveforms varying in phase (peak expression) and distance

from peak to trough using a non-parametric rank order correlation, Kendall’s τ . Selecting the

best waveform presents a multiple hypothesis testing problem, which eJTK solves by empirically

calculating the null distribution of the selection procedure to assign p-values to resulting rhythmicity

scores. This approach is accurate but relatively computationally costly because the null distribution

must be re-evaluated for each set of measurements (in order to distinguish time series that are

missing observations for different sets of time points). In the present work, we reduce this expense

significantly by fitting a Gamma distribution to test statistics for a small number of time series.

This approximation makes eJTK, even in the context of the bootstrap, computationally economical.

Our approach, which we term BooteJTK, combines freedom from restrictive assumptions re-

garding the shape of the waveform with incorporation of information about the uncertainty in each

measurement. We demonstrate the method on simulated data and two circadian genome-wide ex-

pression datasets. The first dataset is densely sampled with measurements of gene expression in

mouse liver samples at 1 h intervals for 48 hours [13]; this dataset allows us to examine the per-

formance (self-consistency) of the method as fewer time points are included. The second dataset

comprises gene expression measurements every 2 h for 48 hours for 12 mouse tissues in continuous

darkness [37]. This dataset allows us to look at the consistency of rhythm detection across tissues.
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We find that fewer genes are rhythmic than previously believed, due to the more stringent require-

ment that the uncertainty in measurements be small relative to the amplitude of expression, in

addition to the rank order of the values of the time series matching those of a reference waveform.

Corroborating our more stringent results with core clock transcription factor targets (CCT) [20],

we find no decrease in CCT enrichment between BooteJTK and eJTK. At the same time, we find

increases in the overlap of rhythmic genes across tissues, suggesting circadian programs in differ-

ent tissues may not be as distinct as previously thought. Put together, the results indicate that

BooteJTK provides robust rhythm detection with improved consistency. The general principles and

methods that we present here, the empirical Bayes and bootstrapping procedures, can be applied

to other rhythm detection algorithms.

2 Methods

Our method, BooteJTK, first obtains time point mean and standard deviation estimates by em-

pirical Bayes variance estimation from a time series. It then runs eJTK on parametric bootstrap

replicates of the time series, averaging the rhythmicity scores to obtain a new rhythmicity score,

which is assigned a p-value. These steps can be seen as a flow chart in Figure S2.

2.1 Empirical Bayes variance estimation

Empirical Bayes methods are an established part of many workflows for differential expression

analysis [28, 31, 26]. These methods combine information from all the time points in the data to

‘shrink’ the spread of standard deviation estimates. As a result, low standard deviation estimates

are increased and high standard deviation estimates are decreased (Fig. S1). Given that we have

low replicate numbers, it is beneficial to use empirical Bayes methods. In particular, we use voom

(specifically, vooma for microarrays) [26] to obtain initial estimates of the standard deviation that

take mean-variance relationships into account. These estimates are then adjusted using the emprical

Bayes procedure implemented in vash [21]. We originally used limma [26] in place of vash, but that

resulted in over-dispersion and over-estimates of rhythmicity p-values, partially due to adjustment

of small standard errors away from zero.
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2.2 Bootstrapping eJTK

In bootstrapping, data are resampled with replacement to create a distribution of simulated mea-

surements that can in turn be used to compute statistics [5]. Genome-wide circadian time series

generally consist of two or three replicates per time point, minimizing the benefits offered by resam-

pling the data directly (i.e., non-parametric bootstrapping). Instead, we use parametric bootstrap-

ping. Specifically, we log-transform the expression measurements [32] and model the resulting data

at each time point as normally distributed with the mean directly calculated from the replicates and

the variance modeled by voom [26] and the empirical Bayes procedure vash [21], both implemented

in R (Fig. S1).

We generated time series for this model and analyzed them with eJTK to determine their

circadian characteristics: rhythmicity score (τ), phase (peak), and best-matching waveform. We

averaged each of these statistics across the model time series. While eJTK generally outputs

integer multiples of the measurement interval for the peak and trough times (i.e., extrema), the

means of these statistics can be non-integer, which allows for better representation of the times of

the extrema when they do not coincide with the measurement times. Regardless, for the phase and

trough, the mean values are close to the values output by eJTK. This is not necessarily the case

for the rhythmicity score, as we now discuss.

In the context of eJTK, the Kendall’s τ statistic measures the correlation in rank order of

the values of the time series of interest and the values of a discretized reference waveform; the

rhythmicity score is the highest τ across all tested reference series. A perfect match in rank order

has τ = 1. Adding noise to the values of a reference time series and comparing the resulting rank

order with the original one often results in τ < 1, with τ tending to decrease as the noise becomes

larger in comparison with the amplitude of the oscillation. As a result, the mean of the distribution

of τ values for the bootstrap resamples depends on both the rank order of time series values and

the measurement uncertainty.

An additional issue is that the τ distribution is skewed when τ is close to the limits of its range

(–1 and 1). To stabilize the variance across the full range of possible rhythmicity scores, we average

the Fisher transform of τ : τ̃ = arctanh(τ), truncating the values to ±arctanh(0.99) for ±τ > 0.99

to ensure that the τ̃ values are finite.
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2.3 Obtaining Accurate and Computationally Inexpensive P-values

A p-value is the likelihood under the null hypothesis of observing a value of a test statistic or a more

extreme one. We previously generated the null distribution for eJTK by applying the method to 106

time series generated by selecting values from a Gaussian distribution with a constant mean [16]. We

repeated this procedure for each number of measured time points in the experimental time series.

Because this numerical procedure represents most of the computational expense of eJTK and, in

turn, BooteJTK, we sought an approximate analytical form for the null distribution. We found

the Gamma distribution, which we previously used to model the F24 null distribution [16], to be a

reasonable choice (Figs. 1 and S3). To assess this approach quantitatively, we computed p-values

with this model and our earlier method (i.e., empirically from the histogram of 106 τ̃ values) for a

range of τ̃ values. The ratio of the Gamma-distribution-generated p-values to the empirical p-values

is larger than 1 at very low p-values and close to 1 for moderate p-values close to typical significance

thresholds (Figs. 1B and S3B). This means that the p-values obtained from the Gamma-distribution

approximation are sufficiently accurate for use, but they favor the null hypothesis relative to the

empirical values, leading to slightly fewer genes being considered rhythmic for a given significance

threshold.

2.4 BooteJTK Outperforms Alternative Rhythm Detection Methods

To test the ability of BooteJTK to identify rhythmic time series, we generated 100 time series from

a cosine with a 24 h period sampled every 2 h in duplicate with Gaussian noise added to each point.

We varied the Gaussian standard deviation relative to the amplitude of the underlying cosine, a

ratio we refer to as the noise level. To model the null hypothesis, we generated 1000 time series

with the same number of time points but with values drawn only from the Gaussian distribution.

2.4.1 BooteJTK outperforms eJTK

We compared BooteJTK to eJTK, approximating the null distribution as a Gamma distribution in

both cases. In each case, we compared the simulated time series against cosine reference waveforms

with 24 h periods, testing phases every 2 h from 0 h to 22 h and asymmetries every 2 h from 2 h

to 22 h (132 total reference waveforms), as described in Hutchison et al. [16]. Figure 2 shows that

BooteJTK outperforms eJTK: for different noise levels the True Positive Rate (TPR) is higher for
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Figure 1: The BooteJTK τ̃ null distribution can be modeled by a Gamma distribution. (A)
Comparison between Gamma distributions parameterized by the Python scipy.stats.gamma.fit [17]
function of τ̃ values for 103 time series comprised of 24 time points drawn randomly from a Gaussian
distribution and a histogram of 106 τ̃ values from similarly generated time series. 10 different such
Gamma distributions are shown. (B) Logarithms of the ratios of the p-values estimated from the
Gamma distributions in (A) (Gamma P) to the p-value calculated directly from the cumulative
distribution function for the 106 τ̃ values used to construct the histogram (empirical P).
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a given False Positive Rate (FPR) (Figs. 2A and S4A), and the Matthews Correlation Coefficient

(MCC) is higher for all p-values (Fig. 2B and S4B). The MCC is 1 if a classifier is perfect and 0 if

it performs no better than random guessing.

To gain a better sense of the differences between BooteJTK and eJTK, we selected two time

series from the simulated data with noise level 0.60 that had the same τ value for eJTK (τ = 0.57,

p = 0.002) but different values for BooteJTK (τ̃ = 0.67 and 1.08, p = 0.008 and 0.001) (Figs.

S5A and B). Using the Benjamini-Hochberg correction to control for the false discovery rate when

testing many time series [1], the first time series would likely be considered arrhythmic, while

the second time series would likely be considered rhythmic. In Fig. S5A, the average time series

matches the original well, but the standard deviations around the mean points are large and overlap

substantially. The overlap results in a lower BooteJTK score. In Fig. S5B, the original time series

matches the average and the standard deviations around the mean points are small and distinct

from one another. The tighter uncertainties result in a higher BooteJTK score.

2.4.2 BooteJTK outperforms RAIN

We also compared BooteJTK to RAIN [30], another non-parametric method that uses reference

waveforms. RAIN does not take into account the size of the noise relative to the amplitude of

the time series, which we expect to be more important when testing experimental data. We had

previously found that RAIN underestimates p-values, so we adjusted RAIN using 106 simulations

of the null distribution as described in Hutchison et al. 2017 [15]. We found that BooteJTK

outperforms RAIN as measured by TPR vs. FPR and by MCC curves (Fig. 2).

2.4.3 BooteJTK outperforms ARSER and ANOVA on asymmetric time series

As mentioned in the Introduction, parametric methods do account for the size of the noise relative to

the amplitude of the time series, and ARSER [36] is likely the best such method presently. Because

ARSER fits a time series to a sinusoidal curve, we expect it to outperform nonparametric methods

when detecting time series that are approximated well by that waveform. However, we expect many

biological time series to be non-sinusoidal [16]. For this reason, we compared BooteJTK, ARSER,

and a reference free parametric method, ANOVA [18], for their abilities to detect 24 h time series

with peak to trough intervals of 20 h before adding noise. BooteJTK outperforms both methods

as shown by TPR vs. FPR and MCC curves (Fig. S4C and D).
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2.4.4 BooteJTK outperforms MetaCycle and combined eJTK-ANOVA

We observed that BooteJTK combines eJTK’s non-parametric aspects with ANOVA-like compar-

ison of the relative measurement uncertainty (variance between replicate points) to the amplitude

of the entire time series (variance across the time series). We thus wondered if a combination of

ANOVA and eJTK p-values would perform similarly to BooteJTK. A new method, MetaCycle,

was recently developed that combines ARSER, the original JTK CYCLE, and Lomb-Scargle by

integrating their p-values using Fisher integration to increase rhythm detection ability [6, 34]. We

showed that their method underestimates p-values and can be improved by using the Brown correc-

tion of the Fisher integration method [3] as well as empirically calculating their p-values [15]. We

used Fisher integration with the Brown correction to combine ANOVA and eJTK and compared it

to BooteJTK. BooteJTK outperformed both eJTK-ANOVA and adjusted MetaCycle (Fig. 2). The

combination of eJTK and ANOVA may not be suitable for improved rhythm detection and this

result affirms that the classification strength of BooteJTK is greater than a combination of eJTK

and ANOVA.

2.5 Computational Expense

Having established the sensitivity and specificity of BooteJTK, we sought to minimize the com-

putational cost of our method. For the simulated data described above, we found no discernible

difference in τ̃ scores for 100, 50, 25, and 10 bootstrap samples (Fig. S6). We use 25 bootstrap

samples throughout the rest of this study. With 25 bootstrap samples, we obtain run times on

a Late-2013 iMac Desktop with a 3.5 GHz Intel Core i7-4771 processor and 16 GB of 1600 MHz

DDR3 memory. For 1000 time series, the analysis by BooteJTK took 180 s and the analysis by

eJTK took 8 s. Of this, less than 2 s is the integration of the Gamma distribution to translate

τ̃ statistics to p-values. With the improvements in the present paper, the computational cost of

eJTK is several orders of magnitude less than in Hutchison et al. 2015 [16].
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Figure 2: BooteJTK outperforms alternative methods in detecting simulated sinusoidal time series
as measured by (A) True Positive Rate (TPR) against False Positive Rate (FPR) and (B) Matthews
Correlation Coefficient. As indicated in the legend, we compare BooteJTK with 25 bootstrap sam-
ples to adjusted RAIN [30, 15], adjusted MetaCycle [34, 15], empirical JTK (eJTK) [16], ANOVA
[18], and a Brown-Fisher method p-value integration [6, 3] of eJTK and ANOVA (eJTK-ANOVA).
Simulated data are generated with noise-to-amplitude ratio of 1.00.
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3 Results

3.1 Effect of sampling frequency on rhythm detection

While BooteJTK outperforms leading methods for simulated data, such time series can lack features

of experimental data. Assessing the behavior of algorithms for experimental data can be challenging,

however, because rhythmic expression has been independently verified for only a small fraction of the

genome. Nevertheless, we expect rhythm detection to be accurate when a waveform is extensively

sampled (with high frequency, over many periods), and we can study the consistency of each method

as data are downsampled.

To this end, we applied BooteJTK to microarray data collected every 1 h for 48 h from mouse

liver tissue under constant conditions [13]. As the original analysis of the dataset was performed

with JTK CYCLE [14], we analyzed the dataset with eJTK as well for comparison. We treated

the modulo 24 time points as replicates, providing 2 replicates every 1 h over 24 h. Since most

transcriptomic circadian experiments have data collected every 2 h [37] or 4 h [8, 24], we parsed the

data (from CT18-CT65) into two datasets with measurements every two hours (denoted 2a: CT18,

CT20, etc. and 2b: CT19, CT21, etc.) and into four datasets with measurements every four hours

(denoted 4a, 4b, 4c, and 4d, starting at CT18, CT19, CT20, and CT21, respectively).

Using the R package gcrma [35] to normalize the data (GEO GSE11923) and removing probes

with constant expression, we compared the Benjamini-Hochberg adjusted p-values (BH) from Boote-

JTK to eJTK on the full dataset using a significance threshold of 0.05 (Fig. 3A). BooteJTK iden-

tifies more probes as rhythmic than eJTK does. When BooteJTK identifies a probe as rhythmic,

it tends to assign it a smaller p-value (i.e., greater significance) than eJTK, which leads to smaller

Benjamini-Hochberg adjusted p-values. BooteJTK can provide smaller p-values because it checks

whether the values of a time series have the right rank order (the sole criterion for eJTK) and

whether the differences between pairs of points are large compared to the uncertainties in those

measurements. The additional requirement makes it harder for a rhythmic pattern to arise by

chance.

Downsampling the data to measurements every 2 h reduces the number of rhythmic probes iden-

tified by both methods using a BH-corrected p-value threshold of 0.05 (Fig. 3B), though a greater

fraction of BooteJTK-identified probes remain. Downsampling the data to measurements every 4 h

prevents eJTK (and adjusted RAIN, Fig. S7) from finding any rhythmic probes at this significance
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threshold, while BooteJTK identifies thousands of the probes that it originally considered rhythmic.

As noted above, BooteJTK incorporates more information, and the results are thus less sensitive

to Benjamini-Hochberg correction.

The overlap between results obtained from two downsampled datasets can be quantified by the

probability that a probe is rhythmic in one dataset (a row in Fig. 4B) if it is rhythmic in another

(a column in Fig. 4B). For example, the probabilities are 0.78 and 0.62 ((row 3, column 2) and

(row 2, column 3), respectively) that BooteJTK considers a time series downsampled to measure-

ments every 2 h to be rhythmic if it identified that time series as rhythmic in the other dataset

downsampled to measurements every 2 h. For eJTK, these values are 0.63 and 0.68 ((9,10), and

(10,9), respectively) and for RAIN they are 0.61 and 0.68 (Fig. S8, (12,13) and (13,12), respec-

tively). These results indicate greater consistency for the BooteJTK results and provide insight

into how much inconsistency we should expect from experimental uncertainty because no biological

differences should exist between downsampled sets.

3.2 BooteJTK Reveals More Biologically Consistent Circadian Rhyth-

mic Gene Expression Across 12 Mouse Tissues

Having established the improved rhythm detection of BooteJTK, we analyzed the 12-tissue mouse

microarray time series in Zhang et al. [37]. The twelve tissues are adrenal (Adr), aorta, brown

fat (BFAT), brainstem (BS), cerebellum (Cere), heart, hypothalamus (Hypo), kidney, liver, lung,

muscle (Mus), and white fat (WFAT). Expression was sampled every 2 h for 48 h, which we again

treated as duplicate measurements over 24 h. We also applied eJTK, mirroring the application of

the original JTK CYCLE method [14] by Zhang et al. [37].

3.2.1 BooteJTK is more stringent than eJTK but exhibits comparable enrichment

for core clock targets

When applied to the 12-tissue microarray dataset from Zhang et al. [37], BooteJTK identifies

14,598 out of 25,268 probes (11,731/20,038 genes) as rhythmic in at least one tissue with BH <

0.05, whereas eJTK finds 14,763 such probes (12,426 genes) (Figs. 5A and B). 12,261 of these

BooteJTK-rhythmic probes are contained within the four tissues with the highest number of rhyth-

mic genes: liver, kidney, lung, and brown fat (Fig. 5B). This difference was to be expected for
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Figure 3: BooteJTK identifies rhythmic probes more consistently than eJTK as data are downsam-
pled. Data shown are from Hughes et al. [13] and are originally sampled every 1 h for 48 h; the
datasets are downsampled to measurement intervals of 2 h (denoted 2a and 2b) and 4h (denoted
4a, 4b, 4c, and 4d). (A) Comparison of BooteJTK and eJTK BH values for the full dataset. The
diagonal line has a slope of 1; horizontal and vertical lines indicate − log10(BH = 0.05) ≈ 1.3. (B)
Number of rhythmic probes at BH < 0.05 for the indicated methods and datasets downsampled to
measurements every two hours (denoted 2a: CT18, CT20, etc. and 2b: CT19, CT21, etc.) and to
measurements every four hours (denoted 4a, 4b, 4c, and 4d, starting at CT18, CT19, CT20, and
CT21, respectively); the full dataset sampled every hour is denoted 1. eJTK identifies zero probes
as rhythmic when the data are downsampled by 4 h.
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Figure 4: BooteJTK provides more consistent rhythm detection than eJTK between downsampled
datasets. We quantified the overlap between results with different levels of downsampling by the
probability that a probe is rhythmic in one dataset (a row) if it is rhythmic in another (a column).
As no probes are found to be rhythmic when using eJTK on data downsampled to every 4 h, rows
and columns for those datasets are not shown.
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the reasons discussed above: BooteJTK compares the noise to the amplitude of a time series in

addition to evaluating the rank order of the values. However, we were concerned that the greater

stringency might exclude actual rhythmic time series. To evaluate this possibility, we corroborated

our rhythmic genes with core clock transcription factor targets (CCTs) identified by ChIP-Seq in

mouse liver [20]. Across the 12 tissues and between the two methods, we found no meaningful dif-

ference in the fraction of CCT genes relative to the number of genes identified as rhythmic (mean

difference -0.016, standard deviation 0.022). This result persisted as we increased the number of

TFs necessary to target a gene to qualify it as a CCT: the mean difference and standard deviation

only became smaller with these added requirements.

3.2.2 Relationships between tissues

We examined the relationships between different tissues through the probability that a probe is

rhythmic in one tissue conditioned on it being rhythmic in another (π). In Fig. 6A, row tissues

are conditioned on column tissues, and the tissues are ordered by hierarchically clustering on the

columns. Anatomically related tissues appear together in the plot—for example, the hypothalamus,

brainstem, and cerebellum are on the right. It is important to note that the relationships between

tissues are asymmetric: being rhythmic in the hypothalamus leads to a probability of 0.46 that a

probe is rhythmic in the liver, but being rhythmic in the liver leads to only a probability of 0.07

that a probe is rhythmic in the hypothalamus. To put these numbers in context, we can compare

them to the data of Hughes et al. [13]: the π values for two datasets from identical conditions

downsampled to measurements every 2 h were 0.62 and 0.78. We note that a similarly high value is

observed for the probability that a probe is rhythmic in brown fat conditioned on being rhythmic in

the aorta (0.70). This result is interesting, but we feel further study is warranted as this point is an

outlier in Fig. 6B, and the presence of brown fat around the aorta can easily lead to contamination

of aorta samples [7].

In Fig. S9, we show the differences between the π relationships from BooteJTK and eJTK. The

columns corresponding to the brain tissues show marked differences. Zhang et al. [37] discuss the

technical difficulty of dissecting the brain regions separately, so using a robust method to analyze

these data should be of particular importance. The consistent increase in rhythmic predictive value

of other tissues for the hypothalamus and adrenals is due to the increase in probes identified as

rhythmic by BooteJTK relative to eJTK, whereas the increase in rhythmic predictive value of
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Figure 5: BooteJTK reveals fewer probes with circadian rhythmic expression across 12 mouse
tissues than eJTK for the Zhang et al. dataset [37]. (A) Fewer probes are rhythmic in multiple
tissues under BooteJTK than under eJTK (with BH < 0.05 for both methods). (B) Fewer probes
per tissue are identified as rhythmic with BooteJTK than with eJTK.

the brain stem and cerebellum regarding other tissues is due to a decrease in probes identified as

rhythmic by BooteJTK relative to eJTK (Figs. 6C and S9).

3.2.3 Genes that are rhythmic in most tissues

Thirteen genes are identified as rhythmic by BooteJTK in all 12 tissues: Arntl (Bmal), Nr1d1

(Rev-erbA), Nr1d2 (Rev-erbB), Dbp, Per1, Per2, Per3, Ciart (Chrono), Bhlhe41 (Dec2), Tns2,

Tsc22d3, Usp2, and Tspan4. Many of these are genes involved in the core clock machinery [33, 10].

However, known core clock genes such as Npas2, Tef, and Hlf are identified as rhythmic in only

11 of the 12 tissues; they do not meet the significance threshold in the hypothalamus. Given our

prior knowledge regarding these genes and the evidence of their rhythmicity in other tissues, it is

possible that they are in fact rhythmic in all 12 tissues and experimental issues are responsible

for the inability to detect them in all 12 tissues. As noted above, Zhang et al. [37] suggest that

the technical difficulty of dissecting the brain regions separately may negatively affect circadian

rhythm identification in these tissues. We thus examined the 119 genes that BooteJTK identified

as rhythmic in 9 or more of the tissues. Most of these genes were not rhythmic in the brainstem,
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Figure 6: Overlap between tissues in rhythmic genes. (A) The probability that a probe is rhythmic
in a row tissue if it is rhythmic in a column tissue (π) for BooteJTK. (B) Comparing correlation
of mean probe expression between tissues with rhythmic overlap reveals that brown fat and aorta
tissue have high correlation of gene expression and high rhythmic overlap relative to other tissue
pairs, such as liver, kidney, and lung. (C) Numbers of rhythmic genes specific to each method for
the tissues showing large differences in Fig. S9.
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hypothalamus, or cerebellum (Fig. S10).

Examining the functional annotation of these genes revealed many ontologies to be expected of

consistently rhythmic genes, such as rhythmic processes and transcription regulation (Tab. 3.2.3).

However, additional functional annotations were identified, such as genes involved in the stress

response, endoplasmic reticulum, pigment granules, and heat shock. A few other genes stand out

as well. Wee1 is rhythmic in 10 tissues (absent from hypothalamus and brain stem). Wee1 regulates

cellular division by inhibiting entry into mitosis [19] and is known to be regulated by the core clock

[22]; more generally, it has been suggested that the cell cycle is under circadian control [27]. Two

other genes involved in the cell cycle, Cdkn1a and Calr, are rhythmic in 9 or more tissues. Given

that many of these tissues have little cell proliferation, these genes may be functioning in other

processes, in which case we expect those processes to be influenced by the circadian clock as well.

Fmo1 and Gstt2 are identified as rhythmic in 10 tissues, while Fmo2 is identified as rhythmic in

11 tissues. These genes are identified as genes involved in drug metabolism by the DAVID webtool

[11, 12]. Given the increasing interest in chronotherapeutics [37], further research into these genes

is warranted in order to better understand their involvement in circadian processes.

4 Discussion

We have shown that rhythm detection from genome-wide expression time series can be considerably

improved by using an empirical Bayes approach to improve variance estimates from limited repli-

cates and propagating the resulting estimates into the test statistic for eJTK [16] by a parametric

bootstrap. Because eJTK itself is nonparametric, BooteJTK maintains sensitivity for arbitrar-

ily shaped and scaled waveforms but accounts for the experimental uncertainty when comparing

measurements. We demonstrated that the method provides improved accuracy in identifying sim-

ulated rhythmic time series and improved consistency across related experimental datasets. More

generally, we expect the framework that we have built around JTK CYCLE [14, 16]—empirical es-

timation of p-values to account properly for multiple hypothesis testing, analytical approximation

of the null distribution, variance “shrinkage” and stabilization, and bootstrapping—can be applied

to other rhythm detection algorithms to obtain inexpensive and accurate p-values as we do here.

Our method uses replicates to estimate the variance in expression, which is then propagated to

the rhythmicity estimate. For time series data where replicate time points do not exist, a different
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Functional Fold BH Genes
Annotation Enrich.

GO:0048511: 22.57 2.11e-11 ARNTL, CLOCK, CRY1, DBP,
rhythmic process HLF, KDR, MMP14, NFIL3,

NPAS2, NR1D1,PER1, PER2,
PER3, TEF

GO:0048770: 16.34 2.06e-04 HSP90AA1, HSPA5, HSPA8,
pigment granule MMP14, PDIA3, PDIA4, SLC1A5
SP-PIR 24.54 3.56e-04 CIRBP, HSP90AA1, HSPA5,
stress response HSPA8, HSPB1, HSPH1
SP-PIR 4.07 8.68e-04 CALR, DGAT2, EPHX1, FMO1,
endoplasmic reticulum FMO2, HERPUD1, HSPA5, LPIN1,

P4HA1, PDIA3, PDIA4, POR,
SCD2, SDF2L1, SERP1

SP-PIR 2.62 2.52e-03 ARNTL, BHLHE40, BHLHE41, CLOCK,
transcription regulation CRY1, DBP, ELK3, HLF,

KLF9, KLF15, LEO1, LITAF,
LPIN1, NFIL3, NPAS2, NR1D1,
NR1D2, PER1, PER2, PER3,
TEF, THRA

IPR013126: 48.93 4.61e-02 HSPA5, HSPA8 , HSPH1
Heat shock protein 70

Table 1: Select functional annotations from the DAVID webtool [11] for the 119 genes identified
as rhythmic in 9 or more tissues by applying BooteJTK with a Benjamini-Hochberg adjusted p-
value threshold of 0.05 to the Zhang et al. dataset [37]. Fold Enrichment refers to how enriched
the functional annotation is in the set of genes relative to the expectation for a set of randomly
selected genes. Abbreviations: BH, Benjamini-Hochberg adjusted p-value; SP-PIR, Swiss-Prot
Protein Information Resource keywords; GO, Gene Ontology keywords.
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approach is needed. We suggest that the standard deviation of arrhythmic time series is a reasonable

approximation of the standard deviation of the time points of rhythmic time series. In Fig. S11, we

show that the mean of the standard deviation of the arrhythmic (p> 0.8) time series overestimates

the standard deviation for the Hughes et al. dataset sampled every 1 h [13] by a factor of about

1.5. While ideally replicate time points would be collected experimentally, we suggest that this

approximation be used when replicates are lacking.

Our analysis of the mouse liver microarray dataset from Hughes et al. [13] emphasizes the im-

portance of sampling time series frequently and understanding the expected consistency of results.

While BooteJTK, in contrast to eJTK, was still able to detect a small fraction of rhythmic genes,

even downsampling the data to measurements every 2 h resulted in some differences in genes iden-

tified as rhythmic from odd-hour measurements and even-hour measurements. That said, sampling

every 2 h is much better than the commonly used 4 h sampling rate, especially when comparisons

are made across tissues or conditions. Comparing the tissue overlap results to the 2 h-downsampled

benchmark suggests that the aorta tissue samples of Zhang et al. [37] were potentially contaminated

by brown fat. Future studies can also use the values in Fig. 3 and their analogs for other rhythm

detection methods to better understand the overlap and consistency that should be expected when

comparing datasets.

Multiple studies have discussed the tissue-specificity of circadian rhythms [23, 29, 37]. Our

analysis with BooteJTK supports these claims but suggests that a slightly greater fraction of genes

are rhythmic in multiple tissues than was previously appreciated (positive bars at tissue numbers

8 to 12 in Fig. 5B). One limitation of current rhythm detection methods (including eJTK and

BooteJTK) is that the null hypothesis states that we have no prior belief or knowledge about the

rhythmicity of any given gene. However, genes such as Arntl (Bmal), Nr1d1 (Rev-erbA), Nr1d2

(Rev-erbB), Dbp, Per1, Per2, and Per3 are well-established as circadian and are identified here as

rhythmic in all 12 tissues. Given that data for multiple tissues are now available, we can begin

to think about how they can be integrated. Simply combining BooteJTK p-values via Fisher’s

integration method, which would ignore all tissue-specific knowledge to be gained from sampling

12 tissues, results in 14,598 probes with a Benjamini-Hochberg p-value below 0.05. This provides

a pooled estimate for the total number of rhythmic probes in the mouse, ignoring tissue-specific

effects.

Methods have been recently developed, however, that can combine information across tissues
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while allowing for heterogeneity in the context of identifying single-nucleotide polymorphisms

(SNPs) that are expression quantitative trait loci (eQTLs) [9]. These methods tend to increase

the number of eQTLs that are common to multiple tissues, relative to single-tissue approaches. We

expect that applying a similar strategy in rhythm detection would have an analogous effect. For

example, Npas2, Hlf, and Tef are identified as rhythmic in 11 of the 12 tissues profiled. Given that

these are documented circadian genes [33], it is more likely that these genes are rhythmic in the

tissue in which they have not been identified as rhythmic than their p-values suggest. Therefore the

current estimates of genes that are rhythmic across several tissues may be underestimates. By the

same token, one might doubt that a gene that is rhythmic in only one tissue is genuinely cycling,

given the evidence from the other 11 tissues. We were able to address this concern in part by cor-

roborating our results with ChIP-Seq data for core clock transcription factors [20], with the caveat

that the ChIP-Seq data was only performed in the mouse liver. Given the increasing amounts of

data now available, future methods should systematically integrate multiple sources and types of

evidence for rhythm detection.
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6 Supplementary Figures

Figure S1: Illustration of the empirical Bayes method. (A) Empirical Bayes adjustment of RNA
expression from Hughes et al. [13]. Empirical Bayes adjusts the standard deviation estimates to
‘shrink’ the distribution towards the global estimate of 0.1214 (vertical line). The diagonal line has
a slope of 1; points below it have been reduced by the eBayes method while points above it have
been increased. Shrinkage was performed using voom [26] and vash [21] in R. (B) The difference
between adjusted standard deviation and initial standard deviation is shown against the initial
standard deviation. (C) Time series of Clock expression from Hughes et al. shown with initial and
adjusted standard deviations as error bars. (D) Initial and adjusted standard deviations for Clock
RNA expression for even time points from (C).
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Figure S2: Flowchart of steps in BooteJTK. First, the replicate time points of the initial time series
are averaged and standard deviations are obtained via an empirical Bayes (eBayes) procedure.
eJTK is then run on bootstrap replicates of the time series. The distribution of eJTK rhythmicity
scores are averaged to produce a summary statistic, from which a p-value is calculated.
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Figure S3: The eJTK τ null distribution can be modeled by a Gamma distribution. (A) Comparison
between Gamma distributions parameterized by the Python scipy.stats.gamma.fit [17] function of τ̃
values for 103 time series comprised of 24 time points drawn randomly from a Gaussian distribution
and a histogram of 106 τ̃ values from similarly generated time series. 10 different such Gamma
distributions are shown. (B) Logarithms of the ratios of the p-values estimated from the Gamma
distributions in (A) (Gamma P) to the p-value calculated directly from the cumulative distribution
function for the 106 τ̃ values used to construct the histogram (empirical P). This figure in similar
to Fig. 1, which is for BooteJTK.
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Figure S4: BooteJTK outperforms eJTK, ANOVA, and ARSER. (A & B) Analysis of the effect of
noise on algorithmic performance for BooteJTK (solid lines) and eJTK (dashed lines); the noise-to-
amplitude ratios are 1.00 (black) and 1.80 (gray). (A) True Positive Rate (TPR) vs. False Positive
Rate (FPR) and (B) Matthews Correlation Coefficient (MCC). (C & D) Comparison of algorithmic
performance for detecting non-sinusoidal waveforms. Non-sinusoidal series are generated by dis-
torting a cosine so that the time from peak to trough is 4 h and the time from trough to peak is 20
h and adding Gaussian noise with standard deviation that is equal to the amplitude. Algorithms
considered are BooteJTK (no symbols), ANOVA (circles), and ARSER (squares) for (C) TPR vs.
FPR and (D) MCC.
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Figure S5: (A) and (B) Examples of two time series with the same eJTK τ̃ but different BooteJTK
τ̃ values. The grey line is the original time series, the black is the averaged time series with error
bars, double plotted to the length of the original time series. The BooteJTK τ̃ values for (A) and
(B) are 0.66 and 0.97 which correspond to p-values of 10−3 and 10−6. The eJTK τ̃ score was
τ̃ = 0.57, which corresponds to a p-value of 0.002.
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Figure S6: The BooteJTK τ̃ scores for the same time series dataset show no substantial difference
for 10, 25, 50, or 100 bootstrap samples. The diagonal line has a slope of 1.

31

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118521doi: bioRxiv preprint 

https://doi.org/10.1101/118521
http://creativecommons.org/licenses/by-nc/4.0/


Figure S7: BooteJTK identifies rhythmic probes more consistently than eJTK and RAIN as data
are downsampled. Data shown are from Hughes et al. 2009 [13] and are originally sampled every
1 h for 48 h; the datasets are downsampled to measurement intervals of 2 h (denoted 2a and 2b)
and 4h (denoted 4a, 4b, 4c, and 4d). (A) Comparison of BooteJTK (B) and eJTK (eJ) BH values.
Diagonal dashed line has a slope of 1; the horizontal and vertical dashed lines indicate BH = 0.05,
as − log10(0.05) ≈ 1.3. (B) Number of rhythmic probes at BH < 0.05 for different methods and
downsamplings.
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Figure S8: BooteJTK provides more consistent rhythm detection than eJTK between downsampled
datasets. We quantified the overlap between results with different levels of downsampling by the
probability that a probe is rhythmic in one dataset (a row) if it is rhythmic in another (a column).
As no probes are found to be rhythmic when using eJTK or RAIN on data downsampled to every 4
h, rows and columns for those datasets are not shown. Figure is same as Fig. 4 with RAIN results
added.
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Figure S9: The difference in π probabilities from BooteJTK to eJTK. A positive value indicates a
higher π for BooteJTK than eJTK. Tissues are clustered by column π vectors from BooteJTK.
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Figure S10: Number of probes rhythmic in each tissue out of the 78 probes rhythmic in 9 or more
tissues. Of the probes rhythmic in more than 9 tissues, many of them are not found to be rhythmic
in the brain tissues.
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Figure S11: The standard deviation of arrhythmic time series provides an approximation of the
standard deviation of time points, as shown for the Hughes et al. dataset sampled every 1 h [13].
Vertical lines represent the means of the two distributions.
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