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Abstract
Understanding the nature of decision-related signals in sensory neurons promises
to give insights into their role in perceptual decision-making. Those signals, tra-
ditionally quantified as choice probabilities (CP), are well-understood in a feed-
forward framework assuming zero-signal trials with no choice bias. Here, we ex-
tend this understanding by analytically solving models of choice-related signals
that account for informative stimuli, choice bias, and importantly, feedback sig-
nals reflecting either internal states, such as attention or belief, or the outcome of
the decision process. First, we relate CPs to Choice Triggered Averages (CTAs),
which quantify choice-related average changes in neural responses, and show that
both have general expressions valid for activity-choice covariations of both feed-
forward or feedback origin. These expressions allow a meaningful calculation of
CPs across all trials, including non-zero signal trials. Second, we derive how CPs
and CTAs depend on feedforward and feedback weights and on noise correlations
under several plausible model architectures. Third, we examine different types
of feedback signals, related to predictive coding, probabilistic inference, and at-
tention, and we predict how CPs and CTAs depend in each case on the stimulus
signal level and on the neural tuning properties. Finally, we show that measuring
both CPs and CTAs offers complementary information about the origin of choice-
related signals, especially when studying temporal changes of activity-choice co-
variations across the trial time. Overall, our work provides new analytical tools
to better understand the link between sensory representations and perceptual de-
cisions.
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1 Significance Statement
The covariation between responses of sensory neurons and behavioral choices
has traditionally been studied using stimuli uninformative about the correct de-
cision, with the aim to separate the choice-related component of the responses
from stimulus-driven activity. Furthermore, although recent experimental find-
ings suggest an important contribution of feedback signals to choice-related activ-
ity, theoretical models providing analytical solutions of the measures quantifying
this activity have focused on describing the feedforward influence that trial-to-trial
noise variability in the sensory responses has in the decision. Our work covers this
gap presenting and analyzing general analytical solutions which are valid in the
presence of informative stimuli, choice bias, and feedback signals, thus providing
new tools to interpret choice-activity covariations and understand their origin and
functional role.

2 Introduction
Understanding how responses of sensory neurons contribute to perceptual deci-
sions is a fundamental question in systems neuroscience. Much research address-
ing this question is based on examining the covariation between the responses of
single neurons and behavioral choices. In the most established feedforward model
(Shadlen et al., 1996; Gold and Shadlen, 2007), these activity-choice covaria-
tions have been interpreted based on the feedforward influence that trial-to-trial
noise variability in sensory responses has on the decision. Within this feedforward
framework, model simulations (Shadlen et al., 1996; Cohen and Newsome, 2009;
Nienborg and Cumming, 2010) and analytical calculations (Haefner et al., 2013)
have explained the activity-choice covariations of single neurons in terms of the
combination of the distribution of feedforward readout weights and the structure
of noise correlations across the neuronal population.

However, whether activity-choice covariations are due to causal influences
of sensory neurons responses on the decision via feedforward pathways, or due
to decision-related feedback signals influencing sensory responses, is a much-
debated question (Cumming and Nienborg, 2016). Experimental (Nienborg and
Cumming, 2009) and modeling (Wimmer et al., 2015; Haefner et al., 2016) ev-
idence supports that feedforward and feedback signals can contribute differently
to activity-choice covariations during different times of the decision process, and
top-down modulations of sensory responses play an important role in a variety of
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theories of sensory coding, such as predictive (Rao and Ballard, 1999) or proba-
bilistic (Lee and Mumford, 2003; Haefner et al., 2016; Tajima et al., 2016) coding.

In the context of two-choice discrimination tasks, choice probabilities (CP)
have been the most prominent measure to study and quantify activity-choice co-
variations (Britten et al., 1996; Parker and Newsome, 1998; Nienborg et al., 2012).
To separate the component of neural responses related to choice from stimulus-
driven activity, CPs have been either calculated from zero-signal stimuli trials or,
when using trials in which an informative stimulus is presented, discounting the
estimated stimulus-driven response component (Kang and Maunsell, 2012). How-
ever, how the interplay of these two components that determine the choice affects
CPs has not been examined. Thus, a better understanding of how the interaction
of stimulus-driven activity and internal responses variability influences activity-
choice covariations, as well as of the contribution of both feedforward and feed-
back signals, requires significantly extending the mathematical framework that so
far has been used to interpret CPs. In particular, closed-form solutions for CPs
(Haefner et al., 2013) only exist for very specific assumptions: a feedforward
model, for trials with an equal number of choices for either of the two choices,
that is, for unbiased decisions in the presence of zero-signal stimuli.

Here, we significantly extend the approach of Haefner et al. (2013) by de-
riving analytical relationships accounting for informative non-zero signal stimuli,
choice bias, and importantly, feedback signals, either from generic internal states
or specifically associated with the decision process. We introduce analytical ex-
pressions that can be used to characterize activity-choice covariations regardless
of their origin, either due to feedforward or feedback pathways. In particular, we
analytically relate CPs to other measures of covariations including Choice Corre-
lation (CC) (Pitkow et al., 2015) and Choice Triggered Average (CTA) (Haefner,
2015). Furthermore, our analytical results also apply to detect probability, equiv-
alent to CP but for detection tasks (Bosking and Maunsell, 2011; Smolyanskaya
et al., 2015; Nienborg et al., 2012).

This generalized analytical framework contributes to our understanding of the
origin of activity-choice covariations in several ways. First, it shows how to com-
pute CPs across trials with different signal strength. Second, for simple mod-
els comprising feedforward and feedback signals, we derive how CPs and CTAs
depend on feedforward and feedback weights as well as on noise correlations.
Third, we discuss how to combine different measures to characterize the changes
in activity-choice covariations. Fourth, we illustrate the signatures of different
types of feedback with different functional roles, such as feedback related to pre-
dictive coding, probabilistic inference, or attentional modulations. Overall, we
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provide novel analytical tools to better study activity-choice covariations, moving
from the quantification of single CP values to studying covariations as a func-
tion of stimulus signal levels and the cell’s tuning properties, deriving CP and
CTA expressions that can accommodate different assumptions about whether the
covariations originate from feedforward signals, feedback signals, or both.

3 Methods
This section contains a more detailed description of the derivations followed to
obtain analytical solutions for the activity-choice covariation measures and a de-
scription of generative models representative of different sources of covariations.
To make the paper as accessible as possible, the Results section is self-contained.
Readers not interested in the detailed derivations can skip ahead directly to Re-
sults.

3.1 An exact CP solution for the threshold model
We here derive an analytical CP expression valid in the presence of informative
stimuli, of decision-related feedback, and of top-down sources of activity-choice
covariation, such as prior bias, trial-to-trial memory, or internal state fluctuations.
We follow Haefner et al. (2013) and assume a threshold model of decision making,
in which the choice D is triggered by comparing a decision variable d with a
threshold θ, so that if d > θ choice D = 1 is made, and D = −1 otherwise. To
obtain an exact solution of the CP we assume that the distribution p(ri, d) of the
responses ri of cell i and the decision variable d can be well approximated by a
bivariate Gaussian. Given these assumptions we calculate the choice probability,
defined as

CPi = p(ri|D=1 > ri|D=−1) =

∫ ∞
−∞

drip(ri|D = 1)

∫ ri

−∞
dr′ip(r

′
i|D = −1). (1)

The CP is a quantification of the difference between the distributions of the re-
sponses for each choice, p(ri|D = −1) and p(ri|D = 1). It can be interpreted
as the probability of being correct for an ideal observer that assigns D = 1 to the
sample with higher value from two samples drawn together, one from each of the
two distributions. If there is no dependence between the choice and the responses
this probability is CP = 0.5. Following Haefner et al. (2013) (Supplementary
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Material S1) we get the conditional distribution

p(zi|D = 1) =
1

p
φ (zi; 0, 1) Φ

〈d〉+ cov(ri,d)
σri

zi − θ
σd|ri

; 0, 1

 , (2)

where a more parsimonious expression is obtained using the z-score zi = (ri −
〈ri〉)/σri . This distribution is a skew-normal (Azzalini, 1985), where φ(·; 0, 1) is
the standard normal distribution with zero mean and unit variance, and Φ(·; 0, 1) is
its cumulative function. Furthermore, cov(ri, d) is the covariance of ri and d, σd|ri
is the conditional standard deviation of d given ri, and the probability of D = 1 is

p ≡ p(d > θ) = Φ

(〈d〉 − θ
σd

)
. (3)

We will refer to p as the Choice Ratio. Intuitively, p increases when the mean
of the decision variable 〈d〉 is higher than the threshold θ, and decreases when
its standard deviation σd increases. Consistently, for an uninformative stimulus,
p = 0.5. Eq. 2 can be synthesized in terms of p and the correlation coefficient ρrid,
which was named by Pitkow et al. (2015) Choice Correlation (CC). In particular,
defining α ≡ ρrid/

√
1− ρ2rid and c ≡ Φ−1(p)/

√
1− ρ2rid we get

p(zi|D = 1) =
1

p
φ (zi; 0, 1) Φ (αzi + c; 0, 1) . (4)

The CP is completely determined by P (zi|D = −1) and P (zi|D = 1), and since
these distributions depend only on p and on the correlation coefficient ρrid, the CP
itself is a function of only these two quantities. Plugging the distribution of Eq. 4
into the definition of the CP (Eq. 1) we get

CPi =
1

2p(1− p)

1− α
∞∫

−∞

dxφ(αx+ c)Φ2(x)−

 ∞∫
−∞

dxφ(x)Φ(αx+ c)

2 .
(5)

This expression is derived analogously to Eq. S1.2 in Haefner et al. (2013), and
generalizes the case examined there, which corresponds to c = 0. We now need
some results involving integrals of normal distributions:∫ ∞

−∞
dxxqφ(x)Φn(αx+ c) =(1− q)Φ

(c
b

)
+ q

α

b
φ
(c
b

)
+ 2(1− n)T

(
c

b
,

1√
1 + 2α2

)
,

(6)
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where b =
√

1 + α2. Here T is the Owen’s T function introduced by Owen (1956)
and the equality above is valid for the cases q = 0, n = 1, 2, and q = 1, n = 1
used by us. Using the equality for q = 0, n = 1, 2 into Eq. 5 leads to

CPi =
1

2
+

T

(
Φ−1(p),

ρrid√
2−ρ2

rid

)
p(1− p) . (7)

For an uninformative stimulus (p = 0.5), the function T reduces to the arctangent
and the exact result obtained in Haefner et al. (2013) is recovered. The dependence
on ρrid can be intuitively understood because under the Gaussian assumption the
covariance reflects all the dependence between the responses and the decision
variable d. The dependence on the choice ratio reflects the influence of the thresh-
old mechanism, which maps the dependence of ri with d into a dependence with
choice D by partitioning the space of d in two regions. We will study this exact
solution but, like Haefner et al. (2013), we mostly focus on a linear approxima-
tion derived in the limit of a small ρrid. The rationale for this approximation is that
experimentally estimated CPs are usually close to 0.5 (e. g. Britten et al., 1996;
Nienborg et al., 2012), indicating that ρrid is small, but we will see that the approx-
imation is robust for a wide range of ρrid values. For simplicity, we here present
only a restricted derivation of this approximation that follows directly from the ex-
act solution above. However, the same approximation could be derived from the
exact solution of the CP obtained with conditional distributions p(ri|D) that are
Gaussians (Dayan and Abbot, 2001; Carnevale et al., 2013) and not skew normals
like for the threshold model (Eq. 2). In fact, this CP approximation is generically
valid when the activity-choice covariations are well captured by the linear depen-
dence between the responses and the choice. Expanding Eq. 7 in terms of ρrid we
get a polynomial approximation

CPi =
1

2
+

√
2h(p)

π
ρrid+

∞∑
k=1

d2k

 exp

[
− (Φ−1(p))2

2
2

2−ρ2
rid

]
2πp(1−p)

√
2−ρ2

rid


dρ2krid

∣∣∣∣
ρrid=0

ρ2k+1
rid

(2k + 1)!
, (8)

where h(p) is defined as

h(p) ≡
√

2πφ(Φ−1(p))

4p(1− p) . (9)
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This factor is further discussed in the Results section. The expansion contains only
odd order terms because of the symmetry of CP− 0.5 with respect to the sign of
ρrid. This explains why Haefner et al. (2013) found that the linear approximation
was accurate for a wide range of ρrid values, since the contribution of ρ3rid only
starts to be relevant for intermediate to high correlations. Up to order 3 we have

CPi ≈
1

2
+

√
2h(p)

π

[
ρrid +

1− (Φ−1(p))2

12
ρ3rid

]
. (10)

Since Φ−1(0.5) = 0, for the choice ratios for which |1− (Φ−1(p))2| < 1 the third
order term makes a smaller contribution than for the uninformative case. This
is true for Φ−1(p) ∈ (−

√
2,
√

2), which leads to p ∈ (0.08, 0.92). This means
that the linear approximation is expected to be an even better approximation in
this range than for p = 0.5. Furthermore, for (Φ−1(p))2 < 1 the third order
contribution is positive, so that for the choice ratios fulfilling this constrain, p ∈
(0.16, 0.84), the linear approximation is expected to underestimate the CP.

3.2 Derivation of the CTA for the threshold model
Following the work of Celebrini and Newsome (1994) as well as Britten et al.
(1996), many studies have used the CP as a measure to characterize activity-choice
covariations, and computational models have also focused on the CP (e. g. Cohen
and Newsome, 2009; Haefner et al., 2013). A contribution of this work is to show
that Choice Triggered Averages (CTAs) can provide complementary and often
more useful information about the nature of activity-choice covariations. The
mean response of cell i in trials where D = 1 is made is:

〈ri〉D=1 =

∫ ∞
−∞

dri riP (ri|D = 1) =
1

p

∫ ∞
−∞

dzi(σrizi + 〈ri〉)φ(zi)Φ(αzi + c),

(11)
where the last equality holds for P (ri|D = 1) as in Eq. 4. The CTA is defined
as the difference of the mean responses for each choice, and using the integral
equality of Eq. 6 for q = 1, n = 1 into Eq. 11, we have

CTAi ≡ 〈ri〉D=1 − 〈ri〉D=−1 =
4h(p)√

2π
ρridσri =

4h(p)√
2πσd

cov(ri, d). (12)

Furthermore, the fact that D is a binary variable, without any other assumption
about the distribution of the responses, implies that

〈ri〉D=1 = 〈ri〉+ (1− p)CTAi, (13)
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and similarly for 〈ri〉D=−1 substituting 1 − p by −p. That is, it is always the
conditional mean of the less likely choice the one that contributes more to the
CTA. It is straightforward to see the relation between the CTA in Eq. 12 and the
linear approximation of the CP (order one in Eq. 10). Further details on their
relation are discussed in the Results section.

3.3 Time-dependent analysis of CPs and CTAs
Above we have derived the CPs and CTAs without specifying for which interval
the cell responses are estimated. In practice, a certain time window needs to be
selected. In particular, for a time-resolved analysis responses are estimated in
a sliding window to study the temporal changes of activity-choice covariations
(e.g. Nienborg and Cumming, 2009). The strength of the influence of different
sources of covariation is expected to change over the trial time. For example, serial
dependencies across trials are expected to affect more the responses early in the
trial, and on the other hand feedback signals containing categorical information
about the choice can only exist after the decision. We now consider the time-
resolved calculation of the measures. Consider a sliding window [tk, tk + T ].
Following Eq. 12, the CTA for tk is:

CTAi(tk) =
4h(p)√

2πσd
cov(ri(tk), d). (14)

From the factors that determine the CTA only the covariance cov(ri(tk), d) is time-
dependent. The choice ratio p, as well as the variance of the decision variable, are
common to all tk because they are determined as a result of how all the sen-
sory responses from different cells and time intervals are combined to generate d.
Accordingly, if the responses result from the sum of different components each
potentially associated with a different source of activity-choice covariation, then
these contributions are linearly added in the CTA. For the CP, using the linear
approximation from Eq. 10, we have:

CPi(tk) ≈
1

2
+

√
2h(p)

πσd

cov(ri(tk), d)√
var ri(tk)

=
1

2
+

1

2
√
π

CTAi(tk)√
var ri(tk)

, (15)

hence the CP temporal changes correspond to the relative changes of the CTA
with respect to the changes in the response standard deviation.

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118398doi: bioRxiv preprint 

https://doi.org/10.1101/118398
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.4 Models of the different sources of activity-choice covaria-
tion

The derivations above provide an analytical formulation of the CP and CTA which
does not make any assumptions about the sources that generate the activity-choice
covariations. In this work we examine simple models representative of different
sources and derive concrete expressions of the measures in each case. These mod-
els extend the feedforward linear model used by Haefner et al. (2013) by further
considering feedback influences. They can approximate more general modula-
tions of the responses by top-down signals (see Results for details) and are math-
ematically tractable, leading to close-form expressions that allow us to identify
qualitative differences between how, for different sources of covariation, the mea-
sures depend on the model parameters.

We use Eq. 12 to calculate the CTAs and the first order of Eq. 10 to calculate
the CPs. Accordingly, to characterize the measures all we need is to express in
terms of the model parameters the following quantities: For the CTA, we need to
derive the choice ratio p, the covariance cov(ri, d), and the variance σd. For the
CP, we also need the variance of the responses var ri. The choice ratio is calcu-
lated from Eq. 3. For linear models, the variances and the covariance are obtained
straightforwardly from their definitions. A detailed derivation can be found in the
Supplementary material S1 of Haefner et al. (2013) for the feedforward model,
and we proceed analogously for the new generic models incorporating feedback
signals. Accordingly, in the Results section we directly present the final expres-
sions for the CPs and CTAs obtained for each generic model. Furthermore, we
also study some more concrete models, representative of a certain source of co-
variation. We now provide details on these concrete models.

3.4.1 The neuron-antineuron feedforward model

The neuron-antineuron model is a subtype of feedforward threshold model in
which it is assumed that the decision variable is constructed from the activity
of two different pools of neurons, labeled as neurons and antineurons in relation
to their response properties (Shadlen et al., 1996). Briefly, the neurons are more
responsive for stimuli compatible with D = 1, and oppositely for the antineu-
rons. The CP for this model was found to be mainly unsensitive to the distribution
of the feedforward weights as long as they have opposite sign for the two pools.
Furthermore, the CP is mainly unsensitive to the responses variance, and is deter-
mined by the difference between the average noise correlations between neurons
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within the same pool (ρ‖) and noise correlations between neurons of different
pools (ρ⊥). These results were analytically confirmed by Haefner et al. (2013).
In particular, considering that all cells have equal variance and that each of the
two types of correlations is homogeneous across cell pairs, in the limit of large
pools the CP depends only on ∆ρ ≡ ρ‖ − ρ⊥ (see equation S1.14 of Haefner
et al., 2013). However, for the time-dependent case (Eq. 15), with these same
assumptions and approximating the responses as independent in nonoverlapping
time windows covering the trial time (for a fixed stimulus), we find:

CPi(tk) =
1

2
+
h(p)

π

√
var ri(tk)∆ρ(tk)√∑
k′ var ri(tk′)∆ρ(tk′)

, (16)

where k′ indexes the nonoverlapping windows. The denominator is the same for
all times and corresponds to σd. For a non time-resolved analysis with a sin-
gle window, this expression of CPi(tk) reduces to the solution of Haefner et al.
(2013), which only depends on ∆ρ. In the time-resolved case, temporal CP
changes depend on the balance of the changes in ∆ρ and the variance, as we
illustrate in the Results section.

3.4.2 CTAs for a decision-related attention feedback model

Here we describe in detail a model of decision-related feedback through attention
mechanisms (Maunsell and Treue, 2006). For a cell i with an unmodulated tuning
function f0(s− si), characterized by the preferred stimulus si, attention leads to a
modulated tuning function f(s− si; satt− si) by introducing a multiplicative gain
gi(satt − si), where satt is the attended stimulus. We consider this modulation to
act as a decision-related feedback assuming that once the decision is made the at-
tended stimulus is determined by the internal estimator of the presented stimulus,
which is associated with d.

For illustration purpose, we more concretely conceive an orientation discrim-
ination task in which the animal has to decide if the orientation of a bar has an
angle higher or lower than a reference one. After the decision is made, the angle
attended (ϕatt) is the predicted angle, estimated by d. Accordingly, for an unbi-
ased internal estimator, the average predicted and attended angle coincides with
the angle presented (ϕ). That is, 〈ϕatt〉 = ϕ. However, the trial-to-trial variability
in d and hence in the predicted angle, leads to variability in ϕatt that influences the
neural responses. This influence is the source of the activity-choice covariation.
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Linearly approximating this variability, the responses can be modeled as:

ri = gi(ϕatt − ϕi)f0(ϕ− ϕi) + ξi

≈ gi(〈ϕatt〉 − ϕi)f0(ϕ− ϕi) +
∂f(ϕ− ϕi;ϕatt − ϕi)

∂ϕatt

∣∣∣∣
ϕ

(ϕatt − 〈ϕatt〉) + ξi.

(17)

To implement the model, we follow Ecker et al. (2016) and use Von-Mises
functions (Amirikian and Georgopulos, 2000) for the tuning curves. In particu-
lar, we take f0(ϕ − ϕi) = q exp[κ cos(ϕ − ϕi)] and the gain as gi(ϕatt − ϕi) =
exp[g cos(ϕatt−ϕi)]. Using these functions for the neural responses, and consid-
ering 〈ϕatt〉 = ϕ, leads to

ri ≈ [1− g sin (ϕ− ϕi)[ϕatt − ϕ]]q exp[(κ+ g) cos(ϕ− ϕi)] + ξi. (18)

If g = 0, the responses are determined only by f0(ϕ − ϕi). In general, the mean
responses are

〈ri〉 ≈ q exp[(κ+ g) cos(ϕ− ϕi)]. (19)

Given Eq. 12, considering that the decision variable d provides an internal estima-
tion of the angle, we can calculate the CTA in terms of cov(ri, ϕatt). In particular,
from Eq. 18

cov(ri, ϕatt) ≈ −gq sin(ϕ− ϕi) exp[(κ+ g) cos(ϕ− ϕi)]σ2
ϕatt (20)

and

CTAi ≈ −
4h(p)√

2π
gq sin(ϕ− ϕi) exp[(κ+ g) cos(ϕ− ϕi)]σϕatt . (21)

In the Results section we examine in detail the form of this CTA.

4 Results
We will present our results in several stages, progressing from the most general in-
sights to specific applications. First, we present relationships for CPs and related
measures of activity-choice covariation which hold independently of whether they
are caused by feedforward (FF), feedback (FB), or a mixture of both kinds of sig-
nals. Second, we apply our formulas to plausible simple causal models of sensory
responses and behavioral choices and derive the explicit dependence of CPs and
CTAs on the parameters of interest in those models. In particular, we consider
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different sources of activity-choice covariation, comprising bias, internal states,
and decision-related feedback signals. We then examine more specific scenarios
for which our derivations are useful. First, we compare the time course of CPs and
CTAs within a trial when the contributions to the covariation change over time.
Second, we indicate the signatures in the CPs and CTAs of previously proposed
computations that involve FB signals, like predictive coding and Bayesian infer-
ence. Finally, as a concrete example of discrimination between feedforward and
feedback sources, we compare the CTAs derived for a model of decision-related
attention feedback signals and for a feedforward model with optimal readouts.

4.1 General properties of activity-choice covariation measures
At the most basic level, any decision-related signal, independently of its origin,
leads to an activity-choice covariation between the neural response (activity), r,
and the psychophysical choice (decision), D. In the context of tasks involving
two choices which we will consider here (comprising discrimination and detec-
tion tasks), this covariation is completely captured by the difference between the
neural response distributions conditioned on the behavioral choice of the sub-
ject, p(r|D = −1) and p(r|D = 1). Among the possible measures to quantify
the activity-choice covariation by comparing these two distributions, two related
measures are choice probability (CP) and choice-triggered average (CTA):

CPi ≡
∫ ∞
−∞

dri p(ri|D = 1)

∫ ri

−∞
dr′i p(r

′
i|D = −1) (22a)

CTAi ≡ 〈ri〉D=1 − 〈ri〉D=−1. (22b)

Intuitively, the CP is defined as the probability that a random sample from the dis-
tribution for choice 1 trials is larger than a random sample from the distribution for
choice −1 trials (Britten et al., 1996; Parker and Newsome, 1998; Nienborg et al.,
2012). It is 0.5 if both distributions are identical and goes to 0 or 1 as they are
more and more separated. The CTA is defined as the difference between the mean
response for trials of each choice (Haefner, 2015). It is zero when both distri-
butions are equal. The CTA captures the linear dependencies between responses
and choice and, given the binary nature of choice D, it is directly proportional
to the covariance between them: CTAi = 2cov(ri, D)p(D = 1)p(D = −1) 1.

1This relation holds for the covariance between any variable x and a binary variable D, and
independently of the convention adopted for the values of D: the factor 2 has to be replaced by
a− b if D = a, b is selected instead of D = 1,−1.
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A 

… … 

B 

… … 

C 

Figure 1: A general framework to analyze activity-choice covariations indepen-
dently of the source of the decision-related signals. A) Representation of a com-
pletely agnostic covariations model: A population of sensory neurons encodes a
stimulus s and activity covaries with the behavioural choiceD. The arrows linking
the stimulus and the responses indicate a causal influence. The undirected edges
linking the responses and the choice indicate that we are agnostic about the source
of the dependence reflected in the covariance cov(ri, D) between the activity of
cell i and the choice D. B) Threshold model in which a continuous decision vari-
able d mediates between the responses and the choice and represents an internal
sensory stimulus estimator. The decision is made by comparing d with a thresh-
old θ. C) Decomposition (characteristic of the threshold model) of the covariance
between the response ri and the choice D in terms of the separated dependencies
between the response and the decision variable d, and between d and the choice.
The threshold mechanism (vertical dashed black line) dichotomizes the space of
d, resulting in a difference between the mean of the conditional distributions asso-
ciated with D = ±1 (red and blue vertical top bars, respectively). This difference
is quantified by CTAd (horizontal thick black line) and propagates to the Choice-
Triggered Average (CTAi) when some correlation CCi exists between d and ri.12
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Furthermore, for small covariations (CPs close to 0.5) using the same linear ap-
proximation as in Haefner et al. (2013) one can show (see Methods) that:

CPi ≈
1

2
+

1

2
√
π

CTAi√
var ri

. (23)

In this case the CP can be interpreted in relation to the response difference ‘nor-
malized’ by the response variability (or the CTA of the z−score of the responses).
Importantly, this relationship holds regardless of the causal sources of response-
choice covariations, i.e. whether it is due to feedforward signals, feedback signals,
or both, because it is agnostic regarding the origin of the dependence between ri
and D (Fig. 1A). This relation between CPs and CTAs also shows that, when
several independent sources contribute to the activity-choice covariation, the total
CTA linearly adds the different covariance contributions from different sources,
while linear additivity does not hold for the CP due to the denominator. For exam-
ple, if ri = r

(1)
i +r

(2)
i , then CTAi = CTA

(1)
i +CTA

(2)
i , where CTA

(1)
i refers to the

CTA that would be obtained if measuring only r(1)i , and analogously for CTA
(2)
i .

So far we remained agnostic with respect to the mechanism relating sensory
responses and behavioral choice. Now we adopt the common assumption thatD is
mediated by a continuous decision variable d that is an internal estimate of the sen-
sory stimulus. We assume thatD = 1 if the decision variable d exceeds an internal
threshold θ, otherwise D = −1 (Gold and Shadlen, 2001, 2007). This allows us
to separate the relationship between r and D in terms of the relationships between
r and d, and d and D (Fig. 1B). In particular, the correlation coefficient between
activity and choice is factorized such that corr(ri, D) = corr(ri, d)corr(d,D).
Given the direct relation between CTAi and the covariance cov(ri, D) we find

CTAi = CCi

√
var ri√
var d

CTAd, where CCi ≡ corr(ri, d) =
cov(ri, d)

√
var ri

√
var d

(24)

is the correlation coefficient between the sensory response and the decision vari-
able termed Choice Correlation (Pitkow et al., 2015), and CTAd is the difference
of the means of the (unobserved) decision variable for the two choices. Eq. 24
describes how activity-choice covariations are determined in the threshold model
of Fig. 1B: The threshold mechanism dichotomizes the space of the decision vari-
able into the two choices producing the CTAd, which propagates to CTAi (Fig.
1C) given the specific correlation CCi of the activity with the decision variable.
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The threshold model is still agnostic with regard to the causal mechanisms
introducing dependencies between d and the responses. We now add another as-
sumption, namely that the decision variable is determined by the combination
of the responses of a large population of neurons so that its distribution is well
approximated by a Gaussian distribution. With this Gaussian assumption the di-
chotomization of the space of d is completely specified by the choice ratio p,
i. e. the probability of choosing D = 1, which can be estimated from the ra-
tio of the number of trials with each behavioural choice. Accordingly, the term
CTAd/

√
var d of Eq. 24 can be expressed in terms of only p. In particular, we

define a factor h(p) as the ratio of CTAd/
√

var d for a certain p with respect to its
value for the uninformative stimulus (p = 0.5). Under gaussianity

h(p) =

√
2πφ(Φ−1(p))

4p(1− p) , where p ≡ p(D = 1) = p(d > θ) = Φ

(〈d〉 − θ√
var d

)
.

(25)
Here, φ(x) is the density function of a zero-mean, unit variance, Gaussian distri-
bution, and Φ−1 is the corresponding inverse cumulative density function. 〈d〉 is
the mean of the decision variable. By construction, h(p) = 1 for p = 0.5. Finally,
plugging Eq. 25 into Eqs. 23 and 24, the CTA and CP are expressed as

CTAi =
4√
2π

h(p)√
var d

cov(ri, d) and CPi ≈
1

2
+

√
2

π
h(p) CCi. (26)

Note that the CTAi and CPi depend on the specific response properties of cell i
only through cov(ri, d) and CCi, respectively. For the uninformative stimulus the
CP of Eq. 26 recovers the linear approximation derived in Haefner et al. (2013).
The factor h(p) depends on the choice ratio and var d is also a factor common to
all cells. Although generally the decision variable d cannot be directly observed,
var d can be estimated based on the psychophysical threshold, fitting a psycho-
metric function to the Gaussian expression of the choice ratio in Eq. 25 (Pitkow
et al., 2015).

Our theoretical approach starting from a totally agnostic model and sequen-
tially incorporating more specific assumptions differs from previous theoretical
studies characterizing CPs (e.g. Shadlen et al., 1996; Haefner et al., 2013) which
assumed a feedforward model of activity-choice covariations (Fig. 2A). This ap-
proach provides three main new insights: First, the relationships in Eqs. 23-26
hold regardless of the source of the covariation – whether they are due to feed-
forward or feedback influences, common modulators, or some combination. This
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A B 

C 

Feedforward model  Extended general model  

Relations between the  
measures of activity-choice   

covariation   

Figure 2: General models and measures to represent and quantify activity-choice
covariations independently of their origin. A) Connectivity structure assumed for
the traditional pure feedforward model. B) General architecture combining differ-
ent sources of activity-choice covariation such as internal states (a) and decision-
related feedback. In the main text we provide details of how the responses and
the decision variable are generated for subcases focusing on different sources of
covariation. r(1) and r(2) represent pre and post decision sensory responses. C)
A graphical summary of the relation between the choice probability CPi, choice-
triggered average CTAi, and choice correlation CCi. The complete picture of how
these measures are interconnected is provided by Eqs. 23-26.
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will allow us to study models with other causal architectures associated with non-
feedforward sources of covariation (Fig. 2B). Fig. 2C summarizes how CP, CTA,
and CC are interconnected. Second, the appreciation of CTAs. Even for a range of
CP values for which the approximation that connects CPs and CTAs is not accu-
rate, CTAs stand on their own as a characterization of activity-choice covariations,
which capture only linear differences. As we will see, this reduced, more specific,
sensitivity can in fact simplify the dependence on the parameters that identify a
certain connectivity structure and help to discriminate between different potential
sources of covariation. Third, the characterization of the dependence of CPs and
CTAs on the choice ratio p by means of the multiplicative factor h(p). Consider-
ing this factor generalizes previous work that assumed the special case of p = 0.5,
which is usually violated in practice (e.g. for trials with an informative stimuli).

In the classical approach to examine activity-choice covariations, CPs are only
estimated from ambiguous (i.e. zero-signal, or uninformative) trials (Britten et al.,
1996). Attempts to more efficiently use all trials correct the influence of the stimu-
lus to estimate a single CP value (Nienborg and Cumming, 2009; Kang and Maun-
sell, 2012). The generalized solutions introduced above for the case of informative
stimuli indicate that changes in the stimulus informativeness may have an effect
on the CP and CTA in two different qualitative ways. First, for the threshold model
there is an intrinsic dependence on the stimulus through the multiplicative factor
h(p) because the stimulus signal affects the choice ratio (Eq. 25) either by the
effect of its mean on 〈d〉 or by the effect of its trial-to-trial variability on

√
var d.

Second, the CP and CTA may further depend on the stimulus signal through the
stimulus dependence of the choice correlation CC, for example if noise correla-
tions are stimulus dependent. Separating these two types of effects of stimulus
informativeness is necessary to more efficiently use data from all signal levels
to study activity-choice covariations. One possibility, in line with previous ap-
proaches aiming to obtain a single measure from all trials, is to account for the
factor h(p) to average the CP values obtained for different levels of stimulus sig-
nals. As an alternative, we here propose to study the CPs and CTAs as a function
of the stimulus informativeness to gain new insights about the mechanisms origi-
nating the activity-choice covariations. As we will study below, different sources
of covariation can be discriminated from the type of stimulus dependencies their
produce between ri and d. These dependencies are reflected in the CP and CTA
but we need to separate them from the intrinsic dependence on the stimulus signal
that exists through h(p). Accordingly, we now proceed to characterize the shape
of h(p) and consider how this factor may change when the gaussianity assumption
does not hold. Furthermore, for the CP we compare its dependence on h(p) for the
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linear approximation (Eq. 26) with an exact CP solution derived assuming joint
gaussianity for ri and d (see Eq. 7 in Methods for the form of this exact solution).

Fig. 3A compares, as a function of the choice correlation CC, an exact so-
lution of CPi (Eq. 7) and the linear approximation shown above (Eq. 26). For
both the case of an uninformative stimulus (p = 0.5) and a highly informative
stimulus (p = 0.9) the approximation is good for the range of CP values usu-
ally found experimentally (0.2 − 0.8). Fig. 3B shows CPs as a function of the
choice ratio for three different values of the CC. To focus on the shape of h(p),
we choose the CC to be invariant with the choice ratio (i.e. stimulus-independent)
so that the CP reflects the dependence of h(p) on p. For p 6= 0.5, h(p) > 1 and
the CP increases symmetrically for p departing from 0.5. This can be understood
intuitively, for example considering a sensory neuron feedforwardly contributing
to the decision variable: A highly informative stimulus induces signal-dominated
neural responses, so that d most likely lies on the side of the threshold compatible
with the sensory stimulus presented (e.g. D = 1) and leads to p close to 1. This
means that p(ri|D = 1) is similar to p(ri), since most responses correspond to
D = 1, and hence its conditional mean is also close to the unconditional one.
On the other hand, the opposite choice is made only for trials with a substantial
and contradictory departure of the neural responses from the signal-driven mean
response. Accordingly, the distribution p(ri|D = −1) contains responses that lie
in the tail of p(ri). As p goes to 1, the mean of p(ri|D = 1) converges to the
unconditional mean, while the departure of the mean of p(ri|D = −1) from the
unconditional mean becomes increasingly large, resulting in an increasing differ-
ence between the two (Fig. 1C, and see Eq. 13 in Methods).

The shape of h(p) indicates that an increase of CPs with the choice ratio pro-
vides evidence compatible with the decision making threshold mechanism. How-
ever, the influence of the stimulus signal through h(p) is small for a substantial
range of the choice ratio around p = 0.5 and its characterization may require large
numbers of trials (i.e., chronic recordings or pooling across many neurons). On
the other hand, this relatively flat dependence justifies the combination of trials
with different signal strengths to calculate a single CP value per neuron (so-called
’grand choice probabilities’, Nienborg et al., 2012), if no further stimulus depen-
dence exists through the CC.

Fig. 3C-D compare CPs and CTAs obtained analytically with those estimated
from simulations of a feedforward model. The decision variable is obtained as
the sum of a Poisson component, modeling the contribution of cell i and other
cells correlated to it, and of a gaussian component, modeling the contribution of
a large number of neurons uncorrelated to cell i. The relative weight of these
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              CR = 0.5 
              CR = 0.9 

               Exact CP 
               Linear CP 

A 

C 

B 

D 

Exact analytical Gaussian CP vs. Linear approximation 

Exact analytical Gaussian CP vs. sample-estimated Poisson CP 
mean count = 4 spikes mean count = 20 spikes 

        Poisson CP 
        Poisson linear CP 

Figure 3: Choice probabilities calculated from the threshold model in the presence
of informative stimuli. A) Comparison, as a function of the choice correlation,
of the exact solution of the CP (solid lines, Eq. 7) and its linear approximation
(dashed lines, Eq. 26). Results are shown for two values of the choice ratio p, 0.5
and 0.9. B) Same comparison but with the CP as a function of the choice ratio.
Results are shown for three values (horizontal dotted lines) of the exact CP for the
uninformative case p = 0.5, each determined by a different CC value. Again solid
lines represent the exact solution and dashed lines the linear approximation. C)
Comparison of the exact Gaussian CP solution with the estimations obtained from
simulated Poisson responses with low spike counts. Black lines reproduce the
analytical results already shown in panel B. Red lines correspond to the estimated
CP from simulated Poisson data. Estimation is based directly on the CP definition
(red solid line, Eq. 22), to be compared with the exact Gaussian solution (black
solid line), and on the CP linear approximation (red dashed line, Eq. 23), to be
compared with the linear Gaussian approximation (black dashed line). D) Same
as C) for Poisson responses with higher counts.18
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two contributions determines the CC. CTAs have been transformed to CPs with
Eq. 23 so that also the accuracy of this linear approximation can be checked. For
these transformed CTAs (dashed lines), the comparison of the analytical (black)
and estimated values (red) exclusively reflects the accuracy of h(p) derived under
gaussianity. For CPs, the comparison of analytical (solid black) and estimated
values (solid red) reflects the accuracy of the whole exact CP solution derived
under gaussianity.

The factor h(p) is well approximated by its gaussian form except when d re-
sults from the combination of activity of a small population, or of a population
of highly correlated neurons, in a way that the central limit theorem that justifies
the Gaussian approximation is less accurate. In our simulations these departures
from the analytical values occur for high CCs, especially when the firing counts
are low. This can be understood from how we generated the data: to obtain high
CCs for cell i we make the weight of the Poisson contribution to d higher. For
high counts, the Poisson contribution is itself well approximated by a Gaussian,
but for low counts it is not and thus the distribution of d departs from a Gaus-
sian. In general the spike counts of a cell do not indicate how good the gaussian
approximation of h(p) is, since this is a factor common to all cells. The form
of the departures from the analytical values can also be qualitatively understood:
symmetry with respect to p = 0.5 is broken because of the effect that for Poisson
responses the constraint to zero or positive counts has on how p(ri|D = 1) and
p(ri|D = −1) can mutually differ. For p > 0.5 the mean of p(ri|D = −1) should
be shifted to smaller counts and predominantly contribute to the CTA, since the
conditional mean of the responses for the less likely choice differs more from the
unconditional mean (Fig. 1C). However, this shift is constrained by counts being
zero or positive, especially for low rates. Overall, Fig. 3C-D show that the Gaus-
sian approximation for d is robust and Eq. 25 can be used to approximate h(p)
and to correct for the influence of the choice ratio on CPs and CTAs. Only if the
decision variable relied on a small number of neurons or on a larger but highly
correlated population the approximation would be less accurate.

4.2 Activity-choice covariation on specific causal models
The derivations above provide an analytical formulation of the CP and CTA mea-
sures making as few assumption as possible about the sources that generate the
response-choice covariation, in particular about the connectivity architecture link-
ing the neural responses to the decision variable. In this section we will examine
simple plausible models representative of different sources of response-choice co-
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variations (Fig. 2B). This will allow for a better understanding of how different
signals influence CPs and CTAs. First we present the results for models that con-
sider feedforward and feedback influences separately and then we describe the
combination of several influences into CTAs and CPs. For simplicity of presen-
tation, we will explicitly indicate stimulus dependencies (e.g. CP(s)) only when
needed. We will return to them in sections 4.4 and 4.5 because these stimulus
dependencies can help to identify the sources of covariation.

4.2.1 Pure feedforward model

First, we consider the classic FF encoding/decoding model (Fig. 2A, Shadlen
et al., 1996; Haefner et al., 2013) in which a population of sensory responses,
r = (r1, .., rn), is being read out by a decision area representing a decision vari-
able d = w>r+η ≡∑n

i=1wiri+η, where w are the feedforward read-out weights
and η represents some decision noise additional to the variability in the sen-
sory responses (called ’pooling noise’ in Shadlen et al. (1996)). The categorical
choice D is made by comparing d to the threshold θ. We model the responses as
ri = fi(s) + ξi, with means given by the tuning functions f(s) = (f1(s), .., fn(s))
and covariance structure Cξ of the neuron’s intrinsic variability ξi. Note that r
may comprise the responses of different cells but also the responses at different
times, so that the covariance matrix Cξ generically captures both the responses
cross-correlations and autocorrelations. In general, the total measurable covari-
ance matrix C may have other contributions apart from the intrinsic variability of
the responses quantified by Cξ, for example due to trial-to-trial variability in the
stimulus signal (see Supplementary Material S1 of Haefner et al., 2013, where
the CP solution of the feedforward model is derived considering this stimulus vari-
ability). For simplicity, we do not include stimulus variability in our models and
hence for this feedforward model we have that C = Cξ. Nonetheless, as we will
see, internal variability, for example decision-related, may further contribute to C.
From Eq. 26 in this feedforward model

CTAi =
4h(p)√

2π

(Cw)i√
w>Cw + σ2

η

and CPi ≈
1

2
+

1

2
√
π

CTAi√
Cii

. (27)

Note that Cii = var ri. For p = 0.5, i.e. h(p) = 1, we recover the solution
previously found by Haefner et al. (2013). In this feedforward model activity-
choice covariations are explained as a population effect because the covariance
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(Cw)i does not arise from the single influence on d of ri through its own weight
wi (Shadlen et al., 1996; Haefner et al., 2013). This direct single influence is ex-
pected to be small when a large neural population determines the decision, but the
covariance captures the contributions from all indirect connections due to cross-
correlations with the rest of the population. Given the form of the covariance
(Cw)i, the estimation of feedforward weights requires estimating the covariance
matrix C (Haefner et al., 2013). Accounting for h(p) allows one to pool the CPs
from all signal strengths in order to infer the read-out weights w, instead of using
only the CP calculated from zero-signal trials.

4.2.2 A generic view of models with neural responses modulated by a decision-
related internal variable

A characteristic of the feedforward model is that the responses are modeled as ri =
fi(s)+ξi, with a component which is stimulus driven and a component considered
as noise, basically containing any other source of variability of the responses.
More realistically, the trial-to-trial variability of the responses is expected to be at
least partly explained by changes in internal states (e.g. Masquelier, 2013; Ecker
et al., 2014; Rabinowitz et al., 2015). These internal variables may have top-down
effects on the neurons responses under study and also introduce variability in the
choice through other pathways, hence producing some activity-choice covariation.
Internal states also comprise the decision and choice variables themselves, which
can modulate the responses through decision-related feedback.

To be more concrete, consider a neuron i whose mean response can be mod-
eled as fi(s; s′) = fi−FF (s) + fi−FB(s; s′). Here s is the presented stimulus, and
s′ is an internal state, which usually cannot be controlled by the experimenter. The
tuning curve has two components: fi−FF (s) models the feedforward response in
the absence of any feedback signals and fi−FB(s; s′) represents the contribution
of the feedback signal. The feedback can be multiplicative or additive depending
on fi−FB being or not proportional to fi−FF , and it is decision-related if s′ is cor-
related with the actual choice. To study the feedback effects in a tractable way
we use a linear approximation considering that s′ fluctuates around its mean 〈s′〉.
Accordingly, the responses ri are approximated as:

ri ≈ fi(s; 〈s′〉) +
∂fi
∂s′

∣∣∣∣
〈s′〉

(s′ − 〈s′〉) + ξi. (28)
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This constitutes the general form of a responses model which is linear in the con-
tribution of the variability related to the internal variable s′. The derivative of the
tuning curve with respect to s′ corresponds to a linear feedback weight. We will
use the notation f ′s′ to refer to this derivative. Since it is the variability of s′ what
produces the activity-choice covariation induced by the internal variable, the CTA
will be related to this derivative. The feedback also alters the structure of the co-
variance matrix of the responses by adding noise correlations caused by s′ as a
common source of variability. In particular, C = Cξ + f ′s′f

′>
s′ σ

2
s′ , and thus the in-

fluence of feedback naturally introduces a relation between the structure of CTAs,
noise correlations, and tuning properties. As we mentioned above, C generically
includes zero and non-zero lagged cross-correlations as well as autocorrelations,
and hence noise correlations shaped by the decision-related feedback can deter-
mine the structure of all these correlations (Wimmer et al., 2015; Haefner et al.,
2016). Below we examine specific cases of this general model. To distinguish
the feedback weights in the case of feedback from the decision variables them-
selves or any other internal variable, we will refer to these weights as vi and ui,
respectively. In both cases they can be related to f ′s′ in agreement with Eq. 28.

4.2.3 Feedforward model including top-down signals from an internal vari-
able

We first consider the same FF model while allowing a common input from an in-
ternal variable a to influence both neural responses r and the decision variable d
(Fig. 4A). The internal variable can represent different mechanisms such as an ex-
pectation bias, cognitive memory effects that link choices across subsequent trials
(e. g. Frund et al., 2014; Conen and Padoa-Schioppa, 2015), slow modulations in
the level of excitability (e. g. Goris et al., 2014), or other sources of long memory
autocorrelations in the neural responses that also introduce dependencies across
trials (e. g. Nienborg and Macke, 2014). We model the influence of this common
input on r and d by linear weights u and wa, respectively. Its direct influence on
the decision variable d is captured by wa, that is, d = w>r + waa + η. The re-
sponse of neuron i is given by ri = fi(s)+ui(s)a+ ξi. Without loss of generality,
we consider a with mean 〈a〉 and unit variance. As discussed above, u can depend
on s and introduce both additive, multiplicative and intermediate influences of a
on the responses. In comparison with the general model of Eq. 28, here a corre-
sponds to the state s′. The component of the response depending on 〈s′〉 has been
absorbed in fi(s) to simplify the notation. We do not explicitly model the form of
fi−FB(s; s′), and we generically assume that it determines the weights u through
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Figure 4: The effect of top-down influences from internal variables on activity
choice covariations. A) Causal architecture of a model combining feedforward
influences with top-down influences from an internal variable a. B) Correlation
Corr(d, a) between the decision variable and the internal variable a as a function
of the degree of alignment of the top-down and feedforward weights (w>u). This
alignment determines the feedforward contribution of the top-down signal to the
decision variable. C) Choice probability for this model (Eq. 29) as a function of
w>u for two different strengths of the top-down weight ui of cell i.
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the derivative f ′a. We obtain:

CTAi =
4h(p)√

2π

(Cξw)i + (w>u + wa)ui√
w>Cξw + (w>u + wa)2 + σ2

η

(29a)

CPi ≈
1

2
+

1

2
√
π

CTAi√
Cii

with C = Cξ + uu>. (29b)

Changes in the mean top-down signal may introduce a choice bias and affect the
measures only through h(p), either by altering the mean of the decision variable
or the decision threshold θ. To understand how the variability in a influences
the activity-choice covariations we consider first the subcases in which it affects
only either the decision variable (u = 0) or the responses (wa = 0). In the first
case, a only increases the decision variability that is unrelated to the responses
r and hence decreases the covariations. In the second case, the internal variable
increases the decision variability related to r by adding a new component to the
responses. The new term uu> in the measurable covariance matrix C captures
the covariability added by the common input a. The top-down signal to the re-
sponses propagates in a feedforward way to the decision variable depending on
the alignment between the feedforward and feedback weights, w>u. The CTA
can be rearranged to recover the form of the purely feedforward model as in Eq.
27. In particular, (Cw)i = (Cξw)i + w>uui and w>Cw = w>Cξw + (w>u)2.
Finally, when both u and wa are nonzero, these two influences coexist with a third
that arises specifically from the effect of the internal variable as a common driver
of the decision variable and the responses, as reflected in the interaction terms
uiwa and w>uwa in the numerator and denominator of Eq. 29a, respectively.

Since the internal variable influences var ri, var d, and cov(ri, d), its net effect
depends on its relative contribution to them. In particular, the degree of alignment
of w>u determines how well the top-down signal feedforwardly propagates to
the decision variable (Fig. 4B). If these weights are aligned the variability from
the internal variable is transferred to d, increasing its variance var d. The effect on
activity-choice covariations with a specific cell i depends on how sensitive the cell
is to the internal variable variability. If ui is small, its responses are weakly driven
by the internal variable and hence the increased variability in the decision variable
is perceived mostly as noise, leading to a decrease in the CP (Fig. 4C). Oppositely,
if ui is high, when the alignment increases the top-down signal simultaneously
drives the cell responses and is propagated to d, and hence the CP increases. In
Fig. 4B-C, Corr(d, a) and CP are calculated fixing all the model parameters and
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varying only w>u and ui. We change w>u while keeping constant var ri, and
thus the CTA profile of changes as a function w>u is the same as the CP profile
shown in the figure.

4.2.4 Effects of a post-decision feedback signal

While an internal variable commonly influences the responses and the decision
variable, we now consider feedback signals from the decision variable itself that
affect the responses after the decision has been made. Feedback signals have
been invoked to explain activity-choice covariations in late trial time intervals
(Nienborg and Cumming, 2009). The time at which the decision is made naturally
splits the trial into two phases (Kiani et al., 2008). We denote the sensory response
during these parts by r(1) and r(2), respectively. The analysis of activity-choice
covariations for r(1) corresponds to cases examined above. For the feedback phase
we will consider two plausible cases separately. First, we assume that the feedback
strength is proportional to the continuous decision variable d and thereby related to
the degree of certainty in the decision (Fig. 5A). Second, we assume the feedback
to originate from the categorical choice variable D and only depend on the choice
itself (Fig. 5B). We talk about a feedback influence because we conceive r as
the response of a neuron in a sensory area receiving a decision-related influence
that modulates its sensory response. Alternatively, we can also consider decision-
related influences for neurons located in decision-making areas or in downstream
areas of the decision-making process, such that the decision-signal can account
for a large part of the neuron’s trial-to-trial variance (e. g. Katz et al., 2016).
While these cases are not represented by the causal architectures from Fig. 5A-B
the derivations below also comprise them.

Continuous feedback: We model the response of neuron i after the decision as
r
(2)
i = fi(s) + vi(s)d + ξi, where v = (v1, .., vn) quantifies the strength of the

influence of d on the sensory responses. The post-decision responses r(2) do not
affect the decision, in contrast to the previous responses r(1). Accordingly, we also
differentiate the covariance matrices C(1) and C(2). As for the internal variable
a, we allow v to depend on the stimulus to model additive, multiplicative, and
intermediate feedback. Furthermore, the model is general enough to consider that
the feedback affects a different group of cells than those involved in the decision
process. This is the case for cell i if wi = 0 and vi is nonzero. We obtain for the
measures of activity-choice covariation:
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Figure 5: The effect of decision-related feedback on activity-choice covariations.
A) Causal architecture of a model combining feedforward influences with post-
decision feedback from the continuous decision variable. B) Causal architecture
of a model combining feedforward influences with post-decision feedback from
the categorical choice variable. C) Choice triggered average as a function of cell
i feedback weight strength. D) Choice probability as a function of cell i feedback
weight strength for two levels of intrinsic neural response variability, determined
by the variance Cξii. CTAs and CPs are calculated for the pure continuous feed-
back model according to Eq. 30.
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CTA
(2)
i =

4h(p)√
2π

viσd and CP
(2)
i ≈

1

2
+

1

2
√
π

CTAi√
Cξii + v2i σ

2
d

, (30)

where the decision variable variance is σ2
d = w>C(1)w + σ2

η and the covariance
matrix is C(2) = Cξ+vv>σ2

d, in contrast to C(1) = Cξ. Accordingly, analogously
to the internal variable a, decision-related feedback contributes to the measurable
covariance with the term vv>σ2

d. The asymmetry between the feedforward and
feedback pathways is reflected in the form of the covariance cov(ri, d), which
determines the CTA. In the feedforward case, there is a many-to-one relation be-
tween the responses r contributing to the decision variable and d and hence, as
discussed above, it is well understood that covariations do not arise from the di-
rect influence of a single cell on the decision, which is expected to be small, but
from all indirect dependencies due to correlated activity with the rest of the pop-
ulation. In the feedback case, d can exert its influence directly on each neuron to
produce activity-choice covariations. This one-to-one influence is reflected in the
proportionality between the CTAi and the feedback weight vi of cell i (Fig. 5C).
This linear relation with the feedback weight is specific to the CTA. For the CP, the
normalization introduces a nonlinear dependence on vi. In Fig. 5D we compare
how CP increases as a function of the feedback weight for two different values
of the intrinsic response variance. The CP rate of increase when vi increases de-
pends on the response variance, and hence it is initially smaller when the intrinsic
variance is high. Accordingly, how CP increases with feedback depends on its
relative effect on the response variance and on cov(ri, d).

Categorical feedback: In this scenario, we assume that the feedback signal only
depends on the choice itself. Feedback associated with the categorical choice
naturally leads to a bimodal distribution of the responses, since it introduces a
discrete shift from one choice to the other. Accordingly, we model the responses
as ri = fi(s)+vi(s)νD+ξi, where the feedback signal νD is separately distributed
for D = ±1 as a Gaussian distribution with mean ±∆D/2 and variance σ2

D. For
∆D = 0, this signal does not depend on the choice and only adds unrelated noise
to the responses. We find:

CTA
(2)
i = vi∆D and CP

(2)
i ≈

1

2
+

1

2
√
π

CTAi√
Cξii + v2i σ

2
D

. (31)

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118398doi: bioRxiv preprint 

https://doi.org/10.1101/118398
http://creativecommons.org/licenses/by-nc-nd/4.0/


Like for the continuous feedback case, CTAi, but not CPi, is linearly proportional
to the feedback weight vi. The qualitative difference between the categorical and
continuous feedback is reflected in the dependence of the CTA on ∆D instead of
σd. Accordingly, in contrast to the continuous feedback, the categorical feedback
is unsensitive to the variability in the decision variable associated with the inter-
nal estimation of the stimulus. This difference can be exploited to discriminate
between the two types of feedback, in particular by examining the influence that
changes on σd have on the CTA, for example manipulating the stimulus trial-to-
trial variability to control the variability in the decision variable.

Combination of feedforward and feedback signals: So far we have consid-
ered the pure feedback models for r(2) in isolation, as if any correlation between
r(2) and r(1) was mediated by the feedback. However, the form of cov(ri, d) in the
feedforward model, (Cw)i, indicates that a feedforward contribution is expected
also for the second phase if the intrinsic variability of the responses during the two
phases is autocorrelated. This is because separating the responses into r(1) and r(2)

is equivalent to dividing the global covariance matrix C into the block diagonal
parts C(1), C(2), and the (symmetric) block off-diagonal parts, C(21). The feedfor-
ward term (C(21)w)i can contribute to the covariation of r(2)i with the choice even
if cells r(2) do not determine the choice.

More generally, a mixture of feedforward and feedback contributions to the
activity-choice covariations is expected when responses are estimated for a time
interval that includes parts from both phases, before and after the decision time.
If the decision time was fixed across all trials, the total CTA would be the sum of
the respective CTAs of both phases, as described earlier. However, this time also
varies from trial to trial and its variability may itself contribute to activity-choice
covariations if, as expected, the decision time is associated with the amount of
evidence accumulated. The CTA then has two contributions, one directly related
to the decision time covariation with the decision and another determined by the
average covariation of the responses with the decision for a fixed decision time.
In this work we do not further consider the influence of decision time variabil-
ity and we assume that either its contribution is small, so that the total CTA is
approximately the sum of the feedforward and feedback CTA components, or co-
variations are quantified for time intervals in which either feedforward signals
dominate (e.g. early in the trial) or feedback signals dominate (late in the trial)
so that the equations of the pure feedforward or feedback models can be used,
respectively.

28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118398doi: bioRxiv preprint 

https://doi.org/10.1101/118398
http://creativecommons.org/licenses/by-nc-nd/4.0/


4.3 Complementary information of CTAs and CPs about tem-
poral changes of activity-choice covariation

Above we have derived how the empirically observable quantities CTA, CP, and
covariance C depend on the structure and parameters of the underlying models
that lead to activity-choice covariations. Our derivations indicate the utility of the
CTA as a measure related but complementary to the CP. The CP linear approxi-
mation in terms of the CTA and of the responses variance (Eq. 23) establishes a
link between these three measurable quantities, hence advocating for their joint
analysis. In principle, given that the CP is determined by the two others, it would
suffice to study the CTA and the variance to characterize activity-choice covari-
ations. However, since the relation between these variables only strictly holds
in the linear approximation, the CP may reflect other aspects of the covariation.
Furthermore, calculating the CP is relevant if only to link the results to previous
studies predominantly using this measure.

We illustrate the utility of this joint analysis in a particular case, namely the
estimation of time-resolved CPs over the trial time. This temporal analysis, in
combination with psychophysical kernels, has been used to evaluate the contribu-
tion of feedforward vs. feedback sources to activity-choice covariation (Nienborg
and Cumming, 2009). We here show how the CTA and the response variance can
provide complementary information in this type of analysis. The link between CPs
and CTAs in the linear approximation indicates that CP changes across time cor-
respond to CTA changes normalized by the variance of the responses (Eq. 23, and
see Eq. 15 for details). Since this variance can also be time-dependent, the CPs
can change even when the CTAs remain constant. For example, for a Poisson-like
response the variability is proportional to the average rate, and the rate profile may
change over the trial e.g. decaying after a transient increase locked to the stimulus
onset. Indeed, Eq. 23 shows that any combination of increased/decreased CP/CTA
is possible, depending on the response variance.

Fig. 6A-B display some plausible temporal profiles of CPi and CTAi due to
changes over time in the top-down weight ui(t), associated with the influence of
an internal variable (blue), and changes in the feedback weight vi(t), for a contin-
uous decision-related feedback (red). Since the CTA is not normalized and we are
interested in its changes we here show the ratio of the CTA relative to its initial
value at t = 0 (rCTA). Given Eq. 26, this ratio directly corresponds to a ratio of
covariances, since all the other factors that determine the CTA are constant over
time. We are mainly interested in the trend of increase or decrease of the mea-
sures over time, while the exact shape of their temporal profiles is determined by
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Figure 6: Temporal changes in the strength of different sources of activity-choice
covariation affect differently the temporal profile of CPs and CTAs. A) CP tem-
poral changes produced by the decrease in the influence of an internal variable
with time (blue) and, alternatively, by the increase of the influence of decision-
related feedback with time (red). See the main text for a rationale of these time
dependencies for each of the two sources of covariation. B) Same as A) but for
the relative CTA changes (rCTA), that is, the ratio of the CTA with respect to its
value at time zero. Inset: Temporal profile of the ratio of the top-down (or feed-
back) contribution to the covariance cov(ri, d) and the feedforward contribution.
C) CP temporal changes for a neuron-antineuron feedforward model produced by
variations in the responses variance and in the difference of correlations between
same or different types of cells, ρ‖−ρ⊥. D) Same as C) for rCTA. Inset: Temporal
profile of the changes in the correlations difference (black line) and in response
variance (coloured lines).

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118398doi: bioRxiv preprint 

https://doi.org/10.1101/118398
http://creativecommons.org/licenses/by-nc-nd/4.0/


the profiles of temporal change of the weights. Here we have modeled the changes
in the top-down weight ui(t) as an exponential decay (∝ e−t/τ ) and oppositely the
changes in vi(t) as an exponentially-saturating increase (∝ 1−e−t/τ ), where τ de-
termines the changes time-scale. These variations mimic the following plausible
changes: For example, for serial dependencies across trials, the internal variable is
expected to determine the neural responses mainly in the early part of the trial. Op-
positely, decision-related feedback is expected to affect more a later phase of the
trial. For the internal variable, we consider the measures derived in Eq. 29 in their
time-resolved form. If the internal variable varies slowly, in a longer time scale
than the trial time, the measures have an analogous form, but with a time vary-
ing weight ui(t) in the numerator of the CTA. For the decision-related feedback,
we use the continuous feedback model (Eq. 30) and we further add feedforward
activity-choice covariations to model the transition from a feedforward dominated
trial interval to a feedback dominated interval that occurs when the sliding win-
dow is shifted towards the late trial time. We keep the feedforward contribution
constant and change the feedforward/feedback relative strength by changing vi(t).

Fig. 6A shows that these changes in the weights have qualitatively similar
effects on the CP, which increases over time in both cases. On the other hand, the
effect on the CTA is the opposite (Fig. 6B). This can be understood considering
the dependencies of cov(ri, d) and var ri separately (see Eqs. 29 and 30). The top-
down and decision-related feedback contribution to cov(ri, d) that change with the
weights, are (w>u+wa)ui and viσ2

d, respectively. In the inset of panel B we show
the temporal changes in the ratio between these contributions and the feedforward
contribution to the covariance, which is assumed to be constant across time. CTAs
change according to the changes in the covariance, but the CPs temporal profile
depends also on the changes in var ri, given by u2i and v2i σ

2
d, respectively. The CP

increases in both cases because, in proportion to the response variability, cov(ri, d)
increases. This occurs also when cov(ri, d) decreases with ui because the decrease
in the influence of the internal variable also produces a decrease in the variability
of the responses.

As a second example, we consider a feedforward model with a neuron-anti-
neuron configuration (Shadlen et al., 1996; Cohen and Newsome, 2009; Nienborg
and Cumming, 2010). This model contains two types of neuron: a set of neurons
tuned to be more responsive to stimuli leading to D = 1, and a set of antineurons
with the opposite tuning function, symmetrical with respect to the uninformative
stimulus, and thus related to D = −1. Shadlen et al. (1996) showed by means
of simulations that the CP in this case is mainly unsensitive to the distribution
of the feedforward weights as long as they have opposite sign for the two sets.
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Furthermore, the CP is largely unsensitive to the responses variance, and is deter-
mined by the difference between the average noise correlations between neurons
within the same set (ρ‖) and noise correlations between neurons of different types
(ρ⊥)(Nienborg and Cumming, 2010). These results were analytically confirmed
by Haefner et al. (2013). We here examined time-resolved activity-choice co-
variations for this purely feedforward neuron-antineuron model (see Methods for
details).

Fig. 6C-D show the CP and CTA for three cases in which the difference be-
tween the correlations (ρ‖ − ρ⊥) increases with time and is accompanied by a
decrease in the responses variance. These trends mimic the plausible scenario in
which after stimulus onset there is a transient response with higher rates followed
by some decrease of the activity during a tonic phase. For Poisson-like responses
this leads to a decrease in the variance, which is proportional to the mean rate. On
the other hand, the increase of ρ‖ − ρ⊥ can occur as a consequence of recurrent
connections that amplify the initial differences because their structure is related to
tuning functions’ similarity. The three cases shown in Fig. 6C-D share the same
change in ρ‖ − ρ⊥, while the variance changes are different (see inset panel). We
see that, once the window used to estimate the responses does not cover the whole
trial, the CP is not anymore independent of the responses variance, as had previ-
ously been found for this model. This is because when the CP is estimated only
for a certain interval it matters which is the portion of the overall variance of the
responses related to that interval (See Eq. 16 in Methods for details). Regarding
the comparison of time profiles for CPs and CTAs, we see that the combination
of the same change in ρ‖ − ρ⊥ with different changes in the response variance
leads to different combinations of increasing or decreasing CPs and CTAs, re-
flecting that the measures characterize complementary aspects of the changes in
the acticity-choice covariations.

Overall, these examples illustrate that to characterize the changes in activity-
choice covariations it is useful to jointly study other measurable quantities com-
plementary to the CP. Nienborg and Cumming (2009) fruitfully combined CPs
with psychophysical kernels, which quantify the stimulus information impact on
the choice. We here considered the CTA and the response variance because of
their relation to the CP in its linear approximation. Moreover, jointly measur-
ing the changes in response autocorrelations and, for simultaneous recordings, in
noise correlations, can further characterize the changes in activity-choice covari-
ations.

Furthermore, although in general the decision variable is not directly measur-
able, it may be estimated with novel experimental designs that allow controlling
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Figure 7: Illustration of how different types of FB signals shape the CTA depen-
dence on the stimulus. A) Cartoon of an unmodulated feedforward tuning function
around a zero-signal stimulus. B-D) Excitatory feedback models with an additive
constant (red) or multiplicative (blue) influence on the sensory response, respec-
tively. B) Feedback weight dependence on the stimulus. C) CTA dependence
on the stimulus implied by B). D) Corresponding CTA dependence on the choice
ratio (CR).

more precisely the amount of sensory evidence by discretizing its presentation
(Brunton et al., 2013). Pitkow et al. (2015) proposed to estimate the variance of
the decision variable indirectly, calculating the psychophysical threshold from the
choice ratio (Eq. 25) and assuming unbiased decoding. Estimating this variance
is especially relevant to characterize the changes in activity-choice covariations
when, in contrast to temporal changes examined here, changes across conditions
are studied. Different conditions can be associated with different reward levels
(Nienborg and Cumming, 2009), or with the inactivation of some areas (Smolyan-
skaya et al., 2015; Katz et al., 2016). In that case, the CTA changes do not only
depend on changes in cov(ri, d) but also on changes in the variance of the decision
variable.

4.4 The characterization of feedback signals
Given the CTAs solutions we have obtained for the feedback models, in this sec-
tion we show how stimulus dependencies of activity-choice covariations and their
relation to tuning properties may help to distinguish between different theories
about the nature of the feedback signals. To set a classification of different types
of activity-choice covariations we consider the dependence of the sign of the CTA
on the cells tuning properties. The choice preferences of a cell are determined by
its relative responsiveness to stimuli informative about each choice. For example,
a sensory neuron whose tuning function around the decision boundary stimulus

33

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118398doi: bioRxiv preprint 

https://doi.org/10.1101/118398
http://creativecommons.org/licenses/by-nc-nd/4.0/


(s = 0) has a positive slope (Fig. 7A) is expected to contribute to the decision
variable with a positive readout weight and higher activity in the neuron will be
indicative of choice D = 1 being made. Given the cells choice preferences, we
ask if the feedback sign depends on these preferences and, if it does, wether feed-
back enhances or suppresses the responses of cells with tuning properties affine to
each choice.

Based on this criterion, we can for example distinguish between predictive
coding theories (Rao and Ballard, 1999) and probabilistic inference theories (Lee
and Mumford, 2003; Fiser et al., 2010; Nienborg and Roelfsema, 2015; Haefner
et al., 2016) of feedback. In predictive coding the feedback signals represent
predictions at a higher level that are subtracted from the feedforward ones, so
that sensory activity communicates a prediction error. Accordingly, the feedback
is always negative, independently of the cell tuning. However, the sign of the
CTA depends on the cell choice preferences. For a stimulus s > 0, cells with
a positive tuning function slope, compatible with D = 1 as in Fig. 7A, are ex-
pected to receive on average a stronger negative feedback when choice D = 1 is
made, because the prediction error is then smaller. Therefore, these cells will have
CTA < 0, in contrast to cells with a reversed slope.

On the other hand, if sensory responses represent posterior beliefs, feedback
signals represent prior information about the stimulus leading to an enhancement
of neural activity compatible with the prior. In this case, the sign of the feedback
for each cell may depend on the specific form of the prior. If the prior does not
represent the details of the stimulus value but only task relevant information for
the choice (s > 0 or not), then the feedback is categorical in nature and cells
compatible with D = 1 as in Fig. 7A would receive a positive feedback for D = 1
and a negative one forD = −1, leading to CTA > 0, and oppositely for cells with
reversed slope. If the prior more locally determines the expected stimuli, activity
may be enhanced also only for cells with more specific tuning properties and not
only according to their choice preferences. However, also in this latter case, the
relative average strength of the feedback for the two choices is expected to result in
CTA > 0 for cells with choice preferences as in Fig. 7A. Altogether, the relation
between the sign of the CTA and the cell choice preferences provides a signature
to distinguish the effect of predictive and belief-related feedback signals.

Furthermore, the dependence of the CTA on the stimulus may further discrim-
inate between different types of feedback. For example, probabilistic inference
theories differ in how neural responses represent probabilities. It has been sug-
gested that sensory responses represent posterior beliefs either as probabilities
(Anastasio et al., 2000; Buesing et al., 2011) or as logarithms of probabilities (Ma
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et al., 2006; Jazayeri and Movshon, 2006), so that the feedforward (likelihood)
and feedback (prior) signals would be combined multiplicatively or additively, re-
spectively. The nature of the posteriors computation may be distinguished from
the CTAs. In particular, consider the case mentioned above in which the belief is
mostly about the choice, resulting in a categorical feedback. The CTA will mainly
reflect the difference between the prior values for D = ±1, in agreement with
vi∆D in Eq. 31. If the prior is additively combined, the feedback does not depend
on the stimulus (Fig. 7B). Oppositely, if the prior is combined multiplicatively, its
strength is proportional to the feedforward tuning function. These dependencies
are reflected in the CTAs (Fig. 7C-D). Therefore, for a categorical belief-related
feedback we can identify how probabilities are represented studying the stimulus
dependencies of the CTAs. Note however that, while this type of beliefs may be
related to serial dependencies between choices made in subsequent trials, beliefs
about the actual value of the sensory stimulus are expected to play a role during the
integration of sensory evidence. This suggests that responses in early trial times
may reflect more transparently the relation between CTAs and tuning properties
characteristic of alternative probability representations.

4.5 A concrete example of CTA analysis: Discrimination be-
tween a decision-related attention feedback model and a
feedforward model with optimal readouts

We here study and compare two concrete models, namely a feedback model based
on decision-related attention and a feedforward model with optimal readout weights.
Using as an example a two-alternative forced choice orientation task, we derive
the CTAs and examine their dependence as a function of the sensory stimulus.
Furthermore, we consider the relation between the CTAs and the tuning func-
tions. We show how the population CTA, i.e. the set of the CTAs arranged in rela-
tion to the tuning functions, characterizes the nature of the feedback. We already
discussed above the different dependence for predictive coding or probabilistic
inference between the CTAs and the cells choice preferences. Generally, if the
decision-related feedback has a functional role, it is expected that its distribution
across the population is related to the tuning similarity of the neurons. In particu-
lar, when the stimulus space is mapped to the neural responses so that neurons can
be labeled according to their preferred stimulus, then CTAs can be studied jointly
as a function of the presented stimulus and of the preferred stimulus that charac-
terizes the responses of each cell. The comparison of the two concrete models
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here analyzed will allow us to show how the population CTA lies, in the space of
the population responses, in the direction determined by the changes in the mean
responses induced by decision-related responses components. Furthermore, we
will indicate specific alternative predictions from the models which can be used
experimentally to discriminate between these different sources of activity-choice
covariation.

We start examining the feedback model. This model represents attention
(Maunsell and Treue, 2006) by introducing a multiplicative attention-related gain
that modulates the tuning curves. We further assume that attention is decision-
related so that, once the choice has been made, the attended stimulus satt is the
estimated stimulus associated with the decision variable, ŝ(d). This link between
satt and d introduces the decision-related feedback. Furthermore, we assume the
estimation to be unbiased, so that on average the attended stimulus matches the
presented stimulus (〈satt〉 = 〈ŝ(d)〉 = s). The unmodulated feedforward mean
responses of cell i depend on s− si, where si is the preferred stimulus for which
cell i is mostly responsive. On the other hand, the modulatory gain depends on
satt − si. Accordingly, 〈ri〉 = f(s − si; satt − si) = f0(s − si)g(satt − si).
In terms of the general model of Eq. 28, here s′ = satt, fi−FF = f0(·), and
fi−FB = f0(·)[g(·)− 1], so that the feedback acts as a multiplicative gain.

For a concrete model implementation we chose an orientation task in which a
visual stimulus with an angle ϕ is presented and the animal is asked to indicate
on each trial if this angle is lower or higher than a boundary angle, which we take
to be π (Fig. 8A). Depending on how informative the presented stimulus ϕ is, i.e.
depending on |ϕ− π|, the choice ratio changes jointly with the average predicted
angle, and thus with the average attended angle. We modeled the tuning curves
with Von-Mises functions (Amirikian and Georgopulos, 2000; Ecker et al., 2016)
and derived the CTAs using the linear approximation of Eq. 28 (see Methods
for details). In Fig. 8B we show the unmodulated and attention-modulated mean
population response, with cells labeled according to their preferred stimulus (ϕi).
We also show the population CTA, that is, the CTA as a function of the preferred
angle ϕi. The CTA of each cell depends on the presented stimulus and on the
preferred stimulus of the cell. In particular:

CTAi ≈
4√
2π
h(p)viσd =

4√
2π
h(p)

∂f(ϕ− ϕi;ϕatt − ϕi)
∂ϕatt

∣∣∣∣
ϕatt=ϕ

σd, (32)

following the general expression of the CTA for continuous decision-related feed-
back (Eq. 30) considering the form of the feedback weights for neural responses
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Figure 8: Comparison of activity-choice covariations between alternative feedfor-
ward and feedback models based on population CTA analysis for a representative
two-alternative forced choice orientation task. A) Predicted angle (red line) and
choice ratio (blue line) as a function of the angle ϕ of the stimulus presented. The
predicted angle is estimated from the continuous decision variable d, depending
on the stimulus information content. The black dotted line indicates the discrimi-
nation boundary (the uninformative stimulus ϕ = π). B) Post-decision population
responses in the presence of decision-related attention-based feedback. Cell re-
sponses are shown as a function of the preferred stimulus of each cell (ϕi) for
two presented sensory stimuli. In particular, the unmodulated mean population
responses, gain-modulated mean population responses, and CTAs are shown for
ϕ = π ± π/8. Colored vertical dotted lines indicate the population response peak
for each sensory stimulus. See Eq. 18 in Methods for details on the responses
model. C) Population CTAs in the presence of decision-related attention-based
feedback. CTAs are displayed as a function of the preferred stimulus of each cell
for a set of different sensory stimuli. D) Same as C) but for a feedforward model
with optimal read-out weights.
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of the type described in Eq. 28, namely proportional to the derivative (f ′att) of the
tuning function with respect to ϕatt. The association between the estimated and
attended angles introduces the activity-choice covariations.

The population CTA is examined in more detail in Fig. 8C for different pre-
sented stimuli. It changes with the presented stimulus in three ways: First, since
the population response peak shifts with the presented stimulus, also the popula-
tion CTA is shifted, being f ′att = 0 at the peak (Fig. 8B). Second, the derivative
f ′att, and hence the CTA, has the same magnitude and opposite sign for angles
symmetrically equidistant from the mean attended angle, corresponding toϕ. That
is, f ′att(ϕ− x) = −f ′att(ϕ + x) (see Eq. 21 in Methods for details). Accordingly,
the population CTA reverses its sign and is mirrored around ϕi = ϕ, for which
CTAi = 0. Third, the factor h(p) introduces a certain gain to the population
CTA which is common to all cells and exclusively depends on the choice ratio as
determined by |ϕ− π|.

We now compare the CTAs of this feedback model with the ones of a feed-
forward model with an optimal read-out. Haefner et al. (2013) determined the
form of the CP when the feedforward weights are optimal for a two-choice dis-
crimination task and derived an optimality test that was then applied by Pitkow
et al. (2015) explicitly considering an optimal continuous estimator of the sen-
sory stimulus. For this latter case, the optimal weights are (Pitkow et al., 2015):
w ∝ C−1f ′s, where f ′s refers to the tuning function derivative with respect to the
presented stimulus. Introducing these weights in the CTA expression for a feed-
forward model (Eq. 27) in the orientation task the CTAs are

CTAi ≈
4√
2π
h(p)

∂f(ϕ− ϕi)
∂ϕ

∣∣∣∣
ϕ=π

σd. (33)

These CTAs only differ from the ones of the feedback model (Eq. 32) in the deriva-
tive f ′s that replaces f ′att. For an optimal decoder the population CTA is propor-
tional to f ′s because this is the direction encoding changes in the presented stimu-
lus and hence the direction providing optimal information for the choice. In both
cases the population CTA lies in the direction of the changes in mean responses
induced by decision-related responses components. In the optimal readout feed-
forward model these components are driven by the presented stimulus, while in
the attention feedback model they are driven by the attended stimulus.

In Fig. 8D we show the population CTA obtained for the optimal read-out
feedforward model when different stimuli are presented. For ϕ = π the popula-
tion CTAs of Fig. 8C-D coincide because the multiplicative nature of the feedback
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in the attention model and the specific form of the feedforward and feedback com-
ponents of the tuning functions lead to f ′s and f ′att having the same shape. How-
ever, for stimuli ϕ 6= π, the population CTAs differ between the two models and
for the optimal read-out feedforward model the presented stimulus only modulates
the CTA through the factor h(p), with the choice ratio p determined by |ϕ − π|.
The CTA is zero always for the cells which preferred stimulus is at the bound-
ary (ϕi = π), independently of the stimulus presented. These differences provide
experimentally testable predictions to discriminate between these two alternative
sources of activity-choice covariation.

5 Discussion
We derived a novel and general analytical expression of measures of covaria-
tion between neural activity and behavioural choice that is valid regardless of
the source of the covariation for two-alternative choice tasks, comprising discrim-
ination and detection tasks. Our framework extends previous analytical results
assuming purely feedforward (FF) sources of this covariation by considering feed-
back (FB) sources of covariation as well as informative stimuli. We related several
measures of activity-choice covariation including choice probability (CP) (Britten
et al., 1996), choice correlation (Pitkow et al., 2015), and choice triggered aver-
age (CTA) (Haefner, 2015). The advantages of this analytical framework include
a deeper understanding of the effect of various possible sources of dependence
between the neural activity and behavioural choice, the possibility to formulate
experimentally testable hypotheses about the form of the covariations for differ-
ent sources –for example about their dependence on the sensory stimulus and
their relation with the neural tuning properties– and to better understand what
each statistical measure may tell us about the cause and changes in activity-choice
covariations. Furthermore, our results substantially expand the applicability of the
analytical relationships from discrimination to detection task, from zero-signal to
non-zero signal trials, and from purely FF scenarios to those in which FB signals
are important.

Including the effect of sensory signals in activity-choice covariation analysis

A first advance that we made was to derive how activity-choice covariations are
affected by task-informative signals contained in the sensory stimulus, indepen-
dently of the origin of those covariations. We derived an exact CP solution under
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the assumption of Gaussian response variability and a more general linear approx-
imation to the CP in terms of the CTA. Both formulas account for the effect of in-
formative signals or choice biases that modify the ratio of selected choices. When
the choice is mediated by an internal estimator of the sensory stimulus (Gold and
Shadlen, 2007), we found that these measures depend on the stimulus signal al-
ways through a single multiplicative factor that only depends on the choice ratio.
This factor is generic, in contrast to additional source-specific dependencies on the
stimulus signal that may affect the covariations, for example if noise correlations
are stimulus-dependent.

Previous work on how to combine neural responses to stimuli with differ-
ent information content concentrated on discounting the effect of stimulus tuning
on neural activity to estimate a genuine choice-related signal, for example either
z-scoring the responses (Kang and Maunsell, 2012) or subtracting out their esti-
mated stimulus-driven component (Nienborg and Cumming, 2009), assuming that
this contribution is additive. Pooling data from all stimulus conditions should al-
low a more reliable estimation of CPs (e. g. Padoa-Schioppa, 2013; Pitkow
et al., 2015). Here we characterized the generic multiplicative factor h(p) and
verified that its Gaussian approximation is robust if a large population of neurons
contributes to the decision. Accordingly, we provided an alternative way to fac-
tor out this influence and combine data from different signal levels with minimal
assumptions about the origin of the activity-choice covariation. Furthermore, our
work suggests that an even better way to make full use of the data is to study CPs
and CTAs as a function of the stimulus, since the form of this dependence helps
disambiguating between different sources.

Beyond feedforward models of choice: how the form of activity-choice co-
variations reflects different sources of choice-related activity

The second advance we made was to compute CPs and CTAs under general con-
ditions that include feedback sources of activity-choice covariation. We exam-
ined different causal architectures of the connections between neural activity and
choice and characterized the effect of feedback signals either directly related to
the decision process or to other internal variables, such as slow fluctuations of
neural excitability (Ecker et al., 2014), attention (Maunsell and Treue, 2006), and
prediction (Rao and Ballard, 1999) or belief-related (Lee and Mumford, 2003;
Haefner et al., 2016; Tajima et al., 2016) signals. These non stimulus-driven sig-
nals can lead to across-trials dependencies in activity and behavior (Frund et al.,
2014; Conen and Padoa-Schioppa, 2015; Nienborg and Macke, 2014) and cause
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anticipatory activity-choice covariations before the stimulus is presented (Padoa-
Schioppa, 2013).

Our CP and CTA solutions allow identifying different qualitative ways in
which internal states can contribute to activity-choice covariations. First, feed-
back signals may affect noise correlations (Cohen and Maunsell, 2009; Mitchell
et al., 2009; Wimmer et al., 2015; Ecker et al., 2016; Haefner et al., 2016) and
propagate onto the decision through the feedforward readout, hence modifying
feedforward contributions to activity-choice covariations (Cumming and Nien-
borg, 2016). Second, internal states may commonly drive neural activity and the
choice. For decision-related feedback, the decision variability itself modulates the
responses. A common signature of activity-choice covariations produced by feed-
back signals is that, oppositely to feedforward covariations which rely on noise
correlations of a certain cell with the rest of the population, significant covari-
ations may arise from the direct effect of the feedback signal on that cell. In
particular, if decision-related feedback is dominant, CTAs proportionally reflect
the strength of the feedback weights.

The characteristic form of CPs and CTAs may help to discriminate between
alternative hypotheses regarding the source of activity-choice covariations. In a
concrete example, we showed how to use CTAs to distinguish between a feedback
model with decision-related attention and a feedforward model with optimal read-
out weights. These two models result in different population CTA dependencies
as a function of the presented stimulus, which can be tested experimentally. More
generally, we also discussed how to characterize from CTAs whether the primary
effect of feedback is multiplicative or additive, and whether enhances or supresses
neural activity, to gain further insights on what is the function of the feedback sig-
nals, for example whether carries error signals (Rao and Ballard, 1999), or repre-
sents probabilities (Buesing et al., 2011; Haefner et al., 2016) or log-probabilities
(Ma et al., 2006; Jazayeri and Movshon, 2006; Tajima et al., 2016) in probabilistic
codes.

The complementary information of measuring CTAs as well as CPs

Since Britten et al. (1996), CPs have been widely used to quantify activity-choice
covariations, in contrast to CTAs. While CP is sensitive to higher orders of diver-
gence between the distributions of responses for each choice, the CTA captures
the linear differences. We showed that this reduced, more specific, sensitivity
confers the CTA with desired properties such as additivity and linearity, resulting
in simpler dependencies useful to infer feedback weights and allowing to derive
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tractable expressions for hypothesized models. Only in CTAs feedback and feed-
forward contributions combine additively, allowing for a simpler disentangling of
their relative contributions. The CPs capture both the effect of response variance
and of covariations between the responses and the choice, whereas CTAs captures
only the latter. The complementarity of measuring both CPs and CTAs is partic-
ularly appealing for examining the time changes in activity-choice covariations
(Nienborg and Cumming, 2009). As illustrated in our examples, teasing apart
changes in the response variance and in the covariance between the responses and
the choice helps to distinguish between effects like the decay of serial dependen-
cies in the late part of the trial, the increase of feedback influences in the late part,
and changes in response variability associated with transient responses after the
stimulus onset.

Our analytical approach also identifies other factors that can often be measured
and can further help to pin down the exact sources of activity-choice covariations.
These factors include noise correlations (Smolyanskaya et al., 2015), autocorrela-
tions, and the amount of trial-to-trial variability in the decision variable, which can
be estimated indirectly from the psychophysical threshold (Pitkow et al., 2015).

Taking advantage of stimulus manipulations

The inclusion of informative signals and feedback in our formulation suggests
how experimental designs exploiting stimulus manipulations can further improve
the discrimination of activity-choice covariation sources. One prediction from
the comparison between continuous and categorical feedback models is that only
in the presence of continuous feedback the CTA is sensitive to the manipulation
of the stimulus trial-to-trial variability. Furthermore, given the generality of our
derivations, results can easily be extended to compare response distributions as-
sociated with a certain range of reaction times or of values of the internal decision
variable that integrates sensory evidence, thus allowing the assessment of con-
fidence degrees (Kiani and Shadlen, 2009). Moreover, the manipulation of the
stimulus duration and of the delay interval before the choice (e. g. Luna et al.,
2005; Kiani et al., 2008) can modulate the relative influences of feedforward and
feedback sources in different parts of the trial, making it possible in principle to
use our formulas to infer feedforward and feedback weights independent of each
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other, constraining models of cortical computations.
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