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1 

ABSTRACT 1 

 2 

Regeneration is pervasive among the metazoa, but to vastly varying degrees. Platyhelminthes, Cnidaria, and 3 

Echinodermata are phyla whose members are capable of whole-body regeneration (WBR). While planaria and 4 

hydra have been exemplary models of this phenomenon, the details of echinoderm WBR are less established. 5 

We characterize regeneration in the larval sea star (Patiria miniata). Normal cell proliferation is reduced 6 

following bisection and prior to the onset of wound-proximal proliferation. This blastema-like proliferation is 7 

preceded by the restoration of axial patterning. Transcriptome responses highlight functions common to 8 

regeneration, such as wound healing and proliferation. Finally, we find evidence for conserved temporal 9 

expression of orthologs from published Platyhelminth and Cnidarian regeneration datasets. These analyses 10 

show that sea star larvae undergo regeneration through a trajectory including wound response, axis 11 

respecification, and blastemal proliferation. Commonalities between this Deuterostome model and other WBR 12 

models suggest a deep conservation of whole-body regeneration among the metazoa.  13 
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2 

INTRODUCTION 1 

 2 

Questions of how regenerative processes evolve have stimulated researchers for centuries. Examples of 3 

species with a capacity for restorative regeneration are distributed throughout the metazoan tree of life 4 

(Figure 1A), however the extent to which any animal is capable of regenerating is quite varied. It is only 5 

vaguely understood which features of regeneration are common to species possessing robust regenerative 6 

abilities and in what ways these features are limited in species with more restricted regenerative capacities. 7 

While many attempts have been made to synthesize regenerative phenomena in disparate taxa (Bely and 8 

Nyberg, 2010; Sánchez Alvarado and Tsonis, 2006), or to provide an evolutionary context to genes utilized 9 

during regeneration within a model (Kao et al., 2013; Petersen et al., 2015), few studies have made direct 10 

comparisons between highly regenerative organisms broadly across the metazoa. This is in part because we 11 

are as yet missing detailed descriptions of regeneration from key taxa. A goal of making such comparisons is 12 

to address to what degree conserved mechanisms underlie regenerative abilities, which has significant 13 

implications for whether and how regeneration can be induced in organisms with more limited potential. 14 

 15 

Some of the best known models for understanding the mechanisms of regeneration are species of Cnidaria 16 

(e.g. Hydra vulgaris) and Planaria (e.g. Schmidtea mediterranea), which are able to regrow all body parts 17 

following amputation, in what has been termed whole-body regeneration (WBR) (Bely and Nyberg, 2010). 18 

From extensive studies of regeneration in these organisms, it seems that WBR in these contexts involves 19 

transitions through wound healing, immune signaling, axis/organizer specification (especially via WNT 20 

signaling), and differentiation of new cells to replace missing cells and tissues (Elliott and Sánchez Alvarado, 21 

2013; Galliot, 2012; Reddien and Sánchez Alvarado, 2004; Wenemoser et al., 2012; Wenger et al., 2014). A 22 

key distinction between these models lies in the source of new cells to be differentiated. While planaria 23 

utilizes a pool of somatic stem cells (neoblasts) to generate a proliferative blastema that is essential for 24 

successful regeneration, hydroids generally do not require cell proliferation for successful regeneration but 25 

rather rely on transdifferentiation of existing cells to replace those lost by injury. However, hydra do possess a 26 

pool of somatic stem cells (interstitial cells or i-cells) that are both undifferentiated precursors of various hydra 27 

cell types (David, 2012) and found to proliferate following injury (Chera et al., 2009). One particularly important 28 

question is whether regeneration recapitulates developmental gene regulatory networks (GRNs), and, to date, 29 

the embryonic developmental of these animals is poorly described and hence this questions remains 30 

unresolved. Species of Hydra belong to the Phylum Cnidaria, the radial animals, and planaria are bilateria 31 

protostomes. A similarly well studied organism from within the other major grouping of animals (i.e. 32 

Deuterostomes) has yet to emerge. This greatly limits our ability to identify mechanisms common to all 33 

metazoan regeneration. 34 
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Figure 1. Models of whole-body regeneration. (A) Phylogeny depicting regeneration capacity of 
various taxa, after (Bely and Nyberg, 2010; Somorjai et al., 2012). Species from the three taxa marked 
with a star were considered in this study. (B) Schematic of a sea star bipinnaria larva indicating the 
bisection plane (dashed line) and relevant anatomical features including the ciliary band epithelium 
(green), coelomic pouch epithelium (purple), and enteric organs (blue). 
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Among the Deuterostomes, regenerative ability in vertebrate animals is frequently restricted to specific 1 

developmental stages or only found in certain tissues and organs (Bely and Nyberg, 2010), and therefore 2 

these species are not exemplary models of WBR. By contrast, many invertebrate deuterostomes are capable 3 

of extensive regeneration of all tissues at multiple developmental stages. There has been an increasing 4 

interest in understanding the molecular and cellular features of regeneration in these organisms. Colonial 5 

ascidians, in particular (e.g. Botryllus schlosseri), are capable of WBR (Kawamura and Sunanaga, 2011; Laird 6 

and Weissman, 2004), while other solitary species are capable of partial regeneration (e.g. adult siphons in 7 

Ciona intestinalis) (Hamada et al., 2015; Jeffery, 2015). Hemichordates (e.g. Ptychodera flava) are also capable 8 

of extensive regeneration, and can regenerate the adult head when bissected from the body (Luttrell et al., 9 

2016; Rychel and Swalla, 2008).  10 

 11 

Echinoderms are a phylum of deuterostome animals that are perhaps best known for their remarkably robust 12 

regenerative capabilities that extend throughout all life stages. Adult life stages have been a particular focus 13 

of study concerning regeneration mechanisms, and these studies have primarily examined the regeneration of 14 

specific adult structures (e.g. spines, tube feet, nerve cord, and gut) (Bannister et al., 2008, 2005; Ben Khadra 15 

et al., 2014; Burns et al., 2013; Czarkwiani et al., 2013; Hernroth et al., 2010; Mashanov et al., 2010, 2015, 16 

2014, 2013, 2012; Ortiz-Pineda et al., 2009; Reinardy et al., 2015; Sun et al., 2013; Thorndyke et al., 2001). 17 

Cellular proliferation is observed during regeneration in many of these models, as is the modulation of several 18 

signaling pathways of developmental importance (e.g. WNT, TGFβ, and Delta/Notch). Regeneration has also 19 

been observed in larvae from all echinoderm classes examined (M. C. Vickery et al., 2001). Larval 20 

regeneration is more similar to the WBR observed in planaria and hydra, for example, as it requires the 21 

complete regeneration of all tissues and organ systems in concert. Studies of larval sea star regeneration 22 

have identified several regeneration-specific expression changes including the sea star regeneration 23 

associated protease (SRAP) (M. C. L. Vickery et al., 2001)), vasa, nodal, dysferlin, and vitellogenins (vtg1 and 24 

vtg2) (Oulhen et al., 2016). However, to date no comprehensive survey of gene expression changes during 25 

larval echinoderm regeneration have been reported. The potential impact of studying this process in larval 26 

echinoderms is great given that this is one of the few deuterostome taxa with species capable of WBR along 27 

with the availability of detailed developmental gene regulatory network information for these species 28 

(Davidson et al., 2002; Hinman and Davidson, 2004).   29 

 30 

Here, we provide a characterization of the molecular and cellular series of events that occur during larval 31 

echinoderm regeneration and then assess the expression patterns of orthologous genes in other WBR 32 

models. We employ regenerating larval asteroid Patiria miniata. We first characterize the regeneration time 33 

course including the landmark events of increased cellular proliferation and reestablishment of gene 34 

expression patterns associated with axis polarity specification. Then, sampling RNA from regenerating larval 35 

segments and surveying gene expression changes by RNA-seq, we find broad classes of genes similarly 36 
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expressed in both anterior and posterior regenerating halves. Finally, through identification of orthologous 1 

genes between P. miniata and published datasets of regenerating hydra and planarian models (Figure 1A), we 2 

find sets of genes that have similar temporal expression profiles in these different regenerating organisms. 3 

These results highlight similarities in the regeneration programs of a bilaterian deuterostome, a 4 

lophotrochozoan, as well as a basal eumetazoan. Such similarities suggest regeneration features common to 5 

the base of the metazoans. 6 

 7 

RESULTS & DISCUSSION 8 

 9 

Respecification of Anterior-Posterior axis precedes onset of blastemal proliferation in the sea star 10 

 11 

To make an informed comparison to other regenerative models, we first characterized the broad stages of 12 

larval regeneration in P. miniata. 7 day old bipinnaria larvae were bisected midway along the transverse 13 

Anterior-Posterior (AP) axis (Figure 1B). Both resulting larval segments were completely regenerative, 14 

restoring all lost tissues and organs over the course of two weeks, similar to previous reports of larval asteroid 15 

regeneration (Oulhen et al., 2016; Vickery and McClintock, 1998). Anterior segments were delayed in their 16 

regeneration rate compared to their posterior counterparts.  17 

 18 

Two aspects of the regenerative process were assessed for the presence and timing of potential landmark 19 

events during regeneration. First, the pattern of cell proliferation was observed using 6 hour pulses of EdU to 20 

mark actively cycling cells. The normal pattern of EdU incorporation is widely distributed, but notably 21 

concentrated in the ciliary bands, mouth, stomach and coeloms (Figure 2A). We infer from this result that the 22 

larvae are actively growing in these regions. Upon dissection, the number of EdU+ cells decreased by 3 days 23 

post bisection (dpb), but were otherwise similarly distributed. Beginning at 6 dpb there is a marked change 24 

with almost no EdU+ cells localized in either the ciliary band or the gut and instead a dramatic localization of 25 

EdU+ cells proximal to the wound site in both posterior and anterior regenerating segments (Figure 2A). This 26 

population of EdU+ cells is localized at the regenerating edge, corresponding to the area where tissues form 27 

during later stages of regeneration. We therefore infer that the larva has stopped normal growth and has 28 

concentrated proliferation to the site of regeneration. Regeneration blastemas in other models are typically 29 

described as mixtures of undifferentiated epidermal and mesenchymal cells that proliferate proximal to the 30 

wound site in order to produce cells that will become differentiated and replace those lost by injury. 31 

Therefore, we consider this region the regeneration blastema, although we have yet to define the cell types or 32 

differentiation state of these proliferative cells. 33 
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Figure 2. Recovery of anterior-posterior axis gene expression precedes blastemal proliferation. (A) EdU 
staining of S-phase cells in intact and regenerating sea star larvae. Cell proliferation in uncut larvae is 
concentrated in ciliary band epithelium (cb), mouth (mo), stomach (s), and coelomic pouches (cp). 
Regenerating anterior segments (top row) and posterior segments (bottom row) demonstrate similar initial 
distributions of proliferation, although the number of EdU+ cells decreased by 3 dpb. Beginning at 6 dpb, 
EdU+ cells were concentrated near the wound site in both anterior and posterior regenerating segment in a 
putative regeneration blastema (bl). (B) WMISH staining shows that PmFoxQ2 is expressed in the apical 
domain (*) of intact larvae and regenerating anterior segments (top row). Posterior segments (bottom row) 
were negative for PmFoxQ2 staining early, but were stained at the anterior pole of regenerating posterior 
segments (*’) by 5 dpb. (C) PmNk1 WMISH staining reveals staining in the post-oral ciliary band (**) in both 
intact larvae as well as regenerating posterior segments (bottom row). Anterior segments (top row) were not 
stained for PmNk1 early in the regeneration timecourse, but by 5 dpb there is staining on the posterior aspect 
of the anterior segment.  
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We next wanted to understand how genes with known roles in establishing the embryonic axis were 1 

expressed during the restoration of these axes during regeneration. A great deal of work has established the 2 

GRN for the specification of cell types along the P. miniata embryonic axis. PmFoxQ2 is expressed 3 

embryonically in the animal pole domain, where it is involved with establishing an anterior neurogenic GRN 4 

(Cheatle Jarvela et al., 2016). This serves as the earliest known marker for the formation of a distinct anterior 5 

domain. Uncut larvae and anterior regenerating segments express FoxQ2 in the anterior domain, while 6 

regenerating posterior segments were completely absent any staining immediately following bisection (Figure 7 

2B). PmFoxQ2 expression was first observed in regenerating posterior segments at 5 dpb. PmNk1, by 8 

contrast normally expressed in the posterior post-oral ciliary band (Yankura et al., 2010), was observed in 9 

uncut larvae as well as posterior regenerating segments but not in anterior segments during early 10 

regeneration (Figure 2C). Nk1 was first expressed in regenerating anterior segments at 5 dpb. This shows that 11 

as early as 5 dpb both regenerating anterior and posterior segments have, at least in part, re-established 12 

gene expression patterns corresponding to normal AP axis polarity.  13 

 14 

These observations of gross cellular and molecular changes during larval asteroid regeneration indicate 15 

landmark features of the regenerative process including onset of blastema-like proliferation and re-16 

specification of axes. Moreover, we observe that the restoration of developmental axes precedes the initiation 17 

of blastemal proliferation. This pattern is evocative of planarian regeneration where blastema formation and 18 

regeneration cannot proceed when axis specification is perturbed (Liu et al., 2013; Sikes and Newmark, 2013; 19 

Umesono et al., 2013). Although hydra regeneration does not require blastemal proliferation per se, interstitial 20 

cells do proliferate following wounding and this proliferation is initiated by a transient release of Wnt3, a 21 

protein implicated in head organizer function (Chera et al., 2009). Thus, across the metazoa, localized 22 

proliferative responses during regeneration may require positional signals prior to initiation. 23 

 24 

Gene expression changes delineate phases of larval regeneration: wound healing, axis respecification, 25 

and blastemal proliferation 26 

 27 

To better characterize the molecular series of events operating during larval sea star regeneration, and to 28 

establish a dataset amenable to inter-species comparison, we surveyed gene expression changes across a 29 

time course of larval regeneration. Pools of regenerating posterior segments, anterior segments, and non-30 

bisected sibling control larvae were collected at three points following bisection: one early (approximately 3 31 

hours post bisection, hereafter 0 dpb), one intermediate timepoint (3 dpb), and one timepoint at the initiation 32 

of blastemal proliferation (6 dpb). Separately sampling RNA from each regenerating segment allowed for 33 

examination of gene expression changes that behave similarly in the anterior and posterior segments as well 34 

as those that are specific to the regeneration of each segment. Using RNA from non-bisected, age-matched, 35 

sibling larvae as a control diminished the import of expression changes due to continuing larval development 36 
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or genetic differences between cultures. Genes significantly differentially expressed between each 1 

regenerating segment and the control larvae were identified for each sampled timepoint. In total we identified 2 

9,211 differentially expressed genes (DEG) across all assessed regeneration vs control contrasts.   3 

 4 

We implemented a hierarchical clustering approach to distinguish segment-specific expression patterns from 5 

those expression changes that are shared in both regenerating segments (Figure 3A). In total, five separate 6 

expression clusters were identified: (I) genes upregulated early in both anterior and posterior segments, (II) 7 

genes downregulated early in both segments, (III) genes up in the anterior, down in posterior, (IV) genes up in 8 

the posterior, down in anterior, and (V) genes up-regulated later (i.e. by 6 dpb) in both segments (Figure 3A). 9 

Thus, we have identified three subsets of DEG that have similar expression profiles across our time course 10 

independent of which segment is measured (i.e. Clusters I, II, and V) and two subsets that are strongly 11 

segment-specific (i.e. Clusters III and IV). To provide further insight into the shared functions of genes 12 

assigned to each cluster, we examined the enrichment of Gene Ontology (GO) terms (Figures 3B and S2). 13 

 14 

Genes in Clusters I and II, those genes that are either up- or down-regulated early, respectively, in both 15 

regenerating segments, are enriched for GO terms that indicate a robust wound response. Up-regulated 16 

genes are enriched for terms that include cell signaling pathways (e.g. “MAPK cascade” and “calcium channel 17 

activity”), “response to wounding”, and “immune system process” (Figures 3B and S2). Furthermore the 18 

enrichments for terms such as “neuron projection development” and “motile cilium” among up-regulated 19 

genes indicate the early involvement of innervation and ciliogenesis, which are common in other models of 20 

regeneration (Hellman et al., 2010; Joiner et al., 2015; Kumar and Brockes, 2012; Schaffer et al., 2016), as we 21 

discuss later. Among down-regulated genes, term enrichments point to a shut-down of anabolic processes 22 

such as “ribosome biogenesis”, “gene expression”, as well as primary metabolism more broadly (e.g. 23 

“mitochondrion” and “metabolic process”). These term enrichments are consistent with an early response to 24 

the bisection insult that involves down-regulation of highly energetic cellular processes and up-regulation of 25 

functions that are specific to the injury response (e.g. wound healing and immune signaling). 26 

 27 

Clusters III and IV are composed of genes whose profiles are highly segment specific; these are genes 28 

specifically down-regulated in one segment relative to the control larvae and unaffected or up-regulated in the 29 

other. As we describe in more detail below, many of these genes are asymmetrically expressed along the AP 30 

axis, therefore bisection results in the loss of posterior-specific gene expression from anterior segments and 31 

vice versa. This is evidenced by the GO term enrichments for these clusters. Cluster III is  32 
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Figure 3. Cluster analysis indicates genes involved in regenerative functions. (A) The heatmap depicts log fold 
change values for genes (rows) in anterior (ANT) and posterior (POST) regenerating segments compared with 
sibling uncut control larvae (CONT) over the sampled regeneration time points (columns). (B) Gene ontology 
(GO) term enrichments for each of the five clusters. The enrichment of each GO term is indicated by a circle 
where the area corresponds to the fraction of genes annotated with that term are present in the cluster, and 
the color of the circle corresponds to the corrected hypergeometric p-value of term enrichment. Terms 
marked with a [*] are from the annotation set generated by mouse gene ortholog prediction (Figure S2).  
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enriched for genes annotated with functions specific to anterior larval segments, such as “head development” 1 

and “G-protein coupled receptor signaling pathway” (Burke et al., 2006), while Cluster IV is enriched for genes 2 

associated with posterior fates, such as “peptidase activity” and “Wnt signalling pathway” (McCauley et al., 3 

2013). Restoration of these gene expression patterns is a demonstration of functional regeneration and, as we 4 

discuss later, we find that several genes within these clusters recover normal expression levels over this 5 

regeneration time course (Figure 4). 6 

 7 

Although Cluster V is comprised of a relatively small number of genes, it is perhaps the most functionally 8 

coherent cluster as the GO term enrichments are among the most statistically significant and most 9 

reproducible across the three sources of functional annotations tested (Figure 3B and Figure S2). Genes 10 

assigned to Cluster V are enriched for terms related to the cell cycle, DNA replication, and ECM remodeling, 11 

among others. Thus Cluster V genes, up-regulated by 6 dpb in both regenerating segments, are likely 12 

associated with the onset of localized cellular proliferation observed during this same period of regeneration 13 

(Figure 2A). Importantly, these genes are up-regulated in both regenerating segments over control larvae that 14 

also clearly contain many cycling cells. Thus, genes assigned to Cluster V may represent a regeneration-15 

specific increase in expression of proliferation associated genes that is distinct from the normal, growth-16 

associated proliferation. Finally, the transcriptome-based observations of AP axis polarity gene expression 17 

restoration (i.e. Figure 4) prior to the up-regulation of cell cycle associated genes reinforces our whole-mount 18 

staining results (i.e. Figure 2). 19 

 20 

Several other trends are suggested by the analysis of GO term enrichments among these clusters. First, we 21 

see enrichment of processes that are common to other models of regeneration such as “response to 22 

wounding”, tissue homeostasis (e.g. “cell adhesion”, “extracellular matrix”, “metalloproteinases”), cell 23 

proliferation, and even “regeneration”. Furthermore, there is enrichment of several specific cell signaling 24 

pathways that are implicated in other regenerative contexts, including intracellular Ca2+ signaling in wounding, 25 

MAP kinase, WNT, and TGFβ/BMP signaling. Notably, several of these pathways are enriched in distinct 26 

clusters, suggesting a differential employment of these pathways during specific phases of larval 27 

regeneration. For example, Ca2+ and MAPK signaling are enriched in Cluster I (i.e. up-regulated early) while 28 

TGFβ/BMP signalling is enriched in Cluster V (i.e. up-regulated late). In concert, this clustering analysis 29 

highlights sets of genes commonly regulated in both larval segments and underscores broad functional 30 

commonalities with other regenerative models. 31 

 32 

Identification of orthologous genes with shared expression dynamics in other WBR models 33 

 34 

Having identified gross phases of larval sea star regeneration (i.e. wound response, axis respecification, and 35 

blastemal proliferation), we sought to determine if orthologous genes with similar temporal expression exist in 36 
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other models of WBR. Such homology could indicate underlying commonalities of the molecular mechanisms 1 

controlling this developmental process. To address this question, we used published transcriptome data from 2 

regenerating planaria (S. mediterranea) (Kao et al., 2013) and hydra (H. magnipapillata) (Petersen et al., 2015) 3 

as bases for comparison. The Kao et al. dataset was selected because it consolidated several prior planarian 4 

transcriptome assemblies, resulting in a more complete gene set, and also independently sampled both 5 

regenerating anterior and posterior worms, which is analogous to our own study design. Furthermore, the 6 

time points sampled range from 0 hours post amputation (hpa) to 72 hpa, at which point planarian blastemal 7 

proliferation is reaching its peak (Elliott and Sánchez Alvarado, 2013), which roughly corresponds to the 8 

phases of regeneration considered in our study of larval sea stars. The Petersen et al. dataset, on the other 9 

hand, represents the only reported transcriptome study of a regeneration time-course in this species. Here, 10 

RNA was sampled only from the distal tip of regenerating aboral tissues during the 48 hours it takes to 11 

achieve complete head regeneration. As blastemal proliferation is not a feature of hydra regeneration, this 12 

characteristic cannot be used to consider synchronization of the regenerative phases in this study to the other 13 

datasets. Nonetheless, these published datasets provide a reasonable basis for comparison to our sea star 14 

dataset. 15 

  16 

We identified orthologous genes between the sea star and each of the other datasets. In order to identify 17 

which orthologs share similar temporal dynamics, the reported expression values from each dataset was 18 

clustered. For each dataset we sought very coarse cluster classifications such that assigned genes were 19 

either up-regulated early and down later or vice versa in their respective time course. The result is three 20 

clusters each for the S. mediterranea and H. magnipapillata datasets (Figure S3 and S4). Finally, we identified 21 

genes in each sea star cluster with an ortholog in each of the defined planaria and hydra clusters. Using this 22 

approach, we find statistically significant overlaps between genes differentially expressed early in all three 23 

datasets as well as genes in the posterior-specific sea star cluster with clusters indicating segment specificity 24 

in each of the other organisms. In the following sections we describe how this allowed us to identify not only 25 

broad groupings of conserved expression patterns but also specific orthologs similarly expressed across 26 

regeneration in these metazoans. 27 

 28 

Axis respecification involves orthologous genes with distinct axial relationships in each model 29 

 30 

Expression of genes in Clusters III and IV, the anterior and posterior-specific clusters respectively, suggest 31 

that these clusters are composed of genes asymmetrically expressed along the AP axis. Thus we impute that 32 

early down-regulation of anterior genes in posterior segments is a result of the removal of anterior structures, 33 

and vice versa. The identities of many of the down-regulated genes support this as, for example, genes 34 

normally expressed in anterior domains of the larvae (e.g. PmFoxQ2, PmFrizz5/8, and others) are initially 35 

down-regulated in the posterior segments relative to uncut larvae but are unaffected in anterior segments 36 
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(solid lines, Figure 4; Cluster III, Figure 3). Correspondingly, genes normally expressed in the posterior domain  1 

(e.g. PmWnt8, PmFrizz9/10, PmNk1, and others) are down-regulated in anterior segments but unaffected in 2 

posterior segments (dashed lines, Figure 4; Cluster IV, Figure 3). We noted that many of these genes are 3 

components of the previously described developmental GRN and, indeed, we detect a significant enrichment 4 

of genes with orthologs in the GRN in the posterior-specific sea star cluster (Cluster IV, hypergeometric 5 

p=9.97x10-8). Restoration of normal larval gene expression levels along the AP axis is clearly a component of 6 

regeneration (e.g. Figure 2B-C). Several genes in each of these clusters do recover normal larval expression 7 

levels within the 6 days sampled, although the recovery of many posterior-specific genes is apparently 8 

delayed in regenerating anterior segments compared to the recovery of anterior-specific genes in posterior 9 

segments (Figure 4). Similar differences have been observed in the rate of planarian regeneration depending 10 

on the position of the wound along the AP axis (Reddien and Sánchez Alvarado, 2004). 11 

 12 

We examined the genes assigned to these segment-specific clusters to identify genes with similar expression 13 

trends in the other datasets. In the planarian data, one cluster is comprised of genes asymmetrically up-14 

regulated in the anterior relative to the posterior segments (i.e. Cluster 2, Figure S3), thus this cluster consists 15 

of genes typically expressed in anterior regions of the worm. Paradoxically, a significant number of these 16 

genes overlap the posterior-specific sea star cluster (Cluster IV, hypergeometric p = 1.4 x 10-2) (Figure S3). 17 

The genes from the sea star posterior-specific set (Cluster IV) found to be overlapping this planarian anterior-18 

specific cluster include PmFrizz9/10, PmWnt7, and PmSix1/2. Sea star Wnt7 corresponds to the planarian 19 

Wnt2-1, and both SmWnt2-1 (Gurley et al., 2010; Petersen and Reddien, 2008) and SmSix1/2 (Lapan and 20 

Reddien, 2011) are expressed in anterior domains in planaria. Given that we expect this planarian cluster 21 

consists of anterior-specific genes, we also considered the genes that overlap the anterior-specific sea star 22 

cluster (Cluster III). One of these overlapping genes is PmZic, which is also anteriorly expressed in these 23 

worms (Vogg et al., 2014).  24 

 25 

Since the hydra dataset reports on RNA sampled from oral regions of the regenerating aboral body stalk, we 26 

reason that the signature of late stage up-regulation would reflect oral, or head, gene expression recovery (i.e. 27 

Cluster 1, Figure S4). Here as well, there is a significant overlap of posterior-specific sea star genes (Cluster 28 

IV) with this set of nominally oral-specific genes in the hydra dataset (hypergeometric p = 2.7 x 10-3) (Figure 29 

S4). As the oral-aboral axis of hydra roughly corresponds to the posterior-anterior relationship of bilaterian 30 

axes (Guder et al., 2006), oral gene expression in hydra would be expected to be equivalent to posterior gene 31 

expression in sea star. The overlapping genes included the sea star genes PmWnt7, PmBra, PmWnt5, 32 

PmNanos (XLOC_067690), PmHox11/13a, and PmNotum. Sea star Wnt7 is the ortholog of the classical hydra 33 

head organizer Wnt3 (Lengfeld et al., 2009). Hydra Bra is also associated with head formation (Technau and 34 

Bode, 1999). HmWnt5 has not been associated with hydra axial patterning, but rather is associated with  35 
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Figure 4. Segment-specific recovery of appropriate anterior-posterior gene expression. The expression of 
genes asymmetrically expressed in either anterior (solid lines, Cluster III) or posterior (dashed lines, Cluster IV) 
sea star larval territories was examined. The log fold change values for each gene in regenerating anterior or 
posterior segments compared with non-bisected sibling control larvae is reported for each segment 
(ANT/CONT and POST/CONT, respectively) over the regenerating time course sampled.  
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tissue evagination involved in bud and tentacle formation (Philipp et al., 2009), and as such is expected to be 1 

expressed in oral regions near the hypostome.  2 

 3 

The observed overlap in asymmetrically expressed genes between these datasets suggests a commonality of 4 

the regulatory toolkit used for axis respecification, especially WNT ligands and receptors, during regeneration 5 

in all of these models. Strikingly however, the orientation of the axes is not conserved, which likely reflects 6 

developmental usage. 7 

 8 

Expression of proliferation-associated genes occurs in distinct temporal phases in these models 9 

 10 

The pattern and use of cellular proliferation is one aspect in which these models differ considerably. Both sea 11 

star and planaria exhibit concerted wound-proximal, blastemal proliferation that coincides with the final time 12 

points sampled here, 6 dpb for sea star larvae and 3 dpb for planaria. There is also a burst of global neoblast 13 

proliferation observed early during planarian regeneration (i.e. within 6 hours) (Elliott and Sánchez Alvarado, 14 

2013). No such early increase in proliferation is observed in sea star larvae (Figure 1A). While hydra do not rely 15 

on a proliferative blastema to resupply cells for regeneration, interstitial stem cells (i-cells) have been 16 

observed to proliferate in the region proximal to the wound within the first 2-4 hours post amputation (Chera 17 

et al., 2009). This i-cell proliferation follows the early suppression of mitosis that is observed after wounding 18 

(Petersen et al., 2015).  19 

 20 

The sea star genes up-regulated at later stages in both anterior and posterior larval segments (i.e. Cluster V) 21 

are strongly associated with cellular proliferation and this is correlated with the emergence of blastemal 22 

proliferation. We examined these genes for orthologs with similar expression dynamics in the other datasets. 23 

None of the planaria or hydra clusters have a significant number of orthologous genes that overlap the genes 24 

in this proliferation associated sea star cluster. The planaria and hydra clusters corresponding to up-25 

regulation at later stages in each time course, i.e. planaria Cluster 1 (Figure S3) and hydra Cluster 3 (Figure 26 

S4), consist of very few orthologs to the comparable sea star cluster. There is a stronger, though not 27 

statistically significant, overlap between the genes up-regulated late in sea star and those up-regulated early 28 

in planaria (e.g. Cluster 3, Figure S3) and hydra (e.g. Cluster 1, Figure S4), and many of the overlapping genes 29 

in these comparisons are clearly associated with cycling cells (e.g. DNA polymerase subunits, MCM genes, 30 

SMC genes, PmOrc3, PmRrm1, PmPlk, and PmTtk). Thus, gene expression associated with blastemal 31 

proliferation in the sea star are more similar to the genes associated with observed proliferation at early 32 

stages in both regenerating planaria and hydra models. 33 

 34 

We also examined the expression patterns of genes implicated in blastema regulation in other models and 35 

identified genes with expression patterns suggesting a related function in sea star larvae. Msx genes are  36 
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Figure 5. Conserved proliferation-associated genes. These data show sea star log fold change values for 
genes differentially expressed at later stages in regenerating segments compared with non-bisected sibling 
control larvae (i.e. sea star cluster V). All genes assigned to cluster V are plotted in grey. Several genes, either 
referenced in the text or representative of functions considered, are indicated with colored lines. The genes 
plotted with dashed lines are not part of cluster V, but may be associated with blastemal proliferation, as 
discussed in the text. Next to the key for each gene is an indication (i.e. “+”) of whether an ortholog for that 
gene was found in an analogous cluster in either the planaria (S.m.) or hydra (H.m.) datasets. Indicators in 
brackets (e.g. “[+]”) are those where no overlapping ortholog was identified by our analyses, but genes with 
the same name were implicated by published datasets.  
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expressed in regeneration blastema structures in diverse organisms (Akimenko et al., 1995; Koshiba et al., 1 

1998; Somorjai et al., 2012). In planaria, msx genes are involved in blastema formation and regulates BMP 2 

signaling during regeneration (Mannini et al., 2008). The sea star msx gene is initially down-regulated in both 3 

regenerating segments, more so in anterior segments than posterior and hence this gene is assigned to the 4 

posterior-specific cluster (Cluster IV). However in both segments, PmMsx increases expression as 5 

regeneration proceeds and is up-regulated in posterior segments by 6 dpb (Figure 5). This corresponds with 6 

the late stage up-regulation of a suite of TGFβ signaling genes and modulators, especially in regenerating 7 

posterior segments (e.g. PmBmp2/4, PmBmp5/6/7/8, PmBmp3b, PmTgfbrtII, PmFollistatin, PmChrdL, 8 

PmNbl1, PmTsg, PmVwdf, and PmZ166). Therefore, PmMsx may represent a conserved component of 9 

blastemal gene regulation in these models.  10 

 11 

Finally, the coincident and sustained up-regulation of both PmRunt1 and PmCbfb is particularly compelling 12 

(Figure 5). Although PmRunt1 is up-regulated early (sea star Cluster I), its up-regulation persists into the later 13 

stages in both anterior and posterior segments. Runx genes are associated with cell cycle regulation in a 14 

variety of contexts (Coffman, 2009; Hoi et al., 2010; Keita et al., 2013). The sea urchin ortholog is mitogenic, 15 

regulating Wnt and cyclin gene expression, and functions in concert with cbfb in specific contexts (Robertson 16 

et al., 2008, 2006). Finally, runx genes are both up-regulated early during planarian regeneration, expressed in 17 

the neoblasts within the blastema, and required for the regeneration of certain tissues and structures 18 

(Wenemoser et al., 2012). We expect that sea star Runt1 may be involved in larval sea star regeneration in a 19 

similar capacity. The assignment of these two genes (i.e. PmRunt1 and PmMsx) to clusters other than Cluster 20 

V, in which genes are up-regulated in later stages in both segments and highly enriched for cell cycle 21 

functions, indicates that the regulators of blastema formation may not share the same temporal expression 22 

profile. Ultimately we find very little evidence for conserved temporal regulation of cell proliferation and 23 

blastema formation, underscoring that this is an aspect in which these models may be quite divergent. This 24 

discrepancy could reflect inherent differences in stem cell regulation between these models; for example, 25 

unlike both hydra and planaria, there may not be a pool of pluripotent progenitors primed for proliferation 26 

early following injury in larval sea stars. 27 

 28 

The evolutionarily conserved early regeneration response 29 

 30 

The strongest overlap between these WBR models is among genes differentially expressed early in each 31 

dataset. We identified a significant number of orthologs that are up-regulated at early stages in both the sea 32 

star and planaria, as well as the sea star and hydra datasets (hypergeometric p = 4.5 x 10-3 and p = 8.8 x 10-9, 33 

respectively) (Figure S3 and S4). We also found a significant number of orthologs commonly down-regulated 34 

at early stages in the sea star and planaria datasets (hypergeometric p = 3.3 x 10-4). Genes down-regulated 35 

early in both sea star and planaria are enriched for GO terms such as “ncRNA processing” and “ribosome”, 36 
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indicating a common early repression of the energetically expensive process of ribosome biogenesis. 1 

Meanwhile, genes that are up-regulated early across these datasets are enriched for GO terms including 2 

“cilium”, “calcium transport”, and “signaling”.  3 

 4 

Mobilization of Ca2+ and MAPK signaling pathways are both important aspects of wound response in many 5 

systems (Aihara et al., 2013; Cheng et al., 2015; Cursons et al., 2015; Leiper et al., 2006; Yoo et al., 2012). 6 

Recent proteomic data indicate that calcium signaling is involved in the anterior regeneration in planaria 7 

(Geng et al., 2015). MAPK signaling, through both ERK and JNK pathways, is important in the neoblast 8 

control and blastema differentiation in planaria (Tasaki et al., 2011a, 2011b). Studies in hydra have 9 

demonstrated that wound-responsive MAPK signaling is necessary for early specification of the head 10 

organizer, and thus functional regeneration, and that this may be a shared feature of highly regenerative 11 

organisms (DuBuc et al., 2014). The observation of similar signatures in the genes up-regulated early in larval 12 

sea star regeneration point to these signaling pathways being highly conserved aspects of the response to 13 

wounding in these models of regeneration. 14 

 15 

The enrichment of cilium associated genes (e.g. Ccdc11, Rsph3, Iqcd, and Iqub) (Figure 6A) indicates that in 16 

all three models a key set of genes up-regulated early are components of motile cilia. While this feature has 17 

not been reported in either planaria or hydra, the role of cilia in wound response and regeneration has been 18 

noted in mammals (Joiner et al., 2015) and zebrafish (Hellman et al., 2010), and a recent transcriptomic study 19 

of regeneration in a related cnidarian (Nematostella vectensis) suggested a similar involvement of ciliogenesis 20 

in that model (Schaffer et al., 2016). It is plausible that the up-regulation of cilia-associated genes reflects an 21 

early need for sea star larvae to re-establish the ciliated bands, which are critical for effective swimming and 22 

feeding. However, the common up-regulation in all of these models suggests that the generation of cilia may 23 

be involved more generally in wound healing, perhaps in re-epithelialization of the wound or in communicating 24 

cell signals. 25 

  26 

There are a number of key regulatory genes that are commonly up-regulated early in all of these models, 27 

including orthologs of a number of tumor suppressor genes. The similarities between tumor suppressors and 28 

regeneration has been discussed previously (Pearson and Sánchez Alvarado, 2008; Pomerantz and Blau, 29 

2013), and these results present another context in which related processes may be intertwined. In the sea 30 

star we observed the cessation of normal patterns of proliferation prior to the emergence of the distinct 31 

wound-proximal proliferation in the regenerative blastema. The observed early up-regulation of a suite of 32 

tumor suppressor genes (i.e. Abl, Menin, Frk, Pten, Rbbp6L, Plk2, and Wee1) (Figure 6A), several of which are 33 

also up-regulated early in the other models, and down-regulation of ribosome biogenesis genes may be 34 

associated with this response. There is also an early signature of general cell cycle arrest in the hydra 35 

transcriptome (Petersen et al., 2015). While planarian neoblasts continue to proliferate at sites distal 36 
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Figure 6. Evolutionarily conserved early regeneration response. These plots show sea star gene log fold 
change values for genes differentially expressed early in both anterior and posterior regenerating segments 
compared with non-bisected sibling control larvae. Genes up-regulated in both segments (top row) 
correspond to cluster I and genes down-regulated in both segments (bottom row) correspond to cluster II. All 
genes assigned to each cluster are plotted in grey. Several genes, either referenced in the text or 
representative of functions considered, are indicated with colored lines. Next to the key for each gene is an 
indication (+) of whether an ortholog for that gene was found in an analogous cluster in either the planaria 
(S.m.) or hydra (H.m.) datasets. Indicators in brackets (e.g. “[+]”) are those was no overlapping ortholog 
identified by our analyses, but genes with the same name were implicated by published datasets. 
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 to the injury even during blastemal proliferation, inactivation of planarian PTEN gene homologs resulted in 1 

defective regeneration due to neoblast hyperproliferation (Oviedo et al., 2008). These results indicate that a 2 

common early feature of WBR in these systems is the modulation of regulators of cell proliferation. 3 

 4 

Genes associated with cell death pathways are also commonly differentially expressed early in these models.  5 

We note conserved down-regulation of several genes in the autophagy pathway (e.g. PmAtg16L1, PmAtg12, 6 

PmAtg10, PmAtg14, and PmUvrag) (Figure 6B) and an increase in the expression of genes involved in 7 

regulation of apoptotic and autophagic death (e.g. PmFadd, PmBirc6, and PmUlk1). An early repression of 8 

autophagic death is important for effective regeneration in hydra (Chera et al., 2006) while early apoptotic 9 

events are necessary for the observed increase in i-cell proliferation (Chera et al., 2009). Apoptotic cell death 10 

has also been ascribed to remodeling activities during planarian regeneration and is linked to neoblast 11 

proliferation via Jnk signaling (Almuedo-Castillo et al., 2014; Pellettieri et al., 2010). Therefore this modulation 12 

in cell death pathways during early regeneration may represent an important prelude to cellular proliferation 13 

observed during later stages. 14 

 15 

Finally a suite of immediate early genes are commonly up-regulated in these models. We observed strong 16 

early up-regulation of PmJnk, PmEgr, PmMcl, PmCreb3l3, PmElk, PmFra2, PmFoxO, and PmKlf2/4 in sea star 17 

larvae (Figure 6A). We also observed up-regulation, although non-significant, of PmFos and PmJun. Many of 18 

these genes have important functions that have been described in other regeneration contexts. PmEgr is one 19 

of the most strongly up-regulated genes in both anterior and posterior regenerating sea stars and is also one 20 

of the earliest and strongest wound-proximal genes induced during planarian regeneration (Wenemoser et al., 21 

2012). The conserved early down-regulation of the Egr repressor Toe1 in both sea stars and plarnaria 22 

suggests these genes are parts of concerted early response in these contexts. There is evidence that several 23 

of these early genes are regulated by upstream MAPK and related signaling pathways (Bahrami and Drabløs, 24 

2016). A recent study of the sea urchin Elk gene demonstrated that SpElk is a target of MAPK signaling (ERK) 25 

and regulates both SpRunt1 and SpEgr expression during embryogenesis (Rizzo et al., 2016). In planaria, 26 

MAPK signaling (Jnk) is necessary for activating the early Runt1 and Egr expression following wounding 27 

(Almuedo-Castillo et al., 2014). Jnk signaling in hydra has been shown to regulate FoxO expression (Bridge et 28 

al., 2010), which is an important regulator of hydra i-cells (Boehm et al., 2012). 29 

 30 

These overlapping sets of genes differentially expressed early reflect a common response to the bisection 31 

insult. It is plausible that these genes are a key shared characteristic between highly regenerative species is 32 

8a specific response to injury that permits the regeneration program. However it is equally potential that the 33 

key to understanding the commonality among these highly regenerative species is in how they interpret this 34 

common early response and connect this to specific downstream regenerative processes.  35 

 36 
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CONCLUSION 1 

 2 

While the capacity for larval sea stars to undergo WBR has been appreciated for over two decades, there has 3 

not yet been a systematic characterization of the cellular and molecular processes involved. In the present 4 

study we demonstrate that larval sea stars exhibit many stereotypical characteristics found in other models of 5 

WBR. Through our transcriptome analyses, we detect an early wound-response phase involving significant 6 

alterations in the expression of stress response genes, signaling genes (including MAPK, Ca2+) and a broad 7 

shut-down of energetically expensive anabolic processes (e.g. ribosome biogenesis). The first few days 8 

following bisection are marked by a global decrease in the number and distribution cycling cells compared to 9 

what is typically observed in growing, non-bisected larvae. This coincides with, or perhaps slightly precedes, 10 

the re-establishment of developmental axes, specifically the AP axis ablated by bisection. Re-patterning of 11 

the AP axis is observed both through in situ hybridization as well as transcriptome measurements. These 12 

observations are facilitated by our extensive prior knowledge of sea star developmental patterning programs 13 

and, indeed, genes described by the developmental gene regulatory network are enriched in these clusters. 14 

Notably, through both our transcriptome and in situ experiments we observe that axis respecification occurs 15 

prior to the onset of wound-proximal cell proliferation, which is the last phase assayed in the present study. 16 

This is the first description of concerted, wound-proximal cell proliferation in regenerating sea star larvae. 17 

Given that this wound-facing region in both regenerating segments is the primordium from which larval 18 

tissues will regenerate, we define this proliferative zone as the regeneration blastema. In this study we have 19 

only monitored the first half of the regeneration process up until the emergence of this blastema. Complete 20 

regeneration in these larvae takes a total of 10-14 days (Oulhen et al., 2016; Vickery and McClintock, 1998). 21 

 22 

In this work we sought to leverage the power of comparing regeneration in a variety of contexts to identify 23 

common features. For example, we clustered gene expression levels to identify genes similarly differentially 24 

expressed in both anterior and posterior regenerating sea star larval segments. These patterns were then 25 

used as a basis for comparison to planaria and hydra regeneration datasets. In the present study we 26 

compared regeneration in species that last shared a common ancestor approximately 580 million years ago, 27 

at the base of the metazoa. This is the broadest direct comparison of regeneration yet described, 28 

encompassing three of the major groupings of animals (Deuterostome, Protostome, and basal Eumetazoan). 29 

We find evidence for conservation of both broad functional classes as well as specific orthologs involved with 30 

the regenerative process among these models. These commonalities are summarized in Figure 7. The most 31 

remarkable signature of shared genes and processes is among genes both up- and down-regulated early in 32 

these models. We are potentially most empowered to detect such an overlap among early genes as temporal 33 

synchrony between the models likely diverges later in the time course. Nonetheless early changes to Ca2+ and  34 
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Figure 7. Summary of similarities between WBR models. The reported features of regeneration at early, 
middle, and late stages of regeneration, with respect to the datasets considered in this study, are indicated. 
Features detected in the sea star model in our study that are shared with the other two models are highlighted 
in red. Some aspects are considered in common based on shared gene expression (e.g. MAPK signaling) 
whereas others are based on cytological observations (e.g. blastema proliferation). 
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MAPK signaling pathways, upregulation of ciliogenesis genes, upregulation of tumor suppressor genes, 1 

downregulation of autophagy genes, and activation of a suite of immediate early genes are common aspects 2 

of regeneration in these models. There is also a set of conserved genes that we hypothesize are commonly 3 

involved in axial respecification, most notably genes in the WNT signaling pathway. Although the temporal 4 

order of axial respecification prior to blastemal proliferation is common among these models, the genes 5 

underlying the proliferative response are poorly conserved. 6 

 7 

These commonalities between highly diverged WBR models highlights a deep conservation in regeneration 8 

mechanisms among the metazoa. This work also underscores the potential power of such comparative 9 

inquiries in identifying the core components of the regenerative response and, potentially, how these 10 

components are altered in non-regenerative species.  11 

 12 

MATERIALS & METHODS 13 

 14 

Animals and Regeneration Paradigm 15 

Adult Patiria miniata were obtained from the southern coast of California, USA (Pete Halmay or Marinus 16 

Scientific) and were used to initiate embryo cultures as previously described (Cheatle Jarvela and Hinman, 17 

2014).  P. miniata embryos were cultured in artificial seawater at 16 °C and fed Rhodomonas les ad libitum 18 

every 2 days along with fresh artificial seawater beginning at 4 days post fertilization (dpf).  All studies of 19 

regenerating larvae were conducted with larval cultures beginning at 7 dpf at which point the larvae were 20 

manually bisected stereotypically through the foregut, midway along the transverse anterior-posterior axis 21 

(Figure 1b), with a #11 sterile scalpel. Resulting anterior and posterior segments, as well as control (uncut) 22 

larvae, were then transferred to separate 35 mm polystyrene dishes at a density of no more than 50 larval 23 

segments per ml of artificial seawater and cultured for the time indicated. 24 

 25 

Whole-Mount Staining Procedures 26 

P. miniata larvae or regenerating larval segments, grown for the times indicated, were fixed in a solution of 27 

4% paraformaldehyde in MOPS-fix buffer (0.1M MOPS pH 7.5, 2mM MgSO4, 1mM EGTA, and 800 mM NaCl) 28 

for 90 minutes at 25 °C and transferred to a solution of 70% ethanol for long term storage at -20 °C. In situ 29 

hybridization experiments were performed as previously described (Hinman et al., 2003; Yankura et al., 2010) 30 

using digoxigenin-labeled antisense RNA probes. Labelling and detection of proliferating cells in P. miniata 31 

larvae was performed using the Click-it Plus EdU 488 Imaging Kit (Life Technologies), with the following 32 

modifications. Larvae were incubated in a 10 μM solution of EdU for 6 hours immediately prior to fixation in a 33 

solution of 4% paraformaldehyde in phosphate buffered saline (PBS). Larvae were fixed for a minimum of 90 34 

minutes at 25 °C and subsequently transferred to a solution of 70% ethanol for storage at -20 °C. For 35 

detection of EdU incorporation, labeled embryos were transferred to a solution of PBS prior to following the 36 
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manufacturer’s protocol. For both in situ and EdU staining, at least two independent biological replicate 1 

experiments were performed examining the pattern of at least 10 specimens per replicate.  2 

 3 

RNA-seq, Read Mapping, and Transcriptome Assembly 4 

For transcriptome measurements, larvae were grown and bisected as described in results. RNA was collected 5 

from pools of approximately 300 sibling individuals of regenerating anterior segments, regenerating posterior 6 

segments, as well as uncut control larvae. Two biological replicate samples were prepared for each timepoint. 7 

RNA was extracted using the GenElute Mammalian Total RNA Kit (Sigma-Aldrich).  Illumina TruSeq library 8 

preparation and HiSeq 2500 50 bp SR sequencing were performed (USC Epigenome Center).  9 

 10 

RNA-seq reads were trimmed of residual adapter sequences and low quality bases (Trimmomatic v0.32, 11 

(Bolger et al., 2014)). High-quality reads were mapped to the P. miniata v1.0 genome assembly (Tophat 12 

v2.0.12, (Kim et al., 2013)) and, in total, 422.9 M uniquely mapping reads were recovered from the 18 13 

samples at an average depth of 23.5 M reads per sample. Uniquely mapping reads were assembled into 14 

transcripts using Cufflinks (Trapnell et al., 2012) and the MAKER2 based gene predictions hosted at 15 

Echinobase were used to guide transcript assembly. Reads uniquely mapping to a gene (locus) from this 16 

Cufflinks transcriptome assembly were counted (HTSeq-count v0.6.1p1, (Anders et al., 2015)). Read counts 17 

were normalized and genes detected with more than 3 reads per million, corresponding to 50-120 uniquely 18 

mapping reads depending on the sample, in at least two samples were retained for further analyses, 19 

corresponding to 31,798 expressed genes. Raw and processed sequencing reads have been deposited into 20 

the NCBI Gene Expression Omnibus (in progress) and analysis scripts are available upon request. 21 

 22 

Gene Ontology term annotation and Ortholog identification 23 

The newly assembled sea star genes were annotated in three ways: by identifying the reciprocal best BLAST 24 

hit (rBBH) between the sea star transcript and either sea urchin or mouse genes and using Blast2GO. 9,027 25 

(28.4%) loci have an rBBH match to a sea urchin protein, 7,212 (22.7%) loci have an rBBH match to a mouse 26 

gene, and 9,617 (30.2%) assembled loci were annotated using Blast2GO. GO terms for each sea urchin and 27 

mouse gene were assigned to their respective rBBH match in the sea star set and these were used for 28 

enrichment analyses. Overall the results based on all three annotation methods are highly similar (Figure 3B 29 

and Figure S2). Reciprocal best BLAST hits (rBBH) were also used to identify putative orthologs between the 30 

sea star genes and the planaria and hydra transcripts. We found 5,220 S. mediterranea transcripts and 6,091 31 

H. magnipapillata transcripts with an rBBH match to a sea star transcript.  32 

 33 

Differential Expression Testing and Hierarchical Clustering 34 

Expression levels in biological replicate samples are highly correlated (pearson correlation coefficient = 35 

0.985). Regenerating segments were compared to age-matched sibling uncut control larvae and differential 36 
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expression was assessed using a generalized linear model quasi-likelihood F test (edgeR, (Lund et al., 2012; 1 

Robinson et al., 2010)), controlling for sample batch. Differentially expressed genes (DEG) were defined as 2 

those changes detected below a p-value of 0.05 and with a fold change greater than 2-fold in either direction. 3 

Using these criteria there are 9,211 total DEG in at least one regenerating segment compared to the control 4 

larvae and at least one of the timepoints sampled, which represents 28.97% of all of the expressed genes 5 

detected.  6 

 7 

The fold-change values for all 9,211 DEG relative to control larvae were clustered by first computing the 8 

euclidian distance matrix and then these values were then clustered using the “ward.D2” method provided as 9 

part of the R hclust function. The optimum number of clusters was determined by cutting the resultant 10 

dendrogram at various heights and empirically determining at which height the number of clusters began to 11 

plateau (h=42). The result was 8 distinct clusters. However, we noted that several clusters shared similar 12 

overall patterns (Figure S1). As the similar clusters shared very similar GO enrichments and expression 13 

patterns over the time course, we further grouped these into the final 5 clusters reported in the text. The 14 

grouping of clusters did not alter the enrichment of GO terms or our other downstream analyses (Figure S1). 15 

 16 

For the planaria and hydra regeneration datasets, data was obtained from supplemental tables associated 17 

with each publication. The planarian data were reported as normalized read counts for the 15,422 transcripts 18 

detected. These counts were log2-transformed and then scaled to z-scores, or the number of standard 19 

deviations from the mean value for each transcript, and only those transcripts considered differentially 20 

expressed as reported by the authors were considered. This resulted in 7,975 transcripts that were then 21 

clustered in the same way as described above for the sea star transcripts. The hydra data were reported as 22 

binned z-scores for the 28,138 transcripts detected corresponding to lower, mid, and upper third of 23 

expression range for each transcript. We only clustered transcript values for which a positive reciprocal match 24 

was detected, leaving 5,779 transcripts for our analyses. The euclidian distance matrix was calculated, as 25 

with the other datasets, but to accommodate the binned nature of these data the hierarchical clustering was 26 

performed using the “average” method provided with the hclust R function. A fine-grained resolution of 27 

common gene expression dynamics across these species is not warranted without more closely aligning 28 

experimental designs, including sampling time points and normalization strategies. Therefore, for each of 29 

these datasets we sought very broad cluster classifications such that assigned genes are either either up-30 

regulated early and down later or vice versa in their respective time course.The result is three clusters each 31 

for the S. mediterranea and H. magnipapillata datasets (Figures S3 and S4). 32 
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