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ABSTRACT 
The success of marker-based approaches for dissecting haematopoiesis in mouse and 

human is reliant on the presence of well-defined cell-surface markers specific for diverse 

progenitor populations. An inherent problem with this approach is that the presence of 

specific cell surface markers does not directly reflect the transcriptional state of a cell. Here 

we used a marker-free approach to computationally reconstruct the blood lineage tree in 

zebrafish and order cells along their differentiation trajectory, based on their global 

transcriptional differences. Within the population of transcriptionally similar stem and 

progenitor cells our analysis revealed considerable cell-to-cell differences in their probability 

to transition to another, committed state. Once fate decision was executed, the suppression 

of transcription of ribosomal genes and up-regulation of lineage specific factors coordinately 

controlled lineage differentiation. Evolutionary analysis further demonstrated that this 

haematopoietic program was highly conserved between zebrafish and higher vertebrates. 
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INTRODUCTION 
Mammalian blood formation is the most intensely studied system of stem cell biology, with 

the ultimate aim to obtain a comprehensive understanding of the molecular mechanisms 

controlling fate-determining events. A single cell type, the haematopoietic stem cell (HSC), is 

responsible for generating more than 10 different blood cell types throughout the lifetime of 

an organism1. This diversity in the lineage output of HSCs is traditionally presented as a step 

wise progression of distinct, transcriptionally homogeneous populations of cells along a 

hierarchical differentiation tree2-6. However, most of the data used to explain the molecular 

basis of lineage differentiation and commitment were derived from populations of cells 

isolated based on well-defined cell surface markers7. One drawback of this approach is that 

a limited number of markers is used simultaneously to define the blood cell identity. 

Consequently, only a subpopulation of the overall cellular pool is examined and isolated 

cells, although homogeneous for the selected markers, show considerable transcriptional 

and functional heterogeneity8-12. This led to the development of various refined sorting 

strategies in which new combinations of marker genes were considered to better “match” the 

transcriptional and functional properties of the cells of interest.  

 

The traditional model of haematopoiesis assumes a stepwise set of binary choices with early 

and irreversible segregation of lymphoid and myeloid differentiation pathways2, 3. However, 

the identification of lymphoid-primed multipotent progenitors (LMPP)4, which have 

granulocytic, monocytic and lymphoid potential but low potential to form megakaryocyte and 

erythroid lineages prompted development of alternative models of haematopoiesis. More 

recently, it has been demonstrated that megakaryocyte-erythroid progenitors can progress 

directly from HSC without going through a common myeloid intermediate (CMP)13; or that 

the stem cell compartment is multipotent, while the progenitors are unipotent6. Clear 

consensus on the lineage branching map, however, is still lacking. 

 

Recent advances in single-cell transcriptional methods have made it possible to investigate 

cellular states and their transitions during differentiation, allowing elucidation of cell fate 

decision mechanisms in greater detail.  Computational ordering methods have proved to be 

particularly useful in reconstructing the differentiation process based on the transcriptional 

changes of cells at different stages of lineage progression14-16.  

 

Here we created a comprehensive atlas of single cell gene expression in adult zebrafish 

blood cells and computationally reconstructed the blood lineage tree in vivo. Conceptually, 

our approach differs from the marker based method in that the identity of the cell type/state 

is determined in an unbiased way i.e. without prior knowledge of surface markers. The 
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transcriptome of each cell was projected on the reconstructed differentiation path giving 

complete insight into the cell state transitions occurring during blood differentiation. 

Importantly, development of this strategy allowed us, for the first time, to asses 

haematopoiesis in a vertebrate species in which surface marker genes/antibodies are not 

readily available. Finally, this study provides unique insight into the regulation of 

haematopoiesis in zebrafish and also, along with complementary data from mouse and 

human, addresses the question of interspecies similarities of haematopoiesis in vertebrates. 

 
RESULTS 
Single cell RNA-Sequencing analysis of 1,422 zebrafish haematopoietic cells 
As an alternative to marker-based cellular dissection of haematopoietic hierarchy, we have 

set out to classify haematopoietic cells based on their unique transcriptional state. We 

started by combining FACS index sorting with single cell RNA-Seq to reveal the cellular 

properties and gene expression of a large number of blood cells simultaneously. To cover 

the entire differentiation continuum, kidney derived blood cells from eight different zebrafish 

transgenic reporter lines and one non-transgenic line were FACS sorted (Fig. 1a, 

Supplementary Table 1). Each blood cell was collected in a single well of a 96-well plate. At 

the same time, information about the cell size (FSC) and granularity (SSC), as well as the 

level of the fluorescence, were recorded.  

 

RNA from each cell was isolated and used to construct a single mRNA-Seq library per cell, 

which was then sequenced to a depth of around 1x106 reads per library. Following quality 

control (QC) 1,422 cells were used for further analysis (Supplementary Fig. 1 and 2a-d). 

Importantly, the average single-cell profiles showed good correlation with independent bulk 

samples (PCC=0.7-0.9, Supplementary Fig. 2e). In addition, PCA, ICA and Diffusion maps 

(Supplementary Fig. 3a) showed that cells were intermixed irrespective of the fish or the 

plate they originated from. This confirmed that the cells were separated in the analyses 

based on their biological differences rather than batch induced biases. 

 
HSPC can reach specific cell fates through a single path in the “state-space” 
A dynamic repertoire of gene expression in thousands of cells during differentiation could be 

used to infer a single branched differentiation trajectory.  Due to the unsynchronised nature 

of haematopoiesis each single cell exhibits a different degree of differentiation along the 

differentiation continuum. Therefore, the generated trajectory could be used to infer the 

differentiation path of a single cell. To examine the transcriptional transition undergone by 

differentiating cells, we identified the 1,845 most highly variable genes (Supplementary Fig. 
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3b) and performed expression based ordering using Monocle215. Based on global gene 

expression profiles of the cells, we identified five (1-5) distinct cell “states” (Fig. 1b).  

 

Differential expression analysis of each state versus all other states, followed by gene 

ontology (GO) enrichment analysis (see methods), provided clear insights into the cell types 

in each state (Fig. 1c). Specifically, state 1 contains GO terms relating to antigen processing, 

including genes that are highly expressed in the monocyte lineage, such as cd74a/b17, 

ctss2.218 and mhc2dab19 (Supplementary Table 2). The functionality of state 2 relates to 

leukocyte migration, including genes specific to neutrophils (e.g. cxcr4b20, rac221 and wasb22, 

23 (Supplementary Table 2). State 3 is highly enriched for genes that are involved in 

ribosome biogenesis, including fbl (Fibrillarin) and pes (Pescadilo), both of which are critical 

for stem cell survival24, 25 (Supplementary Table 2). Since there is also enrichment for HSC 

homeostasis, this state is most likely to be haematopoietic stem/progenitor cells (HSPCs). 

With GO terms that include gas exchange and erythrocyte differentiation involving the adult 

haemoglobins, ba1, ba1l and hbaa126 together with the erythroid-specific aquaporin gene, 

aqp1a27 (Supplementary Table 2), state 4 can be assigned to the erythroid lineage. Finally, 

state 5 has functionality that is relevant for circulatory system development and blood 

coagulation, both of which include itga2b (also known as cd41) together with its heterodimer 

itgb3b28 (Supplementary Table 2). Since these gene lists include other genes that interact 

with this platelet integrin receptor complex, as well as additional genes relevant for platelet 

function, we assigned this cell state to thrombocytes. 

 

To experimentally confirm our computational predictions, we sorted cells from transgenic 

lines that were the most abundant in each of the five states (Fig. 2) and stained them using 

May-Grünwald Giemsa staining. Indeed, the morphological properties of the sorted cells 

(Fig. 1c, Supplementary Fig. 4-5) matched the assigned cell types, therefore adding 

confidence to these cell type assignations. As expected, the signature genes such as marco, 

lyzC, hhex, alas2 and itga2b were within the most differentially expressed genes in 

monocytes, neutrophils, HSPC, erythrocytes and thrombocytes respectively (Fig. 1d). 

 

Taken together, the reconstructed branched tree revealed a gradual transition of myeloid 

cells from immature to more differentiated cells. Within this tree, HSPCs assumed a new 

committed state through a single path, suggesting that during steady state haematopoiesis, 

HSPCs can reach a specific cell fate through only one type of intermediate progenitor. 
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Cells within distinct states differ in their repopulation potential 
Functional in vivo transplantation assays have been traditionally used to assess the 

differentiation potential of different haematopoietic populations. To examine the repopulation 

and lineage potential of the cells within different states we sorted cells from 

Tg(mpx:EGFP)29, Tg(gata1:EGFP)30 and Tg(runx1:mCherry)31 fish to enrich for neutrophil, 

erythroid and HSPC cell state respectively. We next injected 500 donor cells into sub-lethally 

irradiated, immunocompromised rag2E450fs-/- zebrafish32 and assessed their engraftment at 

one day, four- and fourteen weeks post injection (PI) (Fig. 3a). 

  

Analysis of kidney repopulation revealed that mpx+, gata1+ and runx1+ cells were able to 

home to the kidney oneday PI (Fig. 3b). However, only progeny of runx1+ cells were 

detectable at four weeks PI in all examined recipients (Fig. 3b). No progeny of mpx+ and 

gata1+ were evident at the same time point. To examine the lineage output of runx1+ cells 

following transplantation we sorted engrafted runx1+ kidney cells four weeks PI and 

processed them for scRNA-Seq analysis. The scRNA-Seq data from 149 engrafted runx1+ 

cells projected onto a Monocle trajectory revealed the multilineage potential of donor runx1 

cells (Fig. 3c). Importantly, the donor-derived runx1+ cells were capable of long-term (three 

months) generation of blood cells in irradiated hosts, suggesting that at least some of these 

cells were HSCs. 

 

According to transplantation assays, cytospins and transcriptional profiling of cells prior and 

following transplantation, cells located in the branches of the Monocle tree show progression 

of lineage restricted progenitors to mature blood cells with no repopulation potential. 

However, cells in the middle of the Monocle tree (state 3) are a mixture of progenitors and 

HSCs with long term multilineage potential. 

 

Transcriptional changes at the branching point 
To examine the heterogeneity within the HSPC population in more detail, we used a Hidden 

Markov model whose parameters were estimated by a Deep Neural Network (DNN) (see 

Methods). DNN was trained using four data sets, namely, cells from erythrocytes, 

thrombocytes, monocytes and neutrophil branches. Since relative weightings of the 

individual genes were determined from the neural network, the most “influential” genes for 

each of the branches were identified in an unbiased way. This allowed us to determine the 

probability of each individual HSPC to transition to any of the four given branches (Fig. 4) 

without a priori knowledge of which genes should be included in the analysis. Interestingly, 

cells that were transcriptionally similar overall and were close together on the pseudotime 

trajectory displayed different probabilities of transitioning to another state (Fig. 4). This 
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suggested that although global transcriptional changes before and after branching point 

were continuous, the cell fate decision itself was influenced by a subset of highly relevant 

genes and could not be implied based on the position of the cell on the pseudotime 

trajectory. 
 

Suppression of transcription of ribosomal genes and up-regulation of lineage specific 
factors co-ordinately control lineage differentiation 
Differentiation generally involves specific regulated changes in gene expression. To 
understand the dynamics of transcriptional changes during the differentiation of myeloid 

cells, we examined trends in gene expression in each of the four branches (Fig. 5). 

Dynamically expressed genes within each of the branches showed two main trends (see 

methods). These included genes gradually upregulated through pseudotime and genes 

gradually down-regulated (Fig. 5a-b).  

 

Genes upregulated in pseudotime included well known genes related to the specific function 

of the relevant cell type (Fig. 5b). The majority of cells characterised as erythroid 

dynamically expressed genes such as alas2, aqp1a.1, ba1, ba1l, cahz and hbaa1. Similarly, 

cells in the monocyte branch dynamically expressed genes like c1qa, cd74a, ifngr1, marco, 

myod1 and spi1a; among other genes the cebpb, cfl1, cxcr4b, illr4, mpx and ncf1 were 

upregulated in pseudotime in the neutrophil branch and thrombocytes dynamically 

expressed fn1b, gp1bb, itga2b, mpl, pbx1a and thbs1b. A complete list of all genes that are 

dynamically expressed across pseudotime can be found in Supplementary Table 2.      

 

Interestingly, genes downregulated through pseudotime (Fig. 5b) in each of the four  

branches were consistently enriched for genes involved in ribosome biosynthesis, as 

revealed by GO terms “biosynthetic process”, “ribosome” and “translation” (Supplementary 

Table 2). This is an interesting finding, because previous studies suggested that HSCs have 

significantly lower rates of protein synthesis than other haematopoietic cells33. Therefore, we 

went on to investigate the expression of ribosomal proteins in pseudotime in greater depth 

(Fig. 5c). 

 

Out of 168 genes annotated as “ribosomal proteins” on Ensembl BioMart database 

(Supplementary Table 2), 89 genes had low, random expression in our dataset (Fig. 5c). 

These genes encoded mainly mitochondrial ribosomal proteins (Fig. 5c). In contrast, 79 

genes that showed high expression across all cells encoded cytoplasmic ribosomal proteins 

and were downregulated in pseudotime in all four branches (Fig 5c). These findings further 

indicate that there is a common developmental event in which suppression of transcription of 
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ribosomal genes and up-regulation of lineage specific factors direct lineage commitment and 

terminal differentiation.  

 

Zebrafish have a highly conserved HSPC transcriptome compared to mouse and 
human 
Zebrafish is an important model system in biomedical research and has been extensively 

used for the study of haematopoiesis. Although it has been demonstrated that many 

transcription factors and signaling molecules in haematopoiesis are well conserved between 

zebrafish and mammals34, comparative analysis of the whole transcriptome was lacking. 

 

In order to explore the evolution of blood cell type specific genes, we performed 

conservation analysis between zebrafish and other vertebrate species (see Methods). For 

this analysis, we enriched our initial dataset with 81 natural killer (NK) and 109 T-cells 

derived from the spleen of two adult zebrafish35. Our analysis revealed particularly high 

conservation of the HSPC transcriptome. For example, 90% of HSPC specific genes in 

zebrafish had an ortholog in human and mouse compared to 70-80% of erythrocyte-, 

monocyte-, neutrophil- and thrombocyte-specific genes (Fig. 6a). The lowest conservation 

was observed for T-cells (59%) and NK cells (68%), possibly reflecting their adaptation to  

fish specific pathogens and virulence factors (Fig. 6a).  

 

Gene duplication is the major process of gene divergence during the molecular evolution of 

species 36. We therefore analysed duplications that occurred exclusively before (referenced 

hereafter as pre-speciation genes) or after speciation (referenced hereafter as post-

speciation genes) of the last common ancestor between fish (Actinopterygii) and mammals 

(Sarcopterygii)35, 37, (see methods section). Out of 7,424 paralogs that were expressed in our 

data set (see Methods) around 79% were duplicated pre- and 21% were duplicated post-

speciation (Fig. 6b). Following ray-finned specific duplication, the paralogs were more likely 

to functionally diverge (88%) and show expression in different cell types than to remain 

expressed in the same cell type (conserved expression), 12% (Fig. 6b and c). Interestingly, 

HSPCs had the highest percentage of paralogs (19%) with a conserved expression pattern 

(Fig. 6c). This number was lowest for duplicated genes in innate (0% for the neutrophils and 

6% in monocytes) and adaptive immune cells (8% for the NK and 6% for the T-cells). 

Altogether our findings further underline the relevance of the zebrafish model system in 

advancing our understanding of the genetic regulation of haematopoiesis in both normal and 

pathological states. 
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BASiCz - Blood Atlas of Single Cells in zebrafish 
The characterisation of mouse and human haematopoietic cells is dependent on the 

presence of cell-surface markers and availability of antibodies specific for diverse progenitor 

populations. The antibodies for these cell surface markers are thus used to isolate relatively 

homogeneous cell populations by flow cytometry. Transcriptional profiling of isolated cell 

populations38-40 and more recently single cells41, have further allowed genome-wide 

identification of cell-type specific genes. However, beyond mouse and human, less is known 

about the transcriptome of blood cell types, mainly due to the lack of suitable antibodies.  

 

To overcome this knowledge gap, we have generated a user-friendly cloud repository, 

BASiCz (Blood Atlas of Single Cells in zebrafish) for interactive exploration and visualisation 

of 31,953 zebrafish genes in 1,422 haematopoietic cells across five different cell types. The 

generated database (http://www.sanger.ac.uk/science/tools/basicz) allows easy access and 

retrieval of sequencing data from zebrafish myeloid cells.  

 

DISCUSSION 
Cell differentiation during normal blood formation is considered to be an irreversible process 

with a clear directionality of progression from HSCs to more than 10 different blood cell 

types. It is, however, widely debated to what extent the process is gradual or direct6, 13 on the 

cellular level; and in the case of the gradual model, what the intermediates of the 

increasingly restricted differentiation output of progenitor cells are2-5. Although these models 

are very different in the way that they describe lineage progression, the identity of 

haematopoietic cells is determined based on the cell surface markers and the progression of 

cells during differentiation is defined on a cellular rather than transcriptional level. 

 

Here we used a marker free approach to order cells along their differentiation trajectory 

based on the transcriptional changes detected in the single cell RNA-Seq dataset. Our 

analysis showed a gradual transition of cells on a global transcriptional level from multipotent 

to lineage restricted. The computationally reconstructed tree further revealed that 

differentiating cells moved along a single path in the “state-space”. This path included an 

early split of cells towards thrombocyte-erythrocyte and monocyte-neutrophil trajectories. 

However, cells in the “middle” of the tree (HSPC state) showed considerable cell-to-cell 

variability in their probability to transition to any of the four cell types. This suggested that 

although global transcriptional changes before and after the branching point were 

continuous, the probability of a cell transitioning to any of the four committed states was 

determined only by a subset of highly relevant genes. Therefore, cells that were 
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transcriptionally similar overall could have a high probability of differentiation to distinct cell 

types.  

 

Interestingly, once the cell fate decision was executed, suppression of transcription of 

ribosomal genes and up-regulation of genes which are relevant for the function of each cell 

type coordinately controlled lineage differentiation. Of all genes that were annotated as 

“ribosomal proteins” on the Ensembl BioMart database, only those that encoded cytoplasmic 

ribosomal proteins showed dynamic expression in pseudotime in our dataset. These findings 

are not in line with previous studies, which suggested that HSCs have significantly lower 

rates of protein synthesis compared to other haematopoietic cells. It should be noted, 

however, that in this study we measured the transcription of genes that encoded ribosomal 

proteins rather than de novo protein synthesis like in33. Thus, one plausible explanation for 

the observed discrepancies is a low correlation between transcription of the ribosomal genes 

and protein production and that these two processes are to some extent uncoupled during 

blood differentiation. 

 

Our comparative analysis between zebrafish, mouse and human across seven different 

haematopoietic cell types revealed a high overall conservation of blood cell type specific 

genes. Together with BASiCz, a user-friendly cloud repository, we generated a 

comprehensive atlas of single-cell gene expression in adult zebrafish blood. Data-driven 

classification of cell types provided high-resolution transcriptional maps of cellular states 

during differentiation. This allowed us to define the haematopoietic lineage branching map, 

for the first time, in zebrafish in vivo. 

 

METHODS 

Zebrafish Strains and Maintenance 
The maintenance of wild-type (Tubingen Long Fin) and transgenic zebrafish lines29-31, 42-46 

(Supplementary Table 1) was performed in accordance with EU regulations on laboratory 

animals, as previously described47. 

  

Single-Cell Sorting 
A single kidney from heterozygote transgenic or wild-type fish was dissected and placed in 

ice cold PBS/5% fetal bovine serum. At the same time, testes were dissected from the same 

fish. Single cell suspensions were generated by first passing through a 40 um strainer using 

the plunger of a 1 ml syringe as a pestle. These were then passed through a 20 um strainer 

before adding 4',6-diamidino-2-phenylindole (DAPI, Beckman Coulter, cat no B30437) for 

mCherry/dsRed2, or propidium iodide (PI, Sigma cat no P4864) for GFP/EGFP. Individual 
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cells were index sorted into wells of a 96 well plate using a BD Influx Index Sorter. Kidneys 

from a non-transgenic line were used as a control for gating16. 

 

Whole Transcriptome Amplification 
The Smart-seq2 protocol48, 49 was used for whole transcriptome amplification and library 

preparation as described previously16 using 92 External RNA Controls Consortium (ERCC) 

spike-ins at a final dilution of 1:107. These were sequenced on the Illumina Hi-Seq2500 or 

Hi-Seq4000 platforms. 

 

Cytology 
Sorted transgene-positive or gated wild type cells were concentrated by cytocentrifugation at 

350 rpm for 5 minutes onto SuperFrostPlus slides using a Shandon Cytospin 3 

cytocentrifuge. Slides were fixed for 3 minutes in -20 0C methanol and stained with May-

Grünwald Giemsa (Sigma) as described elsewhere50. Images were captured as described 

elsewhere47. 

  

Transplantation experiments 
Adult rag2E450fs-/- mutant fish32 were irradiated in an IBL 437 irradiator using a 10 Gy dose 

from a Caesium 137 source. After 1-2 days of recovery, donor cells were prepared from 

kidneys of transgenic fish as described above. Using the same gating strategy as employed 

for the single cell sorting, fluorescent cells were collected by flow cytometry into microtubes 

containing 20 ul ice cold PBS/5% fetal bovine serum. Using a volume of 10 ul, 500 cells 

were transplanted into the anaesthetised (0.02% tricaine, Sigma A5040) rag2E450fs-/- 

recipients via intraperitoneal injection. As described above, engraftment into the whole 

kidney marrow was analysed by FACS at one day, four- and fourteen weeks post 

transplantation. The engrafted cells at four weeks post transplantation were single cell index 

sorted and processed for single cell RNA-Seq as described above. 

  

Single cell RNAseq processing and Quality Control 
Reads were aligned to the zebrafish reference genome (Ensemble BioMart version 83) 

combined with the EGFP, mCherry, tdTomato and ERCC spike-ins sequences. 

Quantification was performed using Sailfish51 version 0.9.0 with the default parameters using 

paired-end mode (parameter –l IU). 

 

Transcript Per Million (TPM) values reported by Sailfish were used for the quality control 

(QC) of the samples. Wells with fewer than 1,000 expressed genes (TPM>1), or more than 

60% of ERCC or Mitochondrial content were initially annotated as poor quality cells 
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(Supplementary Fig. 1). However, due to the lower number of expressed genes in erythroid 

cells, we further investigated the expression levels of adult globin genes, ba1 and hbaa126, 

in all erythroid cells. Based on comparison with the empty wells, samples that expressed 

both ba1 (> 40,000 TPM) and hbaa1 (> 9000 TPM) were considered to pass QC 

(Supplementary Fig. 2). Therefore, a total of 1,422 single cells were selected for further 

analysis.  

 

Average single-cell profiles compared to corresponding bulk wells revealed strong 

correlations (Pearson’s Correlation Coefficient) ranging from 0.7 to 0.9 as illustrated in 

Supplementary Fig. 2, suggesting that the single cell expression profiles were effectively 

quantified.  

 

For each of the 1,422 single cells, both gene and ERCC counts reported by the Sailfish, 

were transformed into normalised counts per million (CPM). The library size and cell-specific 

biases were removed (e.g. differences during amplification, ERCC concentration, batch 

effects etc.) using the scran R package (version 1.3.0) published in52. Out of 31,953 genes, 

we retained those that were expressed in at least 1% of all cells (CPM>1). Thus, a total of 

20,960 genes were used for further analysis. 

 

Technical noise fit and identification of highly variable genes 
To distinguish biological variability from the technical noise in our single-cell experiments we 

inferred the most highly variable genes using ERCCs as spike-in in all 1,422 blood cells 53. 

We used the scLVM54 R package (version 0.99.2) to identify the 1,845 most highly variable 

genes (Supplementary Fig. 3).  

 

Principal Component Analysis (pcaMethods (version 1.64.0)), Independent Component 

Analysis (FastICA (version 1.2) and Diffusion Maps (destiny55 (version 1.3.4)), were used to 

verify that all cells were intermixed in the reconstructed 3D component space based on their 

transcriptional properties and not based on the fish or a plate they originated from.    

 

Pseudotime ordering of zebrafish haematopoietic cell, differential expression analysis 
and the analysis of dynamically expressed genes 

The set of 1,845 most highly variable genes was used to order the 1,422 single cells along a 

trajectory using the Monocle215 R package (version 1.99.0). The “tobit” expression family 

and “DDRTree” reduction method were used with the default parameters. As illustrated in 

Fig. 1, cells ordered in the pseudotime created five distinct states. To assign identity to each 

of the five states, we performed differential expression (DE) analysis between each state 
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versus the remaining four using the “differentialGeneTest” Monocle2 function. We modeled 

expression profiles of each state using a Tobit family generalized linear model (GLM) as 

described in15. For each state, statistically significant genes that scored P < 0.01, q < 0.1 

(False Discovery Rate) and were expressed in more than 50% of the cells were further used 

to perform Gene Ontology (GO) analysis. 

 

Finally, we identified genes that change as a function of pseudotime across each of the four 

branches by setting the “fullModelFormulaStr” parameter equal to "~sm.ns(Pseudotime)". 

Genes whose expression changed dynamically in pseudotime were selected using the same 

statistical criteria as described for DE genes. For each branch we clustered dynamically 

expressed genes using the “plot_pseudotime_heatmap” function with the default 

parameters. The number of clusters (trends) in each branch was determined by its silhouette 

plot score (cluster R package version 2.0.5). To generate the trend lines across different 

states (see Fig. 3b), we used the average expression pattern of the dynamically expressed 

genes that follow the same trend across pseudotime and fit them using ggplot2 R package 

(version 2.2.1) stat_smooth() parameter. We used the Gaussian linear model and formula 

the “y ~ poly(x,2)” at 0.95 of standard error (gray area of the plot).  

 

For the analysis of ribosomal genes, we used the Ensembl BioMart version 83 and selected 

all genes annotated with the term “ribosomal protein”. We performed clustering using the 

pheatmap function (R pheatmap package version 1.0.8) using Euclidean distance and 

ward.D2 linkage.  

 

Gene Ontology (GO) analysis 
DE genes were ranked for each of the five states based on the mean log10 counts. Genes 

with average lower than 2 and those expressed in more than one state were not included in 

the GO analysis. GO analysis was performed using the gProfileR56package (Version 0.6.1) 

using the gprofiler command with the following parameters: organism = ‘drerio’, hier_filtering 

=’moderate’, correction_method=’fdr’ and max_p_value = 0.05. 

 

Conservation analysis of the cell type specific genes in zebrafish 

In order to perform the conservation analysis, we identified the orthologous genes (BioMart 

Ensembl Version 83) between the zebrafish and other vertebrate species, including cave 

fish, tilapia, amazon molly, tetraodon, fugu, cod, human, chimpanzee, mouse, rat, dolphin, 

wallaby, chicken, lizard, Xenopus, coelacanth and lamprey. For this analysis, we enriched 

our initial dataset with 81 natural killer (NK) and 109 T-cells derived from the spleen of two 

adult zebrafish35. Following the same computational approach as we did with the initial 
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dataset, we re-calculated the DE genes for each of the seven different clusters. We only 

considered “protein_coding” genes that were expressed in more than 50% of cells within 

each cluster and scored more than mean log10 counts. This resulted in 41 erythrocyte-, 113 

monocyte-, 102 neutrophil-, 212 thrombocyte-, 60 HSPC-, 34 NK- and 34 T- specific genes 

that were used for the further analysis. For the case of the non-DE genes, we included only 

“protein_coding” annotated genes that were expressed in more than 1% of all cells (CPM>1) 

and with average gene expression higher than the global mean of 0.10. The final list of the 

non-DE genes included 8,127 genes.  

 
Analysis of duplicated genes in zebrafish 

In order to analyse duplicated genes35, we first identified all zebrafish “protein_coding” 

paralog genes listed in Ensembl (BioMart Ensembl Version 83) and split them into two 

groups: 1) 17,158 pre ray-finned fish duplicated genes, including Euteleostomi, Bilateria, 

Chordata, Vertebrata and Opisthokonta parent taxa, and 2) 11,806 post ray-finned fish 

duplicated genes, including Neopterygii, Otophysa, Clupeocephala and Danio rerio children 

taxa. We next removed duplicated genes that were found in common between the two 

groups. This resulted in 8,601 pre-, and 3,249 post-ray-finned fish genes that we used in 

further analysis. 

 

For the analysis of the expression pattern divergence, we focused on genes that were 

expressed in our data set. We analyzed expression pattern of all paralogs of DE genes (i.e. 

erythrocytes, monocytes, neutrophils, thrombocytes, HSPCs, NK- and T cells) that were 

expressed in more than 10% of cell in each of the branches (cell states). The expression 

pattern was considered to be conserved if duplicated genes and their annotated paralogs 

were all expressed in the same cell type. However, if at least one of the paralogs was 

expressed in a different cell type, this was considered as an example of potential functional 

divergence.  

 

Deep Neural Network (DNN) Classifier 
To generate the DNN model we used Keras, a python based Deep Learning Library for 

Theano and Tensorflow. We worked with the Keras functional API, which allows the 

definition of complex systems such as multi-output models. 

 

The DNN was used to predict the probabilities of a specific Gene Expression profile to be 

classified into one of the four differentiated cell types. We used the entire set of genes for all 

differentiated cells in the branches (1,177 cells in total) i.e. erythrocytes, thrombocytes, 

neutrophils and monocytes. The input is therefore formed by 31,953 nodes (genes) which 
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are normalized using z-values or standard score. For the hyper-parametric fine tuning of the 

DNN we generated and evaluated models with different number of hidden layers, hidden 

nodes, network initializations, regularizations and batch normalization. The final hyper 

parameters were chosen according to the optimal performance and convergence of the 

accuracy and loss values. The model was comprised of 2 hidden layers with 1000 and 500 

nodes, using a weight decay regularization with a λ-value of 0.001, ‘softmax’ activation and 

‘Adam optimiser’ as our optimization algorithm. The validation was performed over 10% of 

the initial dataset, using ‘categorical cross-entropy’ loss. The average classification accuracy 

after convergence was 0.9924 ± 0.0001, and cross entropy loss of 0.0429 ± 0.0003, 

validation accuracy of 0.9661 ± 0.0002 and cross entropy validation loss 0.1134 ± 0.0015. 

 
Cloud Repository 
We have generated a cloud repository to enable research community to access single cell 

gene expression profiles of 1,422 zebrafish blood cells across all the 31,953 zebrafish 

genes. The implementation of the cloud service was performed using shiny (version 0.14.2) 

https://shiny.rstudio.com, and plotly (version 4.5.6) https://plot.ly R packages.  

 

Statistics and reproducibility of experiments 
Statistical tests were carried out using R software packages as indicated in the figure 

legends and the Methods section. No statistical method was used to predetermine sample 

sizes. Pearson Correlation Coefficient was used to compare the average profiles of single 

cells against the bulk. Significance of Differentially Expressed genes was calculated with an 

approximate likelihood ratio test (Monocle2 differentialGeneTest() function) of the full model 

“~state” cells against the reduced model “~1”. For the Dynamically expressed genes, the full 

model “~sm.ns(Pseudotime)” was tested against the reduced model of no pseudotime 

dependence. In both cases, P values were normalised using the the Benjamini-Hochberg 

FDR (False Discovery Rate), selecting statistically significant genes with P < 0.01 and FDR 

< 0.1. For the GO analysis, the Hypergeometric Test (equivalent to the one tailed Fisher’s 

exact test) was used to evaluate the significant terms, while P values were corrected for 

multiple testing using the FDR approach, with FDR < 0.05 considered statistically significant, 

using gprofiler R package. 

 

DATA AVAILABILITY 
Raw data can be found under the accession number E-MTAB-5530 on ArrayExpress 

(https://www.ebi.ac.uk/arrayexpress/). Additional RNAseq data that were used in the present 

study can be found in E-MTAB-4617 and E-MTAB-3947. 
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FIGURE LEGENDS 
Figure 1. Pseudotime ordering reveals a gradual transition of cells from immature to 
more differentiated within the myeloid branch 
a) Experimental strategy for sorting single cells from transgenic zebrafish lines. Cells were 

harvested from a single kidney of each line and sorted for expression of the fluorescent 

transgene. Index sorting was used to dispense single cells into a 96 well plate and these 

were subsequently processed for RNA-seq analyses. b) Five cell states were predicted 

using the Monocle2 algorithm for temporal analyses of single cell transcriptomes. c) Analysis 

of genes that are differentially expressed across the five states (given the same colour code 

used in b) reveals GO terms (inner circle) that are highly pertinent to specific cell types. The 

outer circle shows examples of May-Grünwald Giemsa stained cells from kidneys of 

transgenic lines that largely label each particular cell type. d) Jitter plots showing the 

expression (y axis) of differentially expressed marker genes in each cell type (x axis). Each 

dot in the jitter plot shows the expression of the gene log10 (counts + 1) in each cell.  

 

Figure 2. The distribution of cells from different transgenic lines modelled by Monocle 
a) The trajectories of cell states predicted by Monocle are shown in grey for each transgenic 

line used, with the associated cell types labelled in blue. The percentage of cells from each 

transgenic line contributing to each state is given next to the relevant trajectory. b) Pie charts 

showing the contribution of transgenic lines to each cell type. The colour code relates to the 

colours given in the headers for each transgenic line used in (a). 

 

Figure 3. Cells within distinct states have different repopulation potentials 
a) Experimental strategy for the adult transplantation experiment. Kidneys were dissected 

from transgenic donor fish and sorted for cells expressing the fluorescent transgene. 

Positive cells were collected and injected into sub-lethally irradiated rag2E450fs-/- fish. b) 

Assessment for engraftment was made one day, four- and 14 weeks post transplantation 

using flow cytometry. Successfully engrafted fluorescent donor cells were isolated at four 

weeks PI by index sorting single cells into a microtitre plate for subsequent RNA-seq 

analyses. c) Distribution of runx1+ cells, from non-transplanted (right) and transplanted (left) 

fish, modelled by Monocle.  

 

Figure 4. Transcriptionally similar cells display different probabilities of transitioning 

to another state. The approximate positions of the cell states identified by Monocle 2 

are shown in the insert. The graph shows distribution of HSPCs in pseudotime. Cells 

are coloured based on their probability to transition to a specific cell type. Cells that 
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have less than 75% probability to transition to any given cell type are defined as 

“unspecified”. The proportion of cells that belongs to each of the predicted states is 

shown in the Pie chart. 
 

Figure 5. Lineage differentiation is defined by two main trends in gene expression 
a) Heatmap of genes whose expression changed dynamically during pseudotime in each of 

the four branches. b) Graph showing the average expression pattern of the dynamically 

expressed genes that follow the same trend across pseudotime. For each of the cell states, 

one gene is presented that follows one of the two main trends. Standard error is shown as a 

gray area around the trend lines. c) Heatmap of expression of 168 genes annotated as 

“ribosomal proteins” genes in pseudotime in each of the four branches. 

 

Figure 6. Conservation analysis of zebrafish genes differentially expressed in the 
main blood cell types. 
a) Percentage of zebrafish protein-coding genes (specific for distinct blood cell types, as well 

as non-differentially expressed) with orthologs in other vertebrate species. b) The total 

number of paralogs duplicated exclusively pre- (green) and post ray-finned speciation (red).  

The numbers 1-7 mark the number of cell types (erythrocytes, monocytes, neutrophils, 

thrombocytes, HSPCs, T-cells and NK cells) in which the duplicated genes are expressed. c) 

The percentage of conserved vs diverged genes duplicated exclusively post speciation (fish 

specific genes).  
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