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Abstract

The cryptic diversity of microbial communities represent an untapped biotechnological resource for biomining,
biorefining and synthetic biology. Revealing this information requires the recovery of the exact sequence of DNA
bases (or “haplotype”) that constitutes the genes and genomes of every individual present. This is a computationally
difficult problem complicated by the requirement for environmental sequencing approaches (metagenomics) due to
the resistance of the constituent organisms to culturing in vitro.

Haplotypes are identified by their unique combination of DNA variants. However, standard approaches for working
with metagenomic data require simplifications that violate assumptions in the process of identifying such variation.
Furthermore, current haplotyping methods lack objective mechanisms for choosing between alternative haplotype
reconstructions from microbial communities.

To address this, we have developed a novel probabilistic approach for reconstructing haplotypes from complex
microbial communities and propose the “metahaplome” as a definition for the set of haplotypes for any particular
genomic region of interest within a metagenomic dataset. Implemented in the twin software tools Hansel and
Gretel, the algorithm performs incremental probabilistic haplotype recovery using Naive Bayes — an efficient and
effective technique.

Our approach is capable of reconstructing the haplotypes with the highest likelihoods from metagenomic datasets
without a priori knowledge or making assumptions of the distribution or number of variants. Additionally, the
algorithm is robust to sequencing and alignment error without altering or discarding observed variation and uses all
available evidence from aligned reads. We validate our approach using synthetic metahaplomes constructed from
sets of real genes, and demonstrate its capability using metagenomic data from a complex HIV-1 strain mix. The
results show that the likelihood framework can allow recovery from microbial communities of cryptic functional
isoforms of genes with 100% accuracy.
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Genomic research is progressing beyond the use of con-
sensus DNA sequences to represent species, towards the
ultimate goal of complete characterisation of the genetic
diversity that exists across their populations.

So far, research has focused on characterising specific
aspects of this diversity, for example: identifying the en-
tire gene-set of all strains of a species (the pangenome)
[1]; identifying the groups of genes (or genetic variants
within) that are inherited together in organisms across
entire populations (the haplome) [2] or in viruses, identi-
fying strains related by mutations in a highly mutagenic
environment (the quasispecies) [3].

However many communities (and especially micro-
bial communities) maintain a fine balance between sta-
bility and plasticity that is driven both by their genetic
breadth and diversity [4, Bl €, [7]. This necessitates a
more holistic approach to allow the simultaneous char-
acterisation of all haplotypes of all organisms in a mi-
crobial community (the “metahaplome”).

Complete characterisation of the metahaplome has
great biotechnological potential as it would divulge the
full repertoire of enzyme isoforms for an organism (or
community) and could also guide future antibiotic de-
sign [8]. As DNA sequencing technologies advance to
produce increasingly longer reads, the depiction of com-
plete haplotypes of species in mixed communities would
also become tractable and provide vital missing infor-
mation for future synthetic biology needs [9].

The general problem of haplotyping, first introduced
in 2001 as single individual haplotyping (SIH) [I0], has
been demonstrated to be computationally difficult (NP-
hard) [1I] and so focus has moved towards the use of
heuristics to make the generation of approximate solu-
tions to SIH both computationally tractable and accu-
rate [12] T3], T4}, [15] [16].

However, many current approaches have been devel-
oped for diploid species or for those with well-defined
genomes such as human [I7, [I8]. Few are appropri-
ate for organisms where no reference genomes exist or
where, in the case of microbes, only a small proportion
can be cultured successfully in wvitro. In these cases,
haplotypes must be recovered from DNA isolated and se-
quenced directly from the environment (metagenomics).
Furthermore, in complex datasets such as these, many
alternative haplotypes may be possible and there are
no methods that can provide the user with an objective
function for choosing the best candidates.

The generation of haplotypes from metagenomes
is particularly difficult as existing de movo analysis
pipelines for DNA sequence data generally assume a sin-
gle individual of origin and, when applied to metage-
nomic datasets, remove low level variation and pro-
duce single consensus sequences [19]. Even specialised
metagenomic assemblers [19] 20, 21] do not aim to solve
the problem of recovering haplotypes.

Whilst researchers have identified the problem that
consensus assembly poses for the downstream analysis
of variants [22] and are moving towards alternative as-
sembly approaches, such as graph-based assembly [23],
there is still no method for the recovery of individual
haplotypes for regions of a metagenome.

To address this need, we have developed a Bayesian
framework capable of recovering and ranking haplotypes
using evidence of pairs of Single Nucleotide Polymor-
phisms (SNPs) observed on sequenced reads. While
specifically designed to extract haplotypes from metage-
nomic data of complex microbial communities, the algo-

rithm is general enough to be applied to any analogous
haplotyping problem.

We evaluate our approach on metagenomes from
both simulated and real sets of genes and identify the
haplotypes with the best likelihoods from Influenza and
HIV datasets. We demonstrate how, for the first time,
the most likely haplotypes can be recovered with high
fidelity from complex metagenomic samples enabling
the characterisation of the cryptic diversity in microbial
communities.

Results

The metahaplome

We define the metahaplome as the set of haplotypes
for any particular genomic region of interest within a
metagenomic data set. A full mathematical definition is
available in Supplementary Section

Hansel and Gretel

We have developed Hansel, a data structure designed
to efficiently store variation observed across sequenced
reads, and Gretel, an algorithm that leverages Hansel
for the recovery of haplotypes from a metagenome. Ad-
vantages include that our method:

e recovers haplotypes from metagenomic data

e does not need a priori knowledge of the number of
haplotypes

e makes no assumptions about the distribution of al-
leles at any variant site

e does not need to distinguish between sequence error
and variation

e uses all available evidence provided by the raw reads
e does not require any user-defined parameters

e does not require bootstrapping, model building or
pre-processing

e can confidently rank its own results based on calcu-
lated likelihoods

e can be executed on an ordinary computer

The details of the data structure and algorithm are pro-
vided in the Online Methods. We provide open source
implementations for the data structure API (Hansel)
and the haplotype recovery algorithm (Gretel) at
https://github.com/samstudio8/gretel.

We show in silico that recovery of haplotypes from
simple metahaplomes is possible even with data sets con-
sisting of short reads. Recovery success depends on the
availability of sufficient read coverage and enough varia-
tion to ensure that all pairs of adjacent SNPs are covered
by at least one read. The following subsections describe
the datasets used to evaluate Hansel and Gretel, and
the results of this evaluation.

Synthetic metahaplomes

We evaluated the fidelity of the haplotype reconstruc-
tions from Hansel and Gretel using synthetic meta-
haplomes. Each synthetic metahaplome consisted of five
3000 bp haplotypes generated by simulated evolution us-
ing seq-gen [24], with a fixed mutation rate and a star
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Figure 1: Boxplots summarising the proportion of variants on an input haplotype correctly recovered (y-axes) from
groups of synthetic metahaplomes by Gretel. Single boxplots present recoveries from a set of five metahaplomes
generated with some per-haplotype mutation rate (column facets), over 10 different synthetic read sets with varying
read length (row facets) and per-haplotype read depth (colour fill). Each box-with-whiskers summarises the proportion
of correctly recovered variants over the 250 best recovered haplotypes (yielded from 50 Gretel runs (5 metahaplome
replicates x 10 read sets), each returning 5 best outputs). We demonstrate better haplotype recoveries can be achieved
with longer reads and more dense coverage, as well as the limitations of recovery on data exhibiting fewer SNPs/hb.
This figure may be used as a naive lookup table to assess potential recovery rates for one’s own data by estimating
the level of variation, with the average read length and per-haplotype depth.

phylogeny (see Methods). Five replicates of seven dif-
ferent mutation rates were generated for a total of 35
metahaplomes.

For each of the 35 metahaplomes simulated by seq-gen,
we generated 180 sets of uniformly distributed pseudo-
reads consisting of 10 replicates for each pairing of 3
read sizes and 6 per-haplotype depths. For the purpose
of read alignment and variant calling, we aligned each
read set against the 3000 nt starting sequence initially
provided to seq-gen. Variants were called by assum-
ing any heterogeneous genomic position over the aligned
reads was a SNP.

A single run of Gretel will repeatedly recover hap-
lotypes until the stopping criteria specified is met (see
Methods). For each synthetic metahaplome replicate,
we evaluated the fidelity of haplotypes reconstructed
by Gretel though comparison with the input sequences
used to generate the data. The reconstructed haplotype
sequence with the greatest proportion of heterozygous
positions in agreement with each of the original simu-

lated sequences were determined. We present this re-
covery rate for the seven mutation rates in combination
with the 3 read sizes and 6 per-haplotype read depths
used (Fig. [1)).

We found that haplotype recovery improves with
longer reads and greater coverage. We also observed
potential lower bounds on our ability to recover haplo-
types from a data set, as the facets with no successful
recoveries show. Unsuccessful recoveries are a result of
at least one pair of adjacent variants failing to be cov-
ered by any read, which is a requirement imposed on
Gretel for recovery (see Methods). For shorter reads,
low-level variation is more of a problem. 0.01 SNPs per
haplotype base (hb) over 100 bp would yield just one
SNP on average - insufficient evidence for Gretel.

Although one might expect high levels of variation
to make the recovery of haplotypes more challenging,
an abundance of variation actually provides more in-
formation for Gretel. We observe successful recoveries
from data sets with high variation (0.1 SNPs/hb over

Accession Organism Length (bp) Ref. Similarity (%)
EU145592.1 Homo sapiens 564 —
BC070280.1 Homo sapiens 564 99.823
XR_634888.1 Papio anubis 564 97.340
AK232978.1 Sus scrofa 564 90.071
M19237.1 Saimiriine gammaherpesvirus 2 552 83.514
XM_014960529.1  Calidris pugnax 551 78.662

Table 1: The chosen ‘pseudo-reference’ (EU145592.1) and the five genes that constitute the synthetic DHFR meta-
haplome. Genes with decreasing similarity to the reference were selected to pose a more challenging recovery problem.

Figure [3| presents our recovery results for each gene.
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Figure 2: Gretel recovery rates (x-axes) against haplotype rank ratio (y-axes) for each gene of the DHFR data set
(column facets) across the 1200 read sets. Each haplotype recovered has an associated likelihood as scored by Gretel.
Haplotypes are sorted by their likelihood to obtain rankings. The rank is divided by the total number of recovered
haplotypes (for that read set) to produce a rank ratio. A rank ratio of 0 shows a haplotype has the best likelihood
awarded by Gretel. We present recovery rates against rank ratio, separating the read sets by their read length (row
facets) and coverage (colour fill and symbol). Gretel is capable of discerning accurate haplotypes, awarding higher

rankings to haplotypes with the most identity to real genes.

five haplotypes of 3000 nt yields ~ 1500 SNPs [Table
). With enough coverage (> 7x per-haplotype depth),
recoveries at a high level of variation are more accurate
than those in data sets with fewer SNPs.

For realistic levels of variation (0.01-0.02 SNPs/hb)
[25], with per-haplotype read depth of > 7x, we can re-
cover haplotypes at a median accuracy of 80%. With
higher per-haplotype depth (> 25x), Gretel is capable
of recovering haplotypes with 100% accuracy (Fig. .

Metahaplomes from real genes

To extend validation to data derived from real genes,
and assess the robustness of the likelihood rankings of
reconstructed haplotypes, we created a metahaplome
consisting of five dihydrofolate reductase (DHFR) genes
from multiple species (Table|[1)).

DHFR is an essential enzyme in nucleic and amino
acid synthesis and is an important therapeutic target
for infectious diseases such as malaria [26]. Identifying
DHFR haplotypes can help researchers understand how
sequence variation contributes to drug resistance.

In a real metagenomic data set, we would use an as-
sembly as a pseudo-reference to align sequenced reads
against a genomic region of interest. For simulating
the problem of discovering the variants across DHFR
genes from many organisms in a metagenome, we se-
lected an arbitrary DHFR gene (EU145592.1) to serve
as the pseudo-reference (Table . This reference is not
used by Gretel for the recovery of haplotypes, but is
currently a necessary step to produce an alignment from
which to call for SNPs.

Our methodology for testing follows that of the pre-
vious section. From the five chosen DHFR genes we
generated 100 replicates of pseudo-reads for each of the
6 different per-haplotype read depths and 2 read lengths.

The reads were then aligned to the pseudo-reference and
the haplotypes recovered using Gretel.

Figure [3] presents the proportion of correctly recov-
ered SNPs for each of the five input sequences listed
in Table [ Gretel achieves excellent recovery of
BC070280 and XR_634888 with reads of just 50 bp.
Figure[3|also shows that while the accuracy of the recon-
struction is influenced by the similarity to the reference
used, this can be overcome with longer reads or greater
read depth.

Gretel scores the haplotypes it recovers with a like-
lihood, representing the probability of the data observed
in the Hansel matrix, given the existence of that hap-
lotype. In general, the best reconstructed DHFR hap-
lotypes had the highest likelihoods (Fig. . This also
improved as the similarity to the reference increased or
when there was greater read length or depth.

We observed that reads from more divergent hap-
lotypes are more readily discarded during alignment to
the pseudo-reference, denying Gretel the evidence nec-
essary to call these SNPs and hence recover these se-
quences (Supplementary Fig. . Additionally, as some
of the haplotypes are more similar to each other, there
possibly exists more evidence for the variation shared
by those haplotypes, increasing their recovery rate.

Despite this, with sufficient depth and read length,
more dissimilar haplotypes can still be recovered with
very high accuracy. We observe a similar trend even
with increased numbers of input haplotypes (Supple-
mentary Section . We encountered an upper limit
on the accuracy of recoveries that could not be over-
come with additional coverage or increase the read size
(Supplementary Fig. [3)). This is potentially due to one
or more of:

e Shared variation between highly similar haplotypes
causing paths in the real metahaplome to converge,
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Figure 3: Boxplots summarising the proportion of variants correctly recovered (y-axes) for each input DHFR gene
(column facets) by Gretel. We generated reads from the DHFR metahaplome at 6 different per-haplotype read
depths (x-axes) between 3 and 50x, 2 read lengths (50 bp and 150 bp row facets) with 100 replicates. Individual
box-with-whiskers summarise the recovery rate for a given gene, from reads of a per-haplotype depth and size, over
the 100 replicate read sets. Input genes are sorted by decreasing identity to the pseudo-reference left to right. Note
that there are a few cases where recovery is not possible at the lowest depth.

making it harder to disentangle the real variation strains mixed in wvitro and sequenced on an Illumina
e Reads discarded during alignment causing pairwise MiSeq [27]. Al‘ghough the' sequences Of the ﬁve. strains
SNP evidence to be withheld from Gretel were known prior to mixing, the strains are likely to

have mutated prior to the sequencing of the samples,
introducing cryptic diversity [27]. Furthermore, the se-
quencing process can add additional noise through se-

e Reads discarded during alignment removing evi-
dence for the existence of a heterogeneous site

Despite this, our results show that Gretel is capable quencing error. This provides a challenging data set
of recovering haplotypes from synthetic readsets with for haplotype recovery. For the five longest genes on
high accuracy given sufficient read depth, read length the HIV-1 genome (gag, pol, vif, env and nef) we used
or similarity to the reference chosen. Gretel to recover all haplotypes present using the real
sequencing reads from this experiment.
Metahaplomes from real reads: HIV 5 Table [2| shows, for each gene from each original HIV
strain mix strain, the similarity of the nearest matching recon-
structed haplotype. We found that the env gene had
Finally we apply our approach to a set of real the most novel diversity, with the closest matching hap-
reads (ENA:SRR961514) consisting of five distinct HIV lotypes to the original HIV strains only occurring in the
Strains
Gene SNPs Haplotypest 89.6 HXB2 JRCSF NL43 YU2
“ 1500 924 100.0 100.0 99.33 100.0 99.40
” b
SO [N JC, M N C X
A X N N )
A M R N
env 2568 66 ; ) : ) '
o ay o m (12 ()

Table 2: For each gene from each original HIV strain, the percentage similarity of the nearest matching reconstructed
haplotype. Results are presented for each of the five longest genes of the HIV-1 genome (gag, pol, vif, nef, env). The
bracketed figure indicates the rank of the best haplotype for the strain amongst all recovered haplotypes, according to
its likelihood score. We also report the total number of haplotypes recovered by Gretel for each gene. *Recovery of
89.6 env gene has just one incorrect SNP (2567 SNPs recovered). {Number of haplotypes returned after conservative
-1000 log;¢ likelihood cutoff.
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Figure 4: Scaled BLAST bitscores (x-axes) against scaled Gretel likelihoods (y-axes). (Left) Bitscores against like-
lihoods for all recovered HIV-1 gene haplotypes, coloured by strain, (Right) Plot facets show the bitscores against
likelihood for all recovered haplotypes, separated by gene (column facets) and strain (row facets and colours). Gretel
consistently awards higher likelihoods to recovered haplotypes that are better matches to a real haplotype.

top 25 most likely reconstructions. This is in contrast
to pol, where the closest matching haplotypes to the
original HIV strains were in the top 6 most likely re-
constructions. This likely represents differing numbers
of novel cryptic haplotypes of these genes and correlates
well with their known mutation rates in vivo [28].

For all of the recovered HIV-1 haplotypes, Figure
M] plots the scaled BLAST bitscores against the Gretel
likelihood score. Each recovered haplotype is matched
to its closest strain. Our results show that ordering the
recovered haplotypes by their likelihood scores can be
used as a method to find the best recoveries amongst
the recovered sequences.

As reported in Table [2] haplotypes were discarded
if they did not meet a conservative threshold of —1000
logyg likelihood. Manual inspection indicated that these
discarded haplotypes showed over selection of dele-
tions, an artifact arising from Gretel exhausting non-
deleterious evidence in Hansel before terminating. Such
haplotypes yield no significant BLAST hits against the
NCBI nr database [29] and our likelihoods provided a
clear distinction between noise and useful recoveries.

Beyond the alignment, Gretel does not require read
processing, parameter bootstrapping or error correc-
tion. Despite thousands of heterogeneous sites (pri-
marily caused by sequencing error and alignment noise)
Gretel is still capable of recovering known haplotypes
with 100% accuracy and biologically relevant cryptic
haplotypes from metagenomic data.

Discussion

We offer the term metahaplome to represent the set of
haplotypes for any particular region of interest within a
metagenomic data set. The elucidation of the sequences
of the individuals within the metahaplome provides a
rich resource of information, enabling detailed study of
microbial communities. Synthetic exploitation of the
variation observed can be used to improve industrial

processes such as biorefining, biomining and synthetic
biology [30], B31].

We introduced Hansel, a novel data structure which
stores the variation observed over reads from a se-
quenced metagenome. Hansel permits traversal of that
variation like a graph, yet features probabilistically
weighted edges, allowing the current haplotype recov-
ered so far to influence the variants that will be selected
next. We also introduced Gretel, an algorithm that
builds upon Hansel for the recovery of genuine haplo-
types from a metahaplome constructed from the raw
reads of a metagenomic data set.

Together Hansel and Gretel form a new framework
for the recovery of haplotypes in metagenomes, allow-
ing data sets where short read length has previously
restricted effective analysis.

Performance and tractability

We have evaluated Hansel and Gretel on haplotypes
generated by seq-gen in order to measure performance
with regard to mutation rate, read length and coverage
(Fig. [1). We demonstrate very high recovery rates, even
in the presence of many SNPs.

We also evaluated our approach with synthetic reads
generated from metahaplomes consisting of mixtures of
real genes and demonstrated it is possible to recover
accurate haplotypes even from short read data (Fig.
. Successful recoveries can be made with our frame-
work even in the presence of many haplotypes as demon-
strated by the high recovery rates from the Flu-A7 meta-
haplomes, containing short reads generated from 24 di-
verse influenza sequences (Supplementary Fig. [3)).

Finally, we applied our work to a data set consisting
of real sequencing reads: the HIV 5 mix metahaplome.
We have shown that we can recover long (>2000bp)
genes from this complex community with 100% accu-
racy (Table[2).

Our approach is sensitive to the quality of the align-
ments of reads against the pseudo-reference, and the
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choice of pseudo-reference itself. We observed small fluc-
tuations in recovery accuracy across the 24 haplotypes of
the Flu-A7 data set depending on the selected reference.
During testing of both the DHFR and Flu-A7 data set,
we found this sensitivity was because many of the syn-
thetic reads yielded from less similar sequences would
not align back to the pseudo-reference (Supplementary
Fig. |2), regardless of chosen alignment software.

This does raise an important caveat to our work:
both assemblers and aligners will exert influence over
the tractability of how many and how accurately hap-
lotypes in a given metagenome can be recovered. Here,
the discarding of reads during alignment denies Gretel
access to critical evidence required to reconstruct those
particular haplotypes.

It should be noted that the pseudo-reference is not
used by Hansel or Gretel, it serves only as a com-
mon sequence against which to align raw reads. Se-
quences that happen to share identity with the pseudo-
reference are recovered by Gretel from the evidence in
the Hansel matrix, the reference confers no advantage
over any other haplotype. Very high recovery rates on
sequences that share identity with the pseudo-reference
are a reflection of the strength of our approach, and not
a trivial recovery. A reference-free method for SNP call-
ing, or a method that constructs or amends the reference
from the SNPs [32] would be equally useful to us.

Perhaps most significantly, the tractability of the
problem is bound by the quality of the data available.
As stated by Lancia [10], it is entirely possible that, even
without error, there are scenarios where data is insuffi-
cient to successfully recover haplotypes and the problem
is rendered impossible.

Our framework has been designed for the recovery
of haplotypes from a region of interest in a metagenome
(such as variants of a gene involved in a catalytic reac-
tion of interest, e.g. degradation of biomass), but given
sufficient coverage of SNPs, our approach could work on
regions significantly longer than that of a gene if desired
and with data consisting of significantly longer reads.

Regarding time and resource requirements, Hansel
and Gretel is designed to work on all reads from a
metagenome that align to some region of interest on the
pseudo-reference. Typically these subsets are small (on
the order of 10-100K reads) and so our framework can
be run on an ordinary desktop in minutes, without sig-
nificant demands on disk, memory or CPU. Run-times
on data with very deep coverage, or many thousands
of SNPs, such as the HIV 5-mix, run on the order of
hours, but can still be executed on an ordinary desktop
computer.

Methodological comparison of our ap-
proach

In contrast to other methods, Gretel aims to make as
few assumptions as possible. More importantly, our
framework requires no configuration, has no parameters
and is designed for metagenomic data sets where the
number of haplotypes is unknown.

Most SNP calling algorithms discard SNP sites that
feature three or more alleles (i.e. non bi-allelic sites) as
errors, or under the assumption that input data repre-
sents sequenced reads from a diploid species [33]. Al-
though ParticleHap [33] relaxes this assumption, it
is to reduce the risk of erroneously called genotypes
preventing reconstruction of the two haplotypes for a

diploid genome.

Many existing methods rely on discarding or altering
observed SNPs until a pair of haplotypes can be deter-
mined [13]. Hansel and Gretel use all available pairwise
observations and work to recover the most likely haplo-
types. Unlike other methods, we do not assume that
the observed evidence must be contaminant or sequenc-
ing error that needs discarding or altering to recover
the real haplotypes. Errors will be poorly supported by
read data (and so will have a low probability) and are
unlikely to be selected by Gretel to become part of a
haplotype during traversal.

Most haplotype reconstruction tools are designed
specifically for diploid resolution.  Some, such as
HapCompass [I8] are designed to identify haplotypes for
a single polyploid organism. Such alternatives require
prior knowledge of the number of expected haplotypes
[34], or other properties of the environment, which are
unknowns for metagenomic data sets.

There have been several recent probabilistic ap-
proaches targeting the challenge of more complex sce-
narios such as viral quasispecies assembly [35] [36].
QuasiRecomb [37] uses a hidden Markov model solution
taking into account recombination events. We tested
QuasiRecomb on the gag region of the HIV dataset, and
it predicted over 9000 haplotypes. Optimizing its set
of parameters is non-trivial. PredictHaplo [38] is also
capable of performing full recoveries of the HIV-1 non-
env genes, but has been shown to recover conservatively
outside of HIV-1. [39, 40]. PredictHaplo no longer
appears to be maintained and we were unable to exe-
cute the software on data other than its own test data.
The more recent ViQuaS [40] reports higher recall than
PredictHaplo, as expected for an algorithm based on
an overlap assembler. However its precision is influenced
by the quality of the available reference for the post-
assembly filtering step, making ViQuaS less suitable for
the analysis of a metagenome, where a good reference is
unavailable.

With the advent of long-read technology, ProbHap
recognised a niche in applying computationally expen-
sive dynamic programming solutions to low coverage
long-reads [4I]. These solutions are inappropriate for
high-depth short read data sets as the run time increases
exponentially with coverage.

Lens [9] is a greedy algorithm for the assembly of
long-reads from overlapping short reads, with an algo-
rithm similar to that of FastHare [42]. Lens uses a
straightforward overlap assembly approach that can be
used for haplotype resolution as it makes few assump-
tions. Lens generates a large number of unordered hap-
lotypes, including many false positives, but for clean
enough datasets this approach may be quick and suffi-
cient. In our tests on the HIV data, Lens produced 206
haplotypes for the env region and 147 for pol without
any information on their ranking.

Algorithms that find the correct set of haplotypes
from sequence data have the same evaluation issues as
information retrieval algorithms. As well as measur-
ing the per-base haplotype similarities, the amount of
false positives and false negatives are also important.
A brute force algorithm for the production of all pos-
sible haplotypes would produce perfect retrieval of the
real haplotypes, but would also retrieve many false pos-
itives. Gretel overcomes this problem by ranking the
haplotypes it returns based on the likelihood of that
haplotype given the evidence in the Hansel matrix at
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the time that haplotype was completed.

The likelihoods output by Gretel are amenable to
further statistical analyses such as likelihood ratio test-
ing, or model selection tests using Akaike or Bayesian
information criterion [43] to test the fit of complex com-
binations of haplotypes as descriptions of the sequencing
read data.

Future work

Although we demonstrate Gretel’s capability to make
perfect recoveries of haplotypes, there exists room for
further work. We intend to revisit the following aspects
of our approach:

e Reweighting
Gretel is a deterministic algorithm. The pairwise
SNP observation that contributed to the most recent
path are reweighted in the Hansel matrix to encour-
age new paths to be discovered. We found that our
current choice of reweighting scheme explains some
mismatches made by Gretel on the DHFR and Flu-
A7 data sets. Other choices of reweighting scheme
are possible and we are investigating their potential.

e Naive insertion handling
Due to a size constraint on the Hansel matrix, fur-
ther thought is needed to devise a practical method-
ology that permits the proper consideration of in-
sertions. However, unlike many other approaches
Gretel does not discard reads containing insertions.

o Greediness

Gretel’s algorithm involves a greedy bias: We as-
sume the “best” haplotype is the most likely haplo-
type, and that it can be recovered by selecting the
edge with the highest probability at each SNP. How-
ever it is possible that Gretel could locate solutions
whose overall likelihood may be higher with an al-
ternative search strategy.

e Stopping Criterion
Gretel will generate haplotypes until a dead end in
the Hansel matrix is encountered, from which there
is no evidence for any further transitions. Although
we found that our approach can yield low-quality
haplotypes before this time, they will have lower like-
lihoods.

e Unused Evidence

There remain sources of evidence not currently used
by our algorithm — namely paired end reads and
alignment base quality scores. Such data will cer-
tainly provide useful co-occurrence and confidence
information for SNPs that span some known insert,
however careful consideration on how to integrate
this data to our approach is necessary.

Conclusion

In this work we have introduced a definition for the
metahaplome and provide an implementation of a
novel data structure for the storage and manipulation of
the evidence supporting the haplotypes within Hansel.
This tool has value outside of this work, and can provide
future algorithms a means to interact with the variation
observed in a set of sequenced reads. We also provide
Gretel, an algorithm for the recovery of metagenomic
haplotypes from the Hansel data structure. Together
they represent a framework for the reconstruction of the

haplotypes with the maximum likelihoods from metage-
nomic datasets without a priori knowledge or making
assumptions of the distribution or number of variants.
Additionally, the algorithm is robust to sequencing and
alignment error without altering or discarding observed
variation and uses all available evidence from aligned
reads.

Existing bioinformatics tools for the processing and
analysis of sequencing data make assumptions that
are inappropriate for the analysis of haplotypes from
metagenomes [44], 19]. Indeed, our own work still re-
lies on alignment to a common reference in order to
call SNPs, which can affect recovery rate, as was seen
with the synthetic metahaplomes. We would like to
investigate methodologies to abandon the requirement
for a common reference (that is, in our terminology
the assembly or pseudo-reference) and work solely with
read data. This would offer opportunities for introduc-
ing fewer assumptions and maintaining the integrity of
variants observed across metagenomic data before they
reach a framework such as Hansel and Gretel. How-
ever, such approaches are not in widespread use or are
still under development [23] 45].

In lieu of this, and despite these issues, a metage-
nomic assembly provides both a convenient proxy for the
raw reads and a pseudo-reference against which to align
reads and call for SNPs. This does not diminish the
ability to accurately recover and rank haplotypes from
metahaplomes constructed from both contrived and real
data sets. Rather, we demonstrate that our likelihood
framework can allow recovery and ranking of haplotypes
from microbial communities with 100% accuracy.

Hansel and Gretel have the potential for the dis-
covery of novel biological insights from microbiomes.
This is not a trivial task; many existing in silico and
i vitro techniques such as rational design have strug-
gled to achieve this goal. Applied to metagenomic data
from appropriate microbial communities, our approach
will reconstruct the cryptic haplotypes within and al-
low the characterisation of target proteins responsible
for catalytic reactions of biotechnological importance.

Code Availability and Data Access

Our Hansel and Gretel framework is freely avail-
able, open source software available online at
https://github.com/samstudio8/hansel/and https:
//github.com/samstudio8/gretel, respectively.

The code used to generate metahaplomes and syn-
thetic reads for both the randomly generated and real-
gene haplotypes, and the testing data used to eval-
uate our methods is also available online via https:
//github.com/samstudio8/gretel-test
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Methods

The metahaplome

We have provided a detailed mathematical definition of the metahaplome in Supplementary Section
To enable recovery of a metahaplome from a metagenome with Gretel we require:

e g, a known DNA region (for example a gene), to be identified by the user

e c[i: j], the region of contig ¢ (from an assembly C) which has been identified as having similarity to g
e A, the alignments of the set of reads R against the contig region c[i : j]

® S¢ji:j], the genomic positions determined to be SNPs over the region c[i : j]

A metagenomic assembly (which we refer to as a ‘pseudo-reference’, C') can be generated by assembling sequenced
reads, with an assembler such as Velvet [46]. One may identify a gene of interest g, on a contig ¢ by similarity search
or gene prediction. We refer to gene g as the target. We want to recover the most likely haplotypes of g that exist in
the metahaplome.

A subset of reads that align to the target region can be determined using a short read alignment tool such as
bowtie2 [47]. Reads that fall outside the target of interest (i.e. reads that do not cover any of the genomic positions
covered by the target) can be safely discarded: they do not provide relevant evidence to SNPs that appear on the
region of interest.

Variation at single nucleotide positions across reads along the target, can then be called with a SNP calling
algorithm such as that provided by samtools [48] or GATK [49]. To avoid loss of information arising from the diploid
bias of the majority of SNP callers [33], our methodology aggressively considers any heterogeneous site as a SNP.

The combination of aligned reads, and the locations of single nucleotide variation on those reads can be exploited
by Hansel and Gretel to recover real haplotypes in the metagenome: the metahaplome.

Hansel: A novel data structure

We present Hansel, a probabilistically-weighted, graph-inspired, novel data structure. Hansel is designed to store
the number of observed occurrences of a symbol « appearing at some position in space or time ¢, co-occurring with
another symbol 8 at another position in space or time j. For our approach, we use Hansel to store the number of
times a SNP « at the i’th variant some contig ¢, is observed to co-occur (appear on the same read) with a SNP 3 at
the j’th variant of the same contig. Hansel is a four dimensional matrix whose individual elements H|[«, S, i, j] record
the number of observations of a co-occurring pair of symbols («, 8;).

Different from the typical SNP matrix

Our representation differs from the typical SNP matrix model [I0] that forms the basis of many of the surveyed
approaches. Rather than a matrix of columns representing SNPs and rows representing reads, we discard the concept
of a read entirely and aggregate the evidence seen across all reads by genomic position.

At first this structure may appear limited, but the data in H can easily be exploited to build other structures.
Consider Hla, 8,1,2] for all symbol pairs (a,3). One may enumerate the available transitions from space or time
point 1 to point 2. Extending this to consider H|w, 3,1, + 1] for all («, 8) over i, one can construct a simple graph G
of possible transitions between all symbols. In our setting, G could represent a graph of transitions observed between
SNPs on a genomic sequence, across all reads Figure [ shows how the Hansel structure records information about SNP
pairs, and shows a simple graph constructed from this information.

Intuitively, one may traverse a path through G by selecting edges with the highest weight in order to recover a
series of symbols that represent an ordered sequence of SNPs that constitute a haplotype in the metahaplome. The
weight of an edge between two nodes may be defined as the number of reads that provide direct evidence for that pair
of SNP values occurring together.

Different from a graph

Although the analogy to a graph helps us to consider paths through the structure, the available data cannot be fully
represented with a graph such as that seen in Figure [5| alone. A graph representation defines a constraint that only
considers pairs of adjacent positions (i,7 + 1) over i. Edges can only be drawn between adjacent SNPs and their
weightings cannot consider the evidence available in H between non-adjacent SNP symbols. Without considering
information about non-adjacent SNPs, one can traverse G to create paths (sequences of SNPs) that do not exist in
the observed data set, as shown in Figure[6] To prevent construction of such invalid paths and recover genuine paths
more accurately, one should consider evidence observed between non-adjacent symbols when determining which edge
to traverse next.

Using information from non-adjacent SNPs, and the path so far

The Hansel structure is designed to store pairwise co-occurrences of all SNPs (not just those that are adjacent),
across all reads. We may take advantage of the additional information available in H and build upon the graph
G. Incorporating evidence of non-adjacent SNPs in the formula for edge weights allows decisions during traversal to
consider previously visited nodes, as well as merely the current node path, 1.
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Figure 5: Three corresponding representations, (a) a set of aligned short read sequences, with called variants, (b) the
actual Hansel structure where each possible pair of symbols (00, 01, 10, 11) has a matrix storing counts of occurrences
of that ordered symbol pair between two genomic positions across all of the aligned reads, (c¢) a simple graph that can
be constructed by considering the evidence provided by adjacent variants. Note this representation ignores evidence
from non-adjacent pairs, which is overcome by the dynamic edge weighting of the Hansel data structure’s interface.
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Figure 6: Considering only adjacent SNPs, one may create paths for which there was no actual observed evidence.
Here, the reads {0011, 0001, 0100} do not support either of the results {0000, 0101}, but both are valid paths through
a graph that permits edges between pairs of adjacent SNPs.

That is, given a node i, the decision to move to a symbol at i + 1 can be informed not only by observations in the
reads covering positions (i, 7+ 1), but also (i — 1, i+ 1), (i — 2, i+ 1), and so on. Such a scheme allows for the efficient
storage of some of the most pertinent information from the reads, and allows edge weights to dynamically change in
response to the path as it has been constructed thus far. Outward edges between (i, ¢ + 1) that would lead to the
construction of a path that does not exist in the data can now be influenced by observations in the reads beyond that
of the current node and the next. Our method mitigates the risk of constructing paths which do not truly exist.

The consideration and storage of pairwise SNPs fits well with the Naive Bayes model employed to simplify the
potentially expensive calculation of conditional probabilities (Supplementary Section .

Although we describe Hansel as “graph-inspired”, allowing edge weights to depend on the current path through
G itself leads to several differences between the Hansel structure and a weighted directed acyclic graph. Whilst these
differences are not necessarily disadvantageous, they do change what we can infer about the structure.

A dynamic structure

The structure of the graph is effectively unknown in advance. That is, not only are the weights of the edges not known
ahead of traversal (as they depend on that traversal), but the entire layout of nodes and edges is also unknown until
the graph is explored (although, arguably this would be true of very large simple graphs too). Indeed, this means it
is also unknown whether or not the graph can even be successfully traversed.

Also of note is the fact that the graph is dynamically weighted. The current path represents a memory that affects
the availability and weights of outgoing edges at each node. Edge weights are calculated probabilistically during
traversal. They depend on the observation of SNP pairs between some number of the already selected nodes in the
path, and any potential next node. Supplementary Section [3] provides the equation and intuition for the probabilistic
calculation of edge weights.

In exchange for these minor caveats, we have a data structure that permits graph-like traversal that is intrinsic
to our problem definition, whilst utilising informative pairwise SNP information collected from observations on raw
metagenomic reads. Hansel fuses the advantages of a graph’s simple representation (and its inherent traversability)
with the ability to efficiently store pertinent information by considering only pairs of SNPs across all reads.
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Gretel: An algorithm for recovering haplotypes from metagenomes

We introduce Gretel, an algorithm designed to interface with the Hansel data structure to recover the most likely
haplotypes from a metahaplome. To obtain likely haplotypes, Gretel traverses the probabilistic graph structure
provided by Hansel, selecting the most likely SNPs at each possible node (i.e. traversing edges with the greatest
probability), given some subset of the most recently selected nodes in the path so far. At each node, an L’th order
Markov chain model is employed to predict which of the possible variants for the next SNP is most likely, given the
last L variants in the current path.

Execution of Gretel can be broken into the following steps:

1. Parse the read alignments and retain only the bases that cover SNP sites, discarding any conserved base positions
as they provide no haplotype information.

2. Populate the Hansel structure with all pairwise observations from each of the reads.

3. Exploit the Hansel graph API to incrementally recover a path until a variant has been selected at each SNP
position:

e Query for the available transitions from the current position in the graph to the next SNP

e Calculate the probabilities of each of the potential next variants appearing in the path given the last L
variants

e Append the most likely variant to the path and traverse the edge

4. Report this path as a haplotype and then remove the information for this path from the data by reweighting
observations that contributed to this path. This will allow for new paths to be retrieved next.

5. Repeat (3-4) until the graph can no longer be traversed or an optional additional stopping criterion has been
reached.

Greedy path construction

Haplotypes are reconstructed as a path through the Hansel structure, one SNP at a time, linearly, from the beginning
of the sequence. At each SNP position, the Hansel structure is queried for the variants that were observed on the raw
reads at the next position. Hansel also calculates the conditional probabilities of each of those variants appearing as
the next SNP in the sequence, using a Markov chain of order L that makes its predictions given the current state of the
observations in the Hansel matrix and the last L selected SNPs. Gretel’s approach is greedy: we only consider the
probabilities of the next variant. Our razor is to assume that the best haplotypes are those that can be constructed
by selecting the most likely edges at every opportunity.

Reweighting to find multiple haplotypes

Whilst our framework is probabilistic, it is not stochastic. Given the same Hansel structure and operating parameters,
Gretel will behave deterministically and return the same set of haplotypes every time. However, we are interested in
recovering the metahaplome of multiple, real haplotypes from the set of reads, not just one haplotype. Hansel exposes
a function in its interface for the reweighting of observations. Once a path through the graph is completed (a variant
has been chosen for all SNP sites), the observations in the Hansel matrix are reweighted by Gretel.

Currently, Gretel reduces the weight of each pairwise observation that forms a component of a completed path -
in an attempt to reduce evidence for that haplotype existing in the metahaplome at all, allowing evidence for other
haplotypes to now direct the probabilistic search strategy.

Gretel’s outputs

Finally, Gretel outputs recovered sequences as FASTA, requiring no special parsing of results to be able to conduct
further analyses. Of course, with knowledge of the input haplotypes that we expect to recover, we are able to quantify
our approach. For real metahaplomes, we need a mechanism to differentiate false positives, or to rank our confidence
in the returned haplotypes.

Future work will investigate this in more depth, but currently, in addition to the sequences themselves, Gretel
outputs a ‘crumbs’ file — a whimsical name for a simple, tab delimited format — that contains metadata for each of
the recovered sequences: log probability of that sequence existing given the evidence seen overall, how much of the
evidence in Hansel that particular sequence was supported by, and how much of that evidence was reweighted as a
result of that path being chosen.

Currently, Gretel will continuously recover paths out of the remaining evidence until it encounters a node from
which there is no evidence that can inform the next decision.

Testing methodologies

In this section, we provide an overview of the methods to generate metahaplomes for both synthetic haplotypes, and
haplotypes based on real genes. We describe our approach for evaluation of our work. Our test methodologies evaluate
the performance of our framework against metahaplomes consisting of synthetic reads derived from both randomly
generated haplotypes, and also haplotypes created from real gene sequences. Table[3]summarises each of the evaluation
data sets.
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Dataset Length Variation Read Sizes Per-haplotype Replicates Number of Number of

Name (bp) (SNPs/hb) (bp) Depths Read Sets Haplotypes
0.001 180 X b
0.005 180 x 5
0.01 180 x 5
seq-gen 3000 0.015 100, 150, 250 3, 5, 7, 10, 25, 50 10 x 5 trees 180 x 5 )
0.02 180 x 5
0.05 180 x 5
0.1 180 x 5
DHFR 564 0.06967 50, 150 3,5, 7, 10, 25, 50 100 1,200 5
Flu-A7 982 0.011757 50, 150 3,5, 7, 10, 25, 50 100 1,200 24
HIV-gag 1500 2197 6465.07* 1
HIV-pol 3009 217* 9396.89* 1
HIV-nef 618 0.2f 218% 4211.87% 1 1 5
HIV-vif 576 216% 4822.18% 1
HIV-env 2568 2144 4539.87% 1

Table 3: Properties of the evaluation data sets. TPer haplotype base variation rate estimated by dividing the ratio
of SNPs over sequence length by the number of known haplotypes. Read size and depth for HIV-1 data sets were
averaged over the region of the particular gene in the aligned BAM (Table [5).

Read generation and variant calling

With the exception of the HIV data set, our reads are generated in silico with our Python based tool (shredder)
which can be found as part of our evaluation repository via: https://github.com/SamStudio8/gretel-testl

Our synthetic reads are designed to be simplistic; errorless and of uniform length and coverage. The synthetic read
sets form a basis for testing the Hansel and Gretel packages during development, as well as providing a platform on
which to investigate the influence that parameters such as read length, number of haplotypes, and mutation rate have
on haplotype recovery.

For a given FASTA file, our tool generates reads of a uniform user-defined length and coverage, for each of the
sequences in the file. The tool calculates the number of reads to generate to achieve the approximate coverage, given
the length of the sequence, and the selected read length. A BED file can be used to mask particular areas of one or
more of the input FASTA sequences.

Uniform coverage is approximated by randomly generating the start positions of all of the reads across the input
sequence (and also allowing for up to half of a read to fall off either end of the sequence).

As our tool is aware of the start position of every read that it generates, it is possible to also produce an alignment
of those reads in SAM format. This allows us to align reads without introducing biases and assumptions from external
tools. Pileups of our generated reads typically feature many tri- or tetra-allelic sites (especially as mutation rate
increases). Many variant calling approaches feature diploid biases and can disregard such sites as sequencing error,
denying us the information with which to recover correct haplotypes. Our approach is robust to noise arising from
sequencing error (see the results for the HIV data, which consists of real reads from a mixed set of 5 HIV strains). It
is also robust to misaligned reads (see results for the DHFR, Influenza and HIV data) and as such we can aggressively
call variants by assuming any heterogeneous site is a SNP.

Our evaluation repository contains the simple snpper tool that generates a VCF for a given BAM. snpper outputs
a VCF record for any heterogeneous site.

The code, documentation, and data for evaluation are open source and freely available via our data and testing
repository: https://github.com/samstudio8/gretel-test

Evaluating recovery accuracy

To evaluate the accuracy of a run of Gretel, each known input haplotype is compared pairwise to each of the
recovered output haplotypes. Each input haplotype is matched to a corresponding “best” recovered haplotype. Best
is defined as the output haplotype that yields the smallest Hamming distance from a given input haplotype. For each
synthetic metahaplome, we perform a multiple sequence alignment with MUSCLE [50] to determine the definitive SNP
positions. When calculating Hamming distance, we consider only these corresponding positions. That is, we exclude
the comparison of homogeneous sites from the evaluation metric, to ensure we only consider our accuracy on positions
that require recovery. For our results we report the proportion of total SNPs that were correctly recovered by Gretel,
expressed as a percentage.

Comparing sites enumerated by the multiple sequence alignment of the original haplotypes, as opposed to the VCF
of each individual read set ensures Gretel is penalised when a SNP has not been called from the read set.

Note that regardless of quality, all input haplotypes are assigned a best output haplotype. An output haplotype
may be the best haplotype for more than one input. If more than one output haplotype has the same Hamming
distance, the first that was found is chosen. If Gretel could not complete at least one haplotype (i.e. a pair of
adjacent SNP positions were not covered by at least one read), all input haplotypes are awarded a recovery of 0%.
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Mutation Rate Average number of

(SNPs/hb) variants called
0.001 17.25
0.005 71.20
0.010 141.54
0.015 209.25
0.020 277.28
0.050 640.63
0.100 1159.62

Table 4: Mean number of variants called over the 900 generated synthetic read sets, for each per-haplotype base (hb)
mutation rate. The generated sequences for each metahaplome were 3000 nt long.

Synthetic (seqg-gen) metahaplomes

With the desire to first test our approach on data sets with well-defined and controllable read properties, but still
posing a recovery problem, seq-gen [24] was used to generate sets of DNA sequences that would serve as haplotypes
of a synthetic metahaplome.

seq-gen simulates the evolution of a nucleotide sequence along a given phylogeny. For testing Gretel, we provided
a star shaped guide tree with uniform branch lengths, such that all haplotypes would be equally dissimilar to each
other. These uniform branch lengths correspond to the rate of per haplotype base (hb) nucleotide heterogeneity. Thus,
each taxa in the tree has a DNA sequence based upon the evolution of the given starting sequence, following simulated
evolution at the given rate.

The same starting sequence was shared by all of our generated trees. We used a randomly generated sequence of
3000 nt with 50% GC content. We fixed the number of taxa in the trees at five, but varied the mutation rate across
seven levels (Table 35 trees were generated (7 mutation rates and 5 replicates), each containing five sequences
mutated at the same rate, from the original 3000 nt sequence. Each of the resulting 35 sets of five mutated DNA
sequences represent a metahaplome from which the five haplotypes must be recovered by Gretel.

As per our described read generation and variant calling protocol, we generated synthetic reads from each of the
five sequences in the metahaplome, varying both the read length and per-haplotype read depth (i.e. the average
coverage of each haplotype). For each read length and depth parameter pair, ten read sets were generated, to amortise
any effect on haplotype recovery introduced by the alignments of the reads themselves. We generated 6300 read sets
(3 read sizes, 6 per-haplotype depth levels, 7 mutation rates, 10 read replicates, 5 tree replicates). Table|3|summarises
the data sets generated for evaluation.

Metahaplomes from real genes

bowtie2 --local
-D 20 -R 3 -L 3 -N 1 -p 8
--gbar 1 --mp 3
-x master.bti -U reads.fq --un unaligned.fq --no-unal -S out.sam

Listing 1: Bowtie2 parameters used to align the read sets

We chose an arbitrary DHFR gene from GenBank (EU145592.1) to serve as the ‘master’ (pseudo-reference)
sequence against which to align reads to call variants of a synthetic DHFR metahaplome. To find sequences to
use as haplotypes, a discontinuous megaBLAST was conducted against the master. A set of five related but arbitrary
genes of decreasing sequence identity (~99.8%, 97.3%, 90.1%, 83.5%, 78.7%) were selected (Table [I]).

As per our previously described read generation method, we created read sets generated from the five input
sequences, varying their length and depth. Our data set is outlined in Table [3} and consists of 1,200 sets of reads (2
read sizes, 6 per-haplotype coverage levels, 100 replicates).

Unlike the methodology for the seq-gen simulations, our DHFR reads were aligned back to the pseudo-reference
with bowtie2, as the input sequences were not of the same length and could potentially contain insertions or dele-
tions with respect to the chosen reference. Reads from the more dissimilar sequences were discarded by bowtie2
(Supplementary Materials Fig. , which is a problem, because the variant information that they contain is then no
longer available to add to Hansel. This was also true of other commonly used sequence aligners, including bwa. These
tools are not designed for use-cases where one wishes to permit such diverse sequences to be co-aligned. Though, we
were able to improve overall alignment scores for our DHFR and Flu-A7 data sets by significantly relaxing bowtie2’s
parameters (Listing [1)).

Variants were called on the alignment using our snpper tool (provided at https://github.com/samstudio8/
gretel-test) that determined all heterogeneous sites as variants. A multiple sequence alignment of the original five
haplotypes showed the number of actual SNPs in the data set was 196. Supplementary Figure [1| shows the proportion
of SNPs that were correctly called from the read sets (before recovery). In this scenario, very short reads (50 bp)
appear to offer insufficient evidence to call all the real variants. This can prevent full recovery of some of the haplotypes
(whose variant sites were lost to synthetic read generation, or alignment).
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Metahaplomes from real reads

For verification of our approach on real sequenced reads, we evaluated Gretel with a dataset designed specifically for
the benchmarking of haplotype reconstruction methods [27]. Five well studied HIV-1 strains (89.6, HXB2, JRCSF,
NL43, and YU2) were mixed and sequenced with an Illumina MiSeq.

The Ilumina reads are available from ENA (SRR961514). As per our protocol, reads were aligned against a
pseudo-reference. We selected one of the five strains to serve as this reference (89.6, and aligned all sequenced reads
against it using bowtie2. The overall alignment rate was 96.87%, yielding an alignment of 1,385,162 sequences.

We determined that any heterozygous pileup site in the resulting alignment would be defined as a SNP, resulting
in a VCF containing 9,570 called variants. The SNPs are so numerous that they occur at 98.98% of all sites.

We executed Gretel on five of the largest genes on the HIV-1 genome, using HXB2 gene co-ordinates [51], each
time providing the same alignment BAM and VCF to Gretel, but additionally using the start and end command
line parameters to define the boundary of the particular region of interest. Table [5| describes the five genes and their
properties. Table [6] shows the identity matrix for the five strains.

We evaluated our approach using the same framework as our synthetic metahaplomes. We report the proportion
of variants correctly recovered by Gretel for each of the five known haplotypes, for each of the genes.

Gene Region (Size) Average Coverage Called SNPs
gag 790—2289 (1,500 bp) 32,325.34 1,500
pol 2084—5093 (3,009 bp) 46,984.47 3,009
vif 5040—5616 (576 bp) 24,110.89 576
nef 8796—9414 (618 bp) 21,059.34 618
env 62248792 (2,568 bp) 22.,699.35 2,568

Table 5: The five HIV-1 genes, HXB2 co-ordinates [51] and associated properties of the aligned reads

Strain | 89.6 JRCSF YU2 HXB2 NL43
89.6 100.00 - - - -
JRCSF | 93.98  100.00 - — -
YU2 94.05 95.10  100.00 — —
HXB2 94.43 95.18 95.71  100.00 —
NL43 94.07 94.98 95.39 9749  100.00

Table 6: Percentage identity matrix for the five HIV-1 strains as reported by MUSCLE [50]
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Supplementary Information

1 The metahaplome

Consider:

o ()
An environment of microbial organisms.

e O
A bag containing each full genomic sequence, of each individual organism in environment €.
O is the whole metagenome of €.

e ofi:j]
A sub-sequence i..j of some genome o € O

e Gene g, Protein p
A known DNA sequence g, responsible for the production of a protein p. p is a protein capable of performing a
catalytic reaction of interest, such as the hydrolysis of cellulose

* Afs, g)
Any function A that can determine whether a DNA sequence s (such as a sub-sequence o,[i : j]) has sufficient
similarity to g. A may return a boolean, or a real value with some user-selected threshold.

o I'y =set(logli : 4] | Aloxli: jl,9),k € 1..]0],4,j € 1..|oglS)
One may collect a bag of sub-sequences found to be a similar to g and thus responsible for the production of a
protein product p. The set I'; of unique sequences contained in the bag enumerate the possible sub-sequences
across all o € O that are capable of producing a protein product p.

We define I'y as the metahaplome for the gene g, in the metagenome O. Each such member v € I'y is a haplotype
of g, capable of constructing a protein that performs a biological function of interest in the environment. We wish to
recover the set I'y. Additionally, our methodology requires the following definitions:

e 0 = Sample(Q)

e A sample taken from microbial environment 2.
e 0 CQ

o M

A bag containing each full genomic sequence m, of each individual organism captured in the subset o.

M represents the metagenome that was captured in the sample o.

M is not necessarily representative of the entire metagenome O.
e M CO

e R = Seq(o)
A set of sequenced reads r € R, consisting of a series of residues (bases) r[i] € {A,C,G,T,N},i € 1..|r|.

e R is the set of reads obtained from the sequencing of isolated DNA from sample o.

e R contains fragments of genomes m € M (and error).

Due to sampling bias acquiring ¢ from 2, R is unlikely to be representative of the true genetic diversity
available in O.

Additionally, due to sequencing and PCR biases and error, R is unlikely to provide uniform non-zero coverage
of the residues across all m € M.

o C = Assembly(R)

Contig set C' (the “Assembly”) constructed from the reads R by some Assembly operation.
e (' poses as a pseudo-reference for the sequenced metagenome.

e (' attempts to estimate M, but typically fails to distinguish between similar sequences that belong on distinct
c.

cljl € {A4,C,G, T,N} for j € 1..c|, for c € C.
e A= Align(R,C)

e Alignment A, the set of alignments constructed via aligning read set R to contig set C' with operation Align.
o A.ij), the subset of A containing any alignment on contig c that spans any site between cfi..j]

e S =Call(A.)

e The set of genomic positions on a contig ¢ € C determined to be a SNP (single nucleotide polymorphism) by
an operation Call, given the subset A.: the alignments of R against c.
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Our goal is to determine I'y, for some gene g. Although M will not be entirely representative of O, it is the only
evidence of the sequence diversity available. Thus we adjust our goal to instead find the most likely elements of I'y,
given the evidence that can be derived from M, via the alignments A and variant sites .S.

2 Hansel as a graph

Consider an alphabet of symbols, ¥ (e.g. {A,C,G,T,N,—}) and a list of n SNP positions 1..n. Symbols &g and &g
represent special sentinal positions at the start and end of the SNP positions (0 and n + 1 respectively). As described
in our article, the Hansel structure H can be considered as a graph G = (V| E). Here, we define V, and E:

E= |J {(4, Bin) | H[A B,i,i+1]>0,A€ (SU@s),B € (SUZE)} (1)

V=_{v|((ww) e E}U{v]| (w,v) € FE} (S2)

E represents the set of edges, where an edge (A;, B;11) is determined to exist in F if there exists at least one read
whereby symbol A was observed at position 7 to co-occur with symbol B at SNP position 7 + 1.

It should be noted, that although G can be constructed from H such that it is undirected and contains cycles,
both properties lead to nonsensical haplotypes. Under such circumstances, Gretel could construct a path that visits
multiple nodes that appear at the same ¢, or a trail that visits the same node multiple times. Such sequences would
be meaningless in the context of haplotype construction, thus the interface to Hansel acts in such a way that G is a
directed, acyclic graph.

We can define a haplotype as an alternating sequence of nodes (v € V) and edges (e € E). A path must always
start and end at the special sentinel symbols &g and @, respectively.

h=g,ep,V1,€1,V2,€2, ..., Up_1, €nyVUp, Ent1l, DE (S3)

Although, as only one directed edge between some v; and v;+1 may exist, we can define h as a sequence of v € V:

h:QSfUlvaa"'avnflvvnng (84)

3 Probabilistic edge weights

However, if the construction of G does not consider elements in H[A, B, 1, j| where abs(i — j) > 1 (non-adjacent SNPs)
it is likely one will recover haplotypes that do not actually exist.

Given the pairwise information available in H, for both adjacent, and non-adjacent SNPs, across all reads, edges in
the graph G derived from H can be weighted probabilistically. We attempt to determine the next most likely symbol
in a sequence, considering both the marginal distribution of symbols at the next position and the likelihood of those
symbols appearing next, given an already observed partial sequence. That is, the next symbol v;41 in a path depends
not only on the current symbol (v;) but some number of previous symbols (v;_1,v;—2...09).

The outgoing edges from wv; are probabilistically weighted by exploiting the observations stored in the Hansel
structure to create probabilities. These probabilities then determine the likelihood of moving from some v; to each of
the possible v; 4.

We take a Bayesian approach to the problem of probabilistically weighting edges in Hansel’s graph representation.
We define the probability of selecting v;11, conditioned on the path observed so far:

P(vig1 | v1,02, s Vi—1,0;)
x P(v1,v2, ..., Vi, Vit1)
=P(vy | v2..0i41) X P(va, ...0i41)
=P(vy | v2..0341) X P(va | v3...0541) X P(v3, ...0341)
(v1 | v2..i41) X P(vg | v3...05401) X oo X P(vi—1 | i, 0541)
P(vi | vit1) x P(vig1)

4 Simplification of conditional edge weights

Clearly, the number of factors in Equation increases with ¢. For longer paths (more single nucleotide polymorphisms
detected along the target region of interest), evaluating the equation becomes more computationally expensive, and
risks potentially compounding estimation errors.

To construct a whole path p from v;...v,, the upper bound for the number of iterations will be |X| x n with
calculations becoming increasingly complex as i increases.

To reduce complexity, we make an assumption of conditional independence between variants. Whilst this seems
counter intuitive, the Naive Bayes model can deliver robust results despite its coarse assumption.

Thus we may simplify our previous equation and consider only the pairwise appearances of each v; encountered
thus far against v;11.
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P(vigr | v1,v2, .05 Vi1, 0;)
~ P(”i—&-l) X ]P(’Ul | Ui—i—l) X P(Ug | Ui+1) X .
i (S6)
=P(vit1) [[ P | vigr)

j=1

However as discussed in our article, individual reads will not cover all SNP positions 1..n (if they did, we would not
have to define this problem). Thus, we need not consider all variants in the current path when evaluating edge weights.
Instead, we could limit the number of variants to consider, from the current position in the path ¢, back some small
and sensible number of steps L:

L-1
P(vit1 | vieps s Vie2,0i-1,v;) = P(vi41) H P(vi—t | vit1) (S7)
1=0

Additionally, to overcome inaccuracies encountered through floating point error when performing mathematical oper-
ations on very small decimals, Gretel uses log probabilities instead. Via the log identity log(ab) = log(a) + log(b) the
product of the conditional probabilities becomes a sum of the log conditional probabilities:

L-1
10g10(P(vit1 | Vie L, 0im2,0i-1,0:)) = logio(P(vig1)) + Y logro(P(vi—s | vig1)) (S8)
1=0

We define L as the the ‘lookback’ size, the number of variants of the current path to consider when selecting v;1.
Conveniently, there is a reasonable intuition available for selecting a value for L: the mean number of SNP sites
covered by the observed reads. Thus we avoid the scenario of introducing an algorithmically influential but difficult
to optimize parameter, such as k-mer size for metagenomic assembly.

5 Estimation of probabilities
Equation [S9| provides an estimate for the marginal distribution of a symbol 3 appearing at position j.

P(v; = B)
Number of reads with symbol 3 at position j

Number of reads spanning position j

S HIB, v 4, g+ 1] (59)
_ veX
> > H[y, 6, j, j+1]
YyEX €D

Equation provides an estimate for the conditional distribution of symbol « appearing at position ¢ given that g
was observed at position j.

Plv; = a | v; =f)
Number of reads featuring o at ¢ and 8 at j

~ Number of reads spanning ¢ featuring symbol 3 at j (S10)
— H[Oé, Ba 7;7 ]]
> Hly, B, i, j]

~yEX

6 Smoothing

To avoid the potential of dividing by 0 when using Equation(@ in cases where a suitable read spanning ¢ and v; = j3
does not exist, we apply Laplace smoothing to effectively add a dummy support read. Future work will investigate
alternative smoothing methodology.

Po; = a | v; = B)
1 + Number of reads featuring « at ¢ and 8 at j

~ Variants at i + Number of reads spanning ¢ featuring symbol 3 at j (S11)
1 + H[a7 B? i? j]

T THR, i i+ 1] > 0,7 €S0 €S} + > H,BrisJ)
yEX
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7 Reweighting

The paths generated by Gretel are probabilistic, but not stochastic. For a given H, Gretel will always return the same
path. After a path has been constructed we can perform some transformation of H to prevent repetitive generation
of the same path and return the next most likely path on the next iteration instead.

Given a path ﬁ, we inspect the marginal distribution of each element of the path in order to find the smallest
marginal. Gretel iterates over each element A[i] in the path, and uses the Hansel interface to reweight the element

HIh[i], hli +1],i,i + 1] by subtracting the result of multiplying the smallest marginal by the original value for that
observation in H:

A = min({P(hli]) | i = 1..n}) (S12)
HIh[i], hli+1], i, i+ 1] = H[R[i], hli +1], 4, i+ 1] — (A x H[A[i], hli+1], i, i + 1)) (S13)
In practice A is capped by Gretel in an attempt to stop aggressive reweighting that might otherwise prevent the
recovery of closely related haplotypes.
8 Stopping criterion
After multiple iterations of path finding and subsequent reweighting, elements in H will begin to approach 0, causing
edges in the graph to become unavailable for traversal. Gretel will immediately terminate upon encountering a node
in the graph with no viable outgoing edges. That is, the selected symbol at the current ¢ has no non-zero weighted

edges to traverse between SNP positions (i, i + 1) in the graph. Alternatively, if this criterion is not reached after 100
iterations (haplotypes), Gretel aborts.

9 Haplotype scoring

Gretel can score and rank the haplotypes it recovers. For a completed haplotype, ﬁ, we compute its likelihood based
upon the sum of the marginal log probabilities for each element of h given the current state of H.

il = Jg,V1,V2,...,Up—1,Un, TE
L(h) =P(H | h) = P(v; = h[1],vy = h[2],v3 = h[3],..vn_1 = h[n — 1],v, = h[n])
=1 (S14)

n [hla), 7, 4, i+1]
U

H
Z [v, 8, 4, i +1]
deX

To overcome the potential for floating point arithmetic error (Equation , we calculate and report the log likelihood.

S HIA, v, iy i+ 1]

logio(L(h)) 2210910 ;22 Hpy, 6,4, i +1] (S15)

YEX €D
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10 Metahaplomes from real genes (DHFR): Additional plots
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Figure 1: Proportion of the 196 SNPs across the five DHFR haplotypes that were correctly discovered by our snpper
tool (y-axes) during variant calling of each of the synthetic read sets. Read sets are split by per-haplotype read depth
(x-axis) and read length (row facets), each box-with-whiskers summarises 100 read sets. Uncalled SNPs prevent full
recovery of one or more of the input haplotypes.
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Figure 2: Proportion of synthetic reads from read sets dropped (y-axes) by the chosen aligner bowtie2 (see Listing
for parameters used), for each input DHFR gene (column facets). Read sets are split by per-haplotype read depth (x-
axis) and read length (row facets), each box-with-whiskers summarises the proportion of a particular gene’s synthetic
reads dropped, across 100 read sets. Dropped reads can impact the calling of SNPs and reduces the available evidence
for the recovery of those haplotypes.
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11 Metahaplomes with many haplotypes: Influenza A Segment 7

In order to test our methods on a data set with many haplotypes and many variants we obtained 446 Influenza A
Segment 7 sequences from GenBank, requesting any sequences deposited during December 2016. After removing
duplicates, and sequences with 99.0% or greater identity to any other candidates, 60 remained.

These 60 remaining sequences had varying lengths. 25 of the 60 sequences were of one particular length: 982
bp. This provided a suitable selection criteria with which to construct our metahaplome (Table . From the 25,
KP404423.1 was selected at random to act as the pseudo-reference for alignment. The pool of 24 remaining sequences
act as haplotypes from which we generated synthetic reads via the same method used for our simulations and DHFR
metahaplomes. Variants were called in the same way as our previous experiments, determining any site without a
unanimous consensus as a variant.

Flu-A7 Accessions

KPJ0]183.1 | KP]04287.1 | KX215927.1 | KY171305.1 | KY272977.1
KPJ04207.1 | KP404345.1 | KY170930.1 | KY171393.1 | KY3276/1.1
KPJ04247.1 | KP404383.1 | KY171026.1 | KY171401.1 | KY327765.1
KPJ04255.1 | KPJ04425.1% | KY1712/2.1 | KY171}89.1 | KY327767.1
KPJ0/271.1 | KT717277.1 | KY171257.1 | KY171507.1 | KY32778.1

*Pseudo-reference

Table 1: Accession numbers for the 25 Influenza A Segment 7 sequences used in our analysis. The randomly selected
pseudo-reference is marked with an asterisk.

We followed the same experimental design as per the DHFR data sets, yielding 1,200 sets of reads (2 read sizes,
6 per-haplotype coverage levels, 100 replicates), each containing synthetic reads from the 24 haplotypes. A multiple
sequence alignment of the 24 haplotypes determined the number of true SNPs to be 277. The mean number of called
SNPs across all read sets was 276.02.

Gretel was used on each read set, returning 1,200 sets of recovered haplotypes. Each set of output haplotypes
is compared pairwise against the input 24 haplotypes, calculating the Hamming distance at sites determined to be
heterogeneous via a multiple sequence alignment. We report the proportion of correctly recovered heterogeneous sites,
as a percentage.

Figure [3| aggregates the proportions of SNPs that were correctly recovered by Gretel over the 24 haplotypes under
varying conditions of read size and depth. At this level of variation we produce high accuracy recoveries with reads of
50 bp. Read sets with at least 7x per-haplotype depth and 150 bp length make recoveries across the 24 haplotypes with
an average accuracy of 92%. Notably, increasing read length and coverage does little to improve recovery accuracy,
even at 250 bp (not shown). There appears to be an upper-limit on Gretel’s performance on this particular data set.
As discussed in our DHFR Results, this could be due to dropped reads obscuring the existence of SNPs,; and denying
evidence of the variation that exists on that haplotype. Additionally, the shared variation in such a closely related set
of sequences can cause paths in the true metahaplome to converge. Our data suggests that even in a metahaplome
with 24 haplotypes, it is possible to make accurate recoveries (>90%) with reads of 50 bp.
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Figure 3: Boxplots aggregating the proportion of variants correctly recovered (y-axes) for the 24 input Influenza A
Segment 7 sequences by Gretel. We generated reads from the Flu-A7 metahaplome at 6 different per-haplotype read
depths (x-axes) between 3 and 50x, 2 read lengths (50 bp and 150 bp row facets) with 100 replicates. Individual
box-with-whiskers describe the recovery rates across the 24 haplotypes, from reads of a per-haplotype depth and size,
over the 100 replicates. There appears to be an upper limit on the recoveries that are possible from this data set.
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