
	 1	 Enumeration	of	cancer	and	immune	cell	types	

Simultaneous	enumeration	of	cancer	and	immune	cell	

types	from	bulk	tumor	gene	expression	data	
	

Running	title:	Enumeration	of	cancer	and	immune	cell	types.	

	

Authors:	 Julien	 Raclea,b,	 Kaat	 de	 Jongec,	 Petra	 Baumgaertnerc,	 Daniel	 E.	 Speiserc	 and	

David	Gfeller*,a,b	
	

aLudwig	Centre	for	Cancer	Research,	Department	of	Fundamental	Oncology,	University	

of	Lausanne,	CH-1066	Epalinges,	Switzerland	
bSwiss	Institute	of	Bioinformatics	(SIB),	CH-1015	Lausanne,	Switzerland	
cDepartment	of	Fundamental	Oncology,	Lausanne	University	Hospital	(CHUV),	CH-1066	

Epalinges,	Switzerland	
	

*Corresponding	author:		

David	Gfeller	

Computational	Cancer	Biology	

Ludwig	Centre	for	Cancer	Research,	UNIL	

Ch.	des	Boveresses	155	

CH-1066	Epalinges	

Switzerland	

Tel:		 +41	(0)21	692	59	83	

Fax:		 +41	(0)21	692	59	95	

E-mail:		 david.gfeller@unil.ch		

	

Keywords:	 Tumor	 immune	microenvironment,	 gene	 expression	 analysis,	 cell	 fraction	

predictions,	computational	biology.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2017. ; https://doi.org/10.1101/117788doi: bioRxiv preprint 

https://doi.org/10.1101/117788
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 2	 Enumeration	of	cancer	and	immune	cell	types	

Abstract	

Immune	cells	infiltrating	tumors	can	have	important	impact	on	tumor	progression	and	

response	 to	 therapy.	We	present	an	efficient	algorithm	to	simultaneously	estimate	 the	

fraction	 of	 cancer	 and	 immune	 cell	 types	 from	 bulk	 tumor	 gene	 expression	 data.	 Our	

method	integrates	novel	gene	expression	profiles	from	circulating	and	tumor	infiltrating	

cells	for	each	major	immune	cell	type,	cell-type	specific	mRNA	content	and	the	ability	to	

model	 uncharacterized,	 and	 possibly	 highly	 variable,	 cell	 types.	 Feasibility	 is	

demonstrated	by	validation	with	flow	cytometry,	immunohistochemistry	and	single-cell	

RNA-Seq	analyses	of	human	melanoma	and	colorectal	tumor	specimens.	Altogether,	our	

work	not	only	 improves	accuracy	but	also	broadens	the	scope	of	absolute	cell	 fraction	

predictions	from	tumor	gene	expression	data,	and	provides	a	unique	novel	experimental	

benchmark	for	immunogenomics	analyses	in	cancer	research.	

Introduction	

Tumors	 form	 complex	 microenvironments	 composed	 of	 various	 cell	 types	 such	 as	

cancer,	 immune	and	stromal	cells	(Hanahan	&	Weinberg,	2011;	Joyce	&	Fearon,	2015).	

Immune	 cells	 infiltrating	 the	 tumor	 microenvironment	 play	 a	 major	 role	 in	 shaping	

tumor	progression,	response	to	(immuno-)therapy	and	patient	survival	(Fridman,	Pagès,	

Sautès-Fridman,	 &	 Galon,	 2012).	 Today,	 gene	 expression	 analysis	 is	 widely	 used	 to	

characterize	 tumors	 at	 the	molecular	 level.	 As	 a	 consequence,	 tumor	 gene	 expression	

profiles	from	tens	of	thousands	of	patients	are	available	across	all	major	tumor	types	in	

databases	such	as	Gene	Expression	Omnibus	(GEO	(Edgar,	Domrachev,	&	Lash,	2002))	

or	 The	 Cancer	 Genome	 Atlas	 (TCGA	 (Hoadley	 et	 al.,	 2014)).	 Unfortunately,	 flow	

cytometry	 or	 immunohistochemistry	 (IHC)	 measurements	 to	 quantify	 the	 number	 of	
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both	malignant	 and	 tumor	 infiltrating	 immune	 cells	 are	 rarely	 performed	 for	 samples	

analyzed	 at	 the	 gene	 expression	 level.	 Therefore,	 to	 correctly	 interpret	 these	 data	 in	

particular	from	an	immuno-oncology	point	of	view	(Angelova	et	al.,	2015;	Gentles	et	al.,	

2015;	 Hackl,	 Charoentong,	 Finotello,	 &	 Trajanoski,	 2016;	 B.	 Li	 et	 al.,	 2016;	 Linsley,	

Chaussabel,	&	Speake,	2015;	Rooney,	Shukla,	Wu,	Getz,	&	Hacohen,	2015;	Şenbabaoğlu	

et	 al.,	 2016;	 Zheng,	 Zhang,	 Wu,	 &	 Wu,	 2017),	 reliable	 and	 carefully	 validated	

bioinformatics	tools	are	required	to	 infer	the	fraction	of	cancer	and	immune	cell	 types	

from	bulk	tumor	gene	expression	data.	

To	 this	 end,	 diverse	 bioinformatics	 methods	 have	 been	 developed.	 Some	 aim	 at	

estimating	tumor	purity	based	on	copy	number	variation	(Carter	et	al.,	2012;	B.	Li	&	Li,	

2014),	or	expression	data	(Quon	et	al.,	2013;	Yoshihara	et	al.,	2013),	but	do	not	provide	

information	 about	 the	 different	 immune	 cell	 types.	 Others	 focus	 on	 predicting	 the	

relative	proportions	of	 immune	cell	 types	by	 fitting	reference	gene	expression	profiles	

from	sorted	immune	cells	(Gong	&	Szustakowski,	2013;	B.	Li	et	al.,	2016;	Newman	et	al.,	

2015)	or	with	help	of	gene	signatures	(Becht	et	al.,	2016;	Zhong,	Wan,	Pang,	Chow,	&	Liu,	

2013).	 These	 approaches	 have	 been	 recently	 applied	 to	 cancer	 genomics	 data	 to	

investigate	 the	 influence	 of	 immune	 infiltrates	 on	 survival	 (Gentles	 et	 al.,	 2015;	

Şenbabaoğlu	 et	 al.,	 2016)	 or	 predict	 potential	 targets	 for	 cancer	 immunotherapy	

(Angelova	 et	 al.,	 2015;	 B.	 Li	 et	 al.,	 2016).	 However,	 none	 of	 these	 methods	 provides	

quantitative	 information	about	both	cancer	and	 immune	cell	 type	proportions	directly	

from	 tumor	 gene	 expression	 profiles.	 In	 addition,	 reference	 gene	 expression	 profiles	

used	 in	 previous	 studies	 have	 been	 mainly	 obtained	 from	 circulating	 immune	 cells	

sorted	 from	 peripheral	 blood	 and	 were	 generally	 based	 on	 microarrays	 technology.	

Finally,	 several	 of	 these	 approaches	 have	 not	 been	 experimentally	 validated	 in	 solid	

tumors	from	human	patients.	
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Here,	 we	 developed	 a	 robust	 approach	 to	 simultaneously	 Estimate	 the	 Proportion	 of	

Immune	and	Cancer	cells	(EPIC)	from	bulk	tumor	gene	expression	data.	EPIC	is	based	on	

a	 unique	 collection	 of	 RNA-Seq	 reference	 gene	 expression	 profiles	 from	 either	

circulating	or	tumor	infiltrating	immune	cell	types.	To	account	for	the	high	variability	of	

cancer	cells	across	patients	and	 tissue	of	origin,	we	 implemented	 in	our	algorithm	the	

ability	to	consider	uncharacterized,	possibly	highly	variable,	cell	 types.	To	validate	our	

predictions	in	human	solid	tumors,	we	first	analyzed	melanoma	samples	with	both	flow	

cytometry	and	RNA-Seq.	We	then	collected	publicly	available	 IHC	and	single-cell	RNA-

Seq	data	of	colorectal	and	melanoma	tumors.	All	three	validation	datasets	showed	that	

very	 accurate	 predictions	 of	 both	 cancer	 and	 immune	 cell	 type	 proportions	 could	 be	

obtained	even	in	the	absence	of	a	priori	 information	about	cancer	cell	gene	expression	

profiles.		

Results	

Reference	 gene	 expression	 profiles	 from	 circulating	 and	 tumor	 infiltrating	

immune	cells	

EPIC	incorporates	reference	gene	expression	profiles	from	each	major	immune	cell	type	

to	model	bulk	RNA-Seq	data	as	a	superposition	of	these	reference	profiles	(Figure	1A,B).	

To	 tailor	 our	 predictions	 to	 recent	 gene	 expression	 studies,	 we	 first	 collected	 and	

curated	RNA-Seq	profiles	of	various	human	innate	and	adaptive	circulating	immune	cell	

types	(Hoek	et	al.,	2015;	Linsley,	Speake,	Whalen,	&	Chaussabel,	2014;	Pabst	et	al.,	2016)	

(T,	 B,	 NK,	 Monocytes	 and	 Neutrophils)	 from	 a	 diverse	 set	 of	 patients	 analyzed	 in	

different	 centers	 (see	Materials	 and	Methods).	 Principal	 component	 analysis	 (PCA)	 of	

these	data	(Figure	1C)	showed	that	samples	clustered	first	according	to	cell	type	and	not	

according	to	experiment	of	origin,	patient	age,	disease	status	or	other	factors,	suggesting	
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that	 they	 could	 be	 used	 as	 bona	 fide	 reference	 expression	 profiles	 across	 different	

patients.	Reference	gene	expression	profiles	for	each	major	immune	cell	type	were	built	

from	these	RNA-Seq	samples	based	on	the	median	normalized	counts	per	gene	and	cell	

type.	The	variability	 in	expression	 for	each	gene	was	also	considered	when	predicting	

the	 various	 cell	 proportions	 based	 on	 these	 reference	 profiles	 (see	 Materials	 and	

Methods	and	Supplementary	Files	2-3).	

Immune	cells	differ	in	their	gene	expression	profiles	depending	on	their	state	and	site	of	

origin	 (e.g.,	blood	or	 tumors).	To	study	 the	potential	effect	of	 these	differences	on	our	

predictions,	 we	 further	 established	 reference	 gene	 expression	 profiles	 of	 each	 major	

tumor	infiltrating	immune	cell	type	(i.e.,	T,	B,	NK,	macrophages).	These	were	obtained	as	

cell	type	averages	from	the	single-cell	RNA-Seq	data	of	melanoma	patients	from	Tirosh	

and	colleagues	(Tirosh	et	al.,	2016),	considering	only	samples	from	primary	tumor	and	

non-lymphoid	 tissue	metastasis	 (see	Materials	and	Method	 and	Supplementary	File	4).	

As	 for	 circulating	 immune	 cell	 data,	 principal	 component	 analysis	 of	 the	 tumor	

infiltrating	 immune	 cell	 gene	 expression	 profiles	 showed	 that	 samples	 clustered	 first	

according	to	cell	 type	(Figure	1D	and	Figure	1-figure	supplement	1,	see	also	results	 in	

(Tirosh	et	al.,	2016)).	

	

Cancer	and	immune	cell	fraction	predictions	

Reference	gene	expression	profiles	from	each	of	these	immune	cell	types	were	then	used	

to	model	 bulk	 gene	 expression	 data	 as	 a	 linear	 combination	 of	m	 different	 cell	 types	

(Figure	1B).	 To	 include	 cell	 types	 like	 cancer	 cells	 that	 show	 high	 variability	 across	

patients	 and	 tissues	 of	 origin,	we	 further	 implemented	 in	 our	 algorithm	 the	 ability	 to	

consider	 an	 uncharacterized	 cell	 population.	 Mathematically	 this	 was	 done	 by	 taking	

advantage	of	 the	presence	of	 gene	markers	of	 immune	 cells	 that	 are	not	 expressed	 in	
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cancer	cells.	 Importantly,	we	do	not	require	 immune	marker	genes	 to	be	expressed	 in	

exactly	 one	 cell	 type,	 but	 only	 to	 show	very	 low	expression	 in	non-immune	 cells.	 The	

mRNA	proportion	of	each	immune	cell	type	was	inferred	using	least-square	regression,	

solving	 first	 our	 system	 of	 equations	 for	 the	 immune	 marker	 genes	 (green	 box	 in	

Figure	1B,	see	Materials	and	Methods).	The	fraction	of	cancer	or	other	non-immune	cells	

was	 then	determined	as	one	minus	 the	 fraction	of	 all	 immune	 cell	 types.	 Immune	 cell	

markers	used	in	this	work	were	determined	by	differential	expression	analysis	based	on	

our	reference	immune	cell	gene	expression	profiles	as	well	as	gene	expression	data	from	

non-hematopoietic	 tissues	 (see	Materials	and	Methods	 and	 Supplementary	File	 1-table	

S1).	Finally,	to	account	for	different	amounts	of	mRNA	in	different	cell	types	and	enable	

meaningful	 comparison	 with	 flow	 cytometry	 and	 IHC	 data,	 we	 measured	 the	 mRNA	

content	 of	 all	 major	 immune	 cell	 types	 as	 well	 as	 of	 cancer	 cells	 (Figure	 1-figure	

supplement	2)	and	used	these	values	to	renormalize	our	predicted	mRNA	proportions	

(see	Materials	and	Methods).	

	

Validation	in	blood	

We	first	tested	our	algorithm	using	three	datasets	comprising	bulk	RNA-Seq	data	from	

PBMC	(Hoek	et	al.,	2015;	Zimmermann	et	al.,	2016)	or	whole	blood	(Linsley	et	al.,	2014),		

as	 well	 as	 the	 corresponding	 proportions	 of	 immune	 cell	 types	 determined	 by	 flow	

cytometry	 (Figure	 2A).	 These	 data	 were	 collected	 from	 various	 cancer-free	 human	

donors	(see	Materials	and	Methods).	Overall,	very	accurate	predictions	were	obtained	by	

fitting	 reference	 profiles	 from	 circulating	 immune	 cells.	 When	 comparing	 with	 other	

widely	 used	 immune	 cell	 fraction	 prediction	 methods	 (Becht	 et	 al.,	 2016;	 Gong	 &	

Szustakowski,	2013;	B.	Li	et	al.,	2016;	Newman	et	al.,	2015;	Quon	et	al.,	2013;	Zhong	et	

al.,	 2013),	 we	 observed	 a	 clear	 improvement	 (Figure	 2B	 and	 Figure	 2-figure	
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supplement	1).	 Of	 note,	 the	 renormalization	 by	 mRNA	 content,	 which	 had	 not	 been	

considered	in	previous	approaches,	appeared	to	be	important	for	predicting	actual	cell	

fractions	(Figure	2C).	

	

Validation	in	solid	tumors	

To	validate	our	predictions	in	tumors,	we	collected	single	cell	suspensions	from	lymph	

nodes	of	 four	metastatic	melanoma	patients	 (see	Materials	and	Methods).	A	 fraction	of	

the	 cell	 suspension	was	used	 to	measure	 the	different	 cell	 type	proportions	with	 flow	

cytometry	 (T,	 B,	 NK,	 melanoma	 and	 other	 cells	 comprising	 mostly	 stromal	 and	

endothelial	cells;	Supplementary	File	5A),	and	the	other	fraction	was	used	for	bulk	RNA	

sequencing	 (Figure	3-figure	 supplement	1).	 EPIC	was	 first	 run	with	 reference	profiles	

from	 circulating	 immune	 cells.	 We	 observed	 a	 remarkable	 agreement	 between	 our	

predictions	 and	 experimentally	 determined	 cell	 fractions	 (Figure	 3A).	 Of	 note,	 the	

proportion	of	melanoma	cells	could	be	very	accurately	predicted	even	in	the	absence	of	

a	priori	information	about	their	gene	expression.	

As	a	second	validation,	we	compared	EPIC	predictions	with	IHC	data	from	colon	cancer	

(Becht	 et	 al.,	 2016)	 and	melanoma	 (Jönsson	 et	 al.,	 2010)	 (see	Materials	 and	Method).	

Although	a	limited	number	of	immune	cell	types	had	been	assayed	in	these	two	datasets,	

we	 observed	 a	 good	 agreement	 between	 cell	 proportions	 measured	 by	 IHC	 and	 our	

predictions	(Figure	3B,C).		

As	 a	 third	 validation,	 we	 used	 recent	 single-cell	 RNA-Seq	 data	 from	 19	 melanoma	

samples	(Tirosh	et	al.,	2016).	We	applied	EPIC	on	the	average	expression	profile	over	all	

single	cells	for	each	patient	and	compared	the	results	with	the	actual	cell	fractions	(see	

Materials	and	Methods).	Here	again,	our	predictions	were	consistent	with	the	observed	
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cell	fractions,	even	for	melanoma	cells	for	which	we	did	not	assume	any	reference	gene	

expression	profile	(Figure	3D).		

	

We	 next	 compared	 these	 predictions	 to	 those	 obtained	 with	 reference	 profiles	 from	

tumor	infiltrating	immune	cells	(Figure	4).	For	the	single-cell	RNA-Seq	data	(Figure		4D),	

we	applied	a	 leave-one-out	procedure,	avoiding	to	use	the	same	samples	both	to	build	

the	reference	profiles	and	the	bulk	RNA-Seq	data	used	as	input	for	the	predictions	(see	

Materials	 and	Methods).	 Overall,	 predictions	 did	 not	 change	much	 compared	 to	 those	

based	 on	 circulating	 immune	 cell	 reference	 gene	 expression	 profiles	 (Figure	 4).	

Interestingly	however,	we	can	observe	 some	differences	between	 the	 results	obtained	

from	circulating	immune	cell	reference	gene	expression	profiles	and	those	from	tumor	

infiltrating	 cell	 reference	 gene	 expression	 profiles,	 when	 considering	 the	 proportions	

from	each	 cell	 type	 independently	 (Figures	3-4	 and	Figure	4-figure	 supplement	1):	 (i)	

predictions	 for	 NK	 cells	 improved	 in	 all	 datasets;	 (ii)	 predictions	 for	 macrophages	

improved	in	the	datasets	of	primary	tumors	and	non-lymph	node	metastases	but	were	

less	accurate	in	the	datasets	of	lymph	node	metastases;	(iii)	predictions	for	T	cells	based	

on	 the	 blood	 circulating	 reference	 cells	 show	 high	 accuracy	 in	 all	 datasets	 but	

predictions	 based	 on	 tumor	 infiltrating	 cells	 are	 only	 good	 in	 the	 datasets	 of	 primary	

tumors	and	non-lymph	node	metastases;	and	(iv)	predictions	for	B	cells	display	similar	

accuracy	based	on	the	circulating	cells	or	tumor	infiltrating	cells	profiles	for	all	datasets.	

	

Benchmarking	of	other	methods	

We	 took	 advantage	 of	 our	 unique	 collection	 of	 independent	 validation	 datasets	 to	

benchmark	 other	 methods	 for	 predictions	 of	 immune	 cell	 type	 fractions	 in	 human	

tumors.	 We	 first	 compared	 the	 results	 of	 EPIC	 and	 ISOpure,	 which	 is	 the	 only	 other	
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method	that	can	consider	uncharacterized	cell	 types	and	therefore	predict	the	fraction	

of	cancer	and	immune	cell	types	based	only	on	RNA-seq	data.	EPIC	displayed	improved	

accuracy	 in	 all	 three	 datasets	 (Figure	 5A,	 and	 Figure	 5-figure	 supplements	 1-4).	 To	

benchmark	 other	 methods,	 we	 then	 restricted	 our	 analysis	 to	 the	 predictions	 of	 the	

different	 immune	 cell	 types	 (Figure	 5B	 and	 Figure	 5-figure	 supplements	 1-4).	

Predictions	 from	EPIC	were	 in	 general	more	 accurate,	 especially	when	 considering	 all	

cell	types	together.	Nevertheless,	when	restricting	the	comparisons	to	relative	cell	type	

proportions,	some	methods	like	MCPcounter	and	TIMER	were	quite	consistent	in	their	

predictions	across	the	various	datasets	and	showed	similar	accuracy	as	EPIC	(Figure	5-

figure	 supplements	 1-4).	 Of	 note,	 MCPcounter	 could	 not	 be	 included	 in	 the	 global	

prediction	comparison	as	this	method	returns	scores	that	are	not	comparable	between	

different	cell	types.	Predictions	from	DSA	were	also	quite	accurate	when	available,	but	in	

multiple	cases	some	cell	type	proportions	returned	by	the	method	were	simply	equal	to	

0	in	all	samples	(Figure	5-figure	supplements	1-4).	

	

	Immune	and	tumor	purity	scores	(Yoshihara	et	al.,	2013)	based	on	gene	set	enrichment	

analysis	also	showed	significant	correlations	with	the	total	fraction	of	immune	cells	and	

the	 fraction	 of	 cancer	 cells.	However,	 these	 correlations	were	 significantly	 lower	 than	

those	 obtained	 with	 our	 approach	 (Figure	 5C,D	 and	 Figure	 5-figure	 supplement	 5).	

Moreover,	such	scores	are	less	quantitative	and	are	thus	more	difficult	to	interpret	with	

respect	to	actual	cell	type	proportions.	

Discussion	

By	 combining	 RNA-Seq	 profiles	 of	 all	major	 immune	 cell	 types	 established	 from	 both	

circulating	and	tumor	infiltrating	cells	together	with	information	about	cell	morphology	
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(i.e.,	 mRNA	 content)	 and	 algorithmic	 developments	 to	 consider	 uncharacterized	 and	

possibly	 highly	 variable	 cell	 types,	 EPIC	 overcomes	 several	 limitations	 of	 previous	

approaches	 to	 predict	 the	 fraction	 of	 both	 cancer	 and	 immune	 cell	 types	 from	 bulk	

tumor	gene	expression	data.	From	an	algorithmic	point	of	view,	EPIC	takes	advantage	of	

the	fact	that	cancer	cells,	 in	general,	express	no	or	only	low	levels	of	immune	markers.	

Therefore	the	method	can	be	broadly	applied	to	most	solid	tumors,	as	confirmed	by	our	

validation	 in	 both	 melanoma	 and	 colorectal	 samples,	 but	 it	 will	 not	 be	 suitable	 for	

hematological	malignancies	like	leukemia	or	lymphoma.	

	

The	accuracy	of	 the	predictions	 for	some	cell	 types	might	be	sensitive	 to	 the	origin	or	

condition	of	the	immune	cells	used	for	establishing	reference	profiles.	For	instance,	we	

observed	 that	 macrophages	 from	 primary	 tumors	 and	 non-lymph	 node	 metastases	

samples	were	best	predicted	using	 the	 reference	profiles	 from	 tumor	 infiltrating	cells.	

This	 may	 be	 explained	 by	 the	 fact	 that	 the	 reference	 profiles	 from	 circulating	 cells	

corresponded	 to	monocytes	 as	 no	macrophages	 are	 circulating	 in	 blood.	 Interestingly	

however,	it	appears	that	the	profiles	based	on	circulating	monocytes	were	better	for	the	

predictions	in	the	lymph	node	metastasis	samples,	possibly	due	to	the	presence	of	some	

monocytes	that	are	not	differentiated	to	macrophages	in	the	lymph	nodes.	

Overall,	our	results	suggest	that	for	primary	tumors	or	non-lymphoid	tissue	metastases	

reference	 gene	 expression	 profiles	 from	 tumor	 infiltrating	 immune	 cells	 are	 more	

appropriate,	while	 for	 lymph	 node	metastases,	 profiles	 from	 circulating	 immune	 cells	

perform	better.	

	

One	 known	 limitation	 of	 cell	 fraction	 predictions	 arises	 when	 some	 cell	 types	 are	

present	 at	 very	 low	 frequency	 (Shen-Orr	 &	 Gaujoux,	 2013).	 Our	 results	 suggest	 that	
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predictions	 of	 cell	 proportions	 are	 reliable	 within	 an	 absolute	 error	 of	 about	 7%,	 as	

estimated	by	the	root	mean	squared	error	(Figure	3	and	Figure	4-figure	supplement	1B).	

These	estimates	are	consistent	with	the	lower	detection	limit	proposed	by	other	groups	

(Becht	et	al.,	2016;	Zhong	et	al.,	2013)	and	may	explain	why	the	relative	proportions	of	

NK	cells,	which	are	present	at	lower	frequency	in	melanoma	tumors	(Balch	et	al.,	1990;	

Sconocchia	et	al.,	2012),	could	not	be	predicted	with	accuracy	comparable	to	other	cell	

types	 (Figure	4-figure	 supplement	 1).	 While	 this	 may	 prevent	 applications	 of	 cell	

fraction	predictions	in	some	tumor	types	that	are	poorly	infiltrated,	many	other	tumors,	

like	melanoma	or	 colorectal	 cancer,	display	high	 level	of	 infiltrating	 immune	cells	 and	

the	 role	 of	 immune	 infiltrations	 on	 tumor	 progression	 and	 survival	 appears	 to	 be	

especially	important	in	these	tumors	(Clemente	et	al.,	1996;	Fridman	et	al.,	2012;	Galon	

et	al.,	2006).	

	

Our	 predictions	 for	 the	 fraction	 of	 uncharacterized	 non-immune	 cells	 may	 include	

stromal	 cells	 or	 endothelial	 cells	 from	neighboring	 tissues,	 in	 addition	 to	 cancer	 cells.	

Compared	 to	 recent	 algorithms	 that	 first	 predict	 tumor	 purity	 based	 on	 exome	

sequencing	data,	 and	 later	 infer	 the	 relative	 fraction	of	 immune	cell	 types	 (B.	Li	 et	al.,	

2016),	 the	 predictions	 of	 EPIC	 are	 likely	 more	 quantitative	 because	 they	 implicitly	

consider	 the	 presence	 of	 not	 only	 cancer	 cells	 but	 also	 other	 non-immune	 cells	 like	

stromal	cells.	Moreover,	EPIC	does	not	require	both	exome	and	RNA-Seq	data	from	the	

same	 tumor	samples,	 thereby	reducing	 the	cost	and	amount	of	experimental	work	 for	

prospective	 studies,	 and	 broadening	 the	 scope	 of	 retrospective	 analyses	 of	 cancer	

genomics	data	to	studies	that	only	include	gene	expression	data.	
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Recent	technical	developments	in	single-cell	RNA-Seq	technology	enable	researchers	to	

directly	 access	 information	 about	both	 the	proportion	of	 all	 cell	 types	 in	 a	 tumor	 and	

their	gene	expression	characteristics	(Efroni,	Ip,	Nawy,	Mello,	&	Birnbaum,	2015;	Jaitin	

et	al.,	2014;	Singer	et	al.,	2016;	Stegle,	Teichmann,	&	Marioni,	2015;	Tirosh	et	al.,	2016).	

Such	 data	 are	 much	 richer	 than	 anything	 that	 can	 be	 obtained	 with	 computational	

deconvolution	 of	 bulk	 gene	 expression	 profiles	 and	 this	 technology	 may	 eventually	

replace	standard	gene	expression	analysis	of	bulk	tumors.	Nevertheless,	it	is	important	

to	 realize	 that,	 even	 when	 disregarding	 the	 financial	 aspects,	 single-cell	 RNA-Seq	 of	

human	tumors	is	still	logistically	and	technically	very	challenging	due	to	high	level	of	cell	

death	upon	sample	manipulation	(especially	freezing	and	thawing)	and	high	transcript	

dropout	rates	 	(Finak	et	al.,	2015;	Saliba,	Westermann,	Gorski,	&	Vogel,	2014;	Stegle	et	

al.,	 2015).	 Moreover,	 one	 cannot	 exclude	 that	 some	 cells	 may	 better	 survive	 the	

processing	 with	 microfluidics	 devices	 used	 in	 some	 single-cell	 RNA-Seq	 platforms,	

thereby	 biasing	 the	 estimates	 of	 cell	 type	 proportions.	 It	 is	 therefore	 likely	 that	 bulk	

tumor	 gene	 expression	 analysis	 will	 remain	 widely	 used	 for	 several	 years.	 Our	 work	

shows	how	we	can	exploit	recent	single-cell	RNA-Seq	data	of	tumor	infiltrating	immune	

cells	 obtained	 from	 a	 few	 patients	 to	 refine	 cell	 fraction	 predictions	 in	 other	 patients	

that	could	not	be	analyzed	with	this	technology,	thereby	overcoming	some	limitations	of	

previous	 computational	 approaches	 that	 relied	 only	 on	 reference	 gene	 expression	

profiles	from	circulating	immune	cells.	

	

Unlike	some	previous	computational	approaches,	we	provide	here	a	detailed	biologically	

relevant	validation	of	our	predictions	using	actual	tumor	samples	from	human	patients	

analyzed	with	 flow	 cytometry,	 IHC	 and	 single-cell	 RNA-Seq.	We	 note	 that	 the	 slightly	

lower	agreement	between	our	predictions	and	IHC	data	may	be	partly	explained	by	the	
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fact	 that	 the	 exact	 same	 samples	 could	not	be	used	 for	both	 gene	 expression	 and	 IHC	

analyses	because	of	 the	 incompatibility	between	the	two	techniques.	Nevertheless,	 the	

overall	high	accuracy	of	our	predictions	indicates	that	infiltrations	of	major	immune	cell	

types	can	be	quantitatively	studied	directly	from	bulk	tumor	gene	expression	data	using	

computational	approaches	such	as	EPIC.	

	

EPIC	can	be	downloaded	as	a	standalone	R	package	(available	upon	publication)	and	can	

be	used	with	reference	gene	expression	profiles	pre-compiled	from	circulating	or	tumor	

infiltrating	immune	cells,	or	provided	by	the	user.	

Materials	and	Methods	

Code	availability	

EPIC	has	been	written	as	an	R	package.	 It	will	be	 freely	available	upon	publication	 for	

academic	non-commercial	research	purposes.	Version	v1.0	of	the	package	was	used	for	

our	analyses.	

Prediction	of	cancer	and	immune	cell	type	proportions		

In	 EPIC,	 the	 gene	 expression	 of	 a	 bulk	 sample	 is	 modeled	 as	 the	 sum	 of	 the	 gene	

expression	profiles	from	the	pure	cell	types	composing	this	sample	(Figure	1A,B).	This	

can	be	written	as	(Venet,	Pecasse,	Maenhaut,	&	Bersini,	2001):	

	 𝑏 = 𝐶 × 𝑝	 (1)	

Where	b	is	the	vector	of	all	n	genes	expressed	from	the	bulk	sample	to	deconvolve;	C	is	a	

matrix	(n	x	m)	of	the	m	gene	expression	profiles	from	the	different	cell	types;	and	p	is	a	

vector	of	the	proportions	from	the	m	cell	types	in	the	given	sample	(Figure	1B).		
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Matrix	C	consists	of	m-1	columns	corresponding	to	various	reference	non-malignant	cell	

types	 whose	 gene	 expression	 profiles	 are	 known,	 and	 one	 column	 corresponding	 to	

uncharacterized	cells	(i.e.	mostly	cancer	cells,	but	possibly	also	other	non-malignant	cell	

types	 not	 included	 in	 the	 reference	 profiles).	 EPIC	 assumes	 the	 reference	 gene	

expression	 profiles	 from	 the	 non-malignant	 cell	 types	 are	 well	 conserved	 between	

patients.	 Such	 a	 hypothesis	 is	 supported	 by	 the	 analysis	 in	 Figure	 1C,D.	 The	

uncharacterized	cells	can	be	more	heterogeneous	between	patients	and	EPIC	makes	no	

assumption	on	them.	

	

EPIC	 finds	 the	 proportions	 of	 all	 cells	 in	 the	 sample	 by	 first	 performing	 a	 consistent	

normalization,	 similar	 to	 transcripts	 per	 million	 (TPM)	 normalization,	 both	 for	 the	

reference	cells	and	for	the	bulk	sample	(see	Supplementary	File	1-method	S1),	and	then	

by	solving	eq.	(1)	for	a	subset	of	ns	equations	corresponding	to	the	ns	signature	genes	(S)	

that	 are	 expressed	 by	 one	 or	 more	 of	 the	 normal	 cell	 types	 but	 only	 expressed	 at	 a	

negligible	 level	 in	 the	other	 cells	 (Figure	1B).	 Importantly,	 such	 cell	 specific	 signature	

genes	are	well	established	and	widely	used	in	flow	cytometry	to	sort	immune	cells.	Thus,	

EPIC	solves	the	following	system	of	equations:	

	 𝑏! !∈! =  𝐶∗×𝑝∗ ! !∈!
	

(2)	

where	𝐶∗	and	𝑝∗	are	 the	 matrix	 of	 the	 normalized	 profiles	 and	 vector	 of	 proportions	

from	all	the	reference	cell	types,	and	the	term	corresponding	to	the	uncharacterized	cells	

proportions	 vanished	 thanks	 to	 the	 definition	 of	 the	 signature	 genes.	 The	 solution	 to	

eq.	(2)	 can	 be	 estimated	 by	 a	 constrained	 least	 square	 optimization,	 forcing	 each	

proportion	to	be	bigger	than	zero	and	their	sum	smaller	than	one.	
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When	solving	 this	constrained	 least	 square	optimization,	EPIC	also	 takes	advantage	of	

the	 known	 variability	 for	 each	 gene	 in	 the	 reference	 profile:	 a	 weight,	 based	 on	 this	

variability,	 is	given	 for	 the	 fit	of	each	gene	 in	order	 to	 force	more	precise	 fits	of	genes	

that	display	less	variability	in	the	reference	profiles	(see	Supplementary	File	1-method	

S2).		

	

Finally,	the	proportion	for	the	uncharacterized	cells	can	be	obtained	by:	

	 𝑝unchar-cell = 1− 𝑝!
!∈normal-cells

	 (3)	

	

Since	we	used	normalized	gene	expression	data,	values	of	𝑝	correspond	actually	to	the	

fraction	of	mRNA	coming	 from	each	 cell	 type,	 rather	 than	 the	 cell	 proportions.	As	 the	

mRNA	content	per	 cell	 type	 can	vary	 significantly	 (Figure	1-figure	 supplement	2),	 the	

actual	proportions	of	each	cell	type	can	be	estimated	as:	

	 𝑝! = 𝛼 ∙
𝑝!
𝑟!
	 (4)	

where	rj	is	the	amount	of	RNA	nucleotides	in	cell	type	j	(or	equivalently	the	total	weight	

of	RNA	in	each	cell	type)	and	α	is	a	normalization	constant	to	have	 𝑝! = 1.	

Flow	cytometry	and	gene	expression	analysis	of	melanoma	samples	

Patients	agreed	to	donate	metastatic	tissues	upon	informed	consent,	based	on	dedicated	

clinical	 investigation	 protocols	 established	 according	 to	 the	 relevant	 regulatory	

standards.	The	protocols	were	approved	by	the	local	IRB,	i.e.	the	“Commission	cantonale	

d’éthique	de	la	recherche	sur	l’être	humain	du	Canton	de	Vaud”.	Lymph	nodes	(LN)	were	

obtained	 from	 stage	 III	melanoma	 patients,	 by	 lymph	 node	 dissection	 that	 took	 place	

before	 systemic	 treatment.	The	LN	 from	one	patient	was	 from	 the	 right	axilla	and	 the	
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LNs	 from	 the	 other	 three	 patients	 were	 from	 the	 iliac	 and	 ilio-obturator	 regions	

(Supplementary	 File	 1-table	S2).	 Single	 cell	 suspensions	were	 obtained	 by	mechanical	

disruption	and	immediately	cryopreserved	in	RPMI	1640	supplemented	with	40%	FCS	

and	10%	DMSO.	Single	cell	suspensions	from	four	lymph	nodes	were	thawed	and	used	

in	 parallel	 experiments	 of	 flow	 cytometry	 and	 RNA	 extraction.	 In	 order	 to	 limit	 the	

number	of	dead	cells	after	thawing,	we	removed	those	cells	using	a	dead	cell	removal	kit	

(Miltenyi	 Biotech).	 Proportions	 of	 T	 (CD45+/CD3+/Melan-A-),	 NK	 (CD45+/CD56+/CD3-

/CD33-/Melan-A-),	 B	 (CD45+/CD19+/CD3-/CD33-/Melan-A-)	 and	 Melan-A	 expressing	

tumor	 cells	 (Supplementary	 File	 5A)	 were	 acquired	 via	 flow	 cytometry	 using	 the	

following	antibodies:	anti-CD3	BV711	(clone:	UCHT1,	BD	Biosciences),	anti-CD56	BV421	

(clone:	HCD56,	Biolegend),	anti-CD19	APCH7	(clone:	SJ25C1,	BD	Biosciences),	anti-CD33	

PE-Cy7	 (clone:	 P67.6,	 BD	 Biosciences),	 anti-CD45	 APC	 (clone:	 HI30,	 Biolegend),	 anti-

Melan-A	FITC	(clone:	A103,	Santa	Cruz	Biotechnologies)	and	Fixable	Viability	Dye	eFluor	

455UV	(eBioscience).	Data	was	acquired	on	a	BD	LSR	II	SORP	flow	cytometry	machine	

(BD	 Bioscience).	 Analysis	 was	 performed	 using	 FlowJo	 (Tree	 Star).	 Cell	 proportions	

were	based	on	viable	cells	only.	In	parallel	total	RNA	was	extracted	using	the	RNAeasy	

Plus	mini	 kit	 (Qiagen)	 following	 the	manufactures’	 protocol.	 Starting	material	 always	

contained	minimum	0.2x106	cells.	RNA	was	quantified	and	integrity	was	analyzed	using	

a	 Fragment	 Analyser	 (Advanced	 Analytical).	 Total	 RNA	 from	 all	 samples	 used	 for	

sequencing	had	an	RQN	≥	7.	Libraries	were	obtained	used	the	Truseq	stranded	RNA	kit	

(Illumina).	Single	read	(100bp)	was	performed	using	an	Illumina	HiSeq	2500	sequencer	

(Illumina).	

	

Post	processing	of	the	sequencing	was	done	using	Illumina	pipeline	Casava	1.82.	FastQC	

(version	0.10.1)	was	used	 for	quality	control.	The	reads	obtained	were	mapped	 to	 the	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2017. ; https://doi.org/10.1101/117788doi: bioRxiv preprint 

https://doi.org/10.1101/117788
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 17	 Enumeration	of	cancer	and	immune	cell	types	

human	 genome,	 hg19,	 with	 TopHat	 (Kim	 et	 al.,	 2013)	 version	 2.0.13	 using	 default	

parameters	and	Bowtie2	(Langmead	&	Salzberg,	2012)	version	2.2.4,	followed	by	sorting	

with	Samtools	(H.	Li	et	al.,	2009)	version	1.2.	Raw	counts	were	then	obtained	with	HTSeq	

(Anders,	Pyl,	&	Huber,	2015),	version	0.6.1,	using	the	options	"-i	gene_name	–s	no	–t	exon	

–m	union".	

RNA-Seq	 data	 from	 this	 experiment	 will	 be	 deposited	 on	 a	 public	 database	 upon	

publication.	

Amount	of	mRNA	per	cell	type	

Healthy	donor	peripheral	blood	was	obtained	 through	 the	blood	 transfusion	 center	 in	

Lausanne.	PBMCs	were	purified	by	density	gradient	using	Lymphoprep	(Axis-Shieldy).	

Mononuclear	cells	were	stained	in	order	to	sort	monocytes,	B,	T	and	NK	cells	using	the	

following	 antibodies:	 CD14	 FITC	 (Clone:	 RMO52,	 Beckman	 Coulter),	 CD19	 PE	 (clone:	

89B,	Beckman	Coulter),	CD3	APC	(clone	UCHT1,	Beckman	Coulter),	CD56	BV421	(Clone:	

HCD56,	 Biolegend)	 and	 fixable	 live/dead	 near	 IR	 stain	 (ThermoFisher	 Scientific).	

1	x	106	live	 cells	 from	 each	 cell	 type	 were	 sorted	 using	 the	 BD	 FACS	 ARIA	 III	 (BD	

Biosciences).	 Total	 RNA	 was	 extracted	 using	 the	 RNAeasy	 Plus	 mini	 kit	 (Qiagen)	

following	 the	 manufactures’	 protocol	 and	 quantified	 using	 a	 Fragment	 Analyser	

(Advanced	Analytical).	Values	obtained	are	given	in	Figure	1-figure	supplement	2A.	

	

The	 mRNA	 content	 for	 the	 cancer	 cells	 was	 estimated	 from	 the	 flow	 cytometry	 data	

described	 in	 the	 previous	 section	 from	 the	 four	 patients	with	melanoma.	 For	 this	we	

used	 the	 forward	 scatter	width,	which	 is	 a	 good	proxy	of	 cell	 size	 and	mRNA	 content	

(Padovan-Merhar	et	al.,	2015;	Tzur,	Moore,	Jorgensen,	Shapiro,	&	Kirschner,	2011),	and	
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observed	that	cancer	cells	had	similar	amount	of	mRNA	than	B,	NK	and	T	cells	(Figure	1-

figure	supplement	2B).	We	thus	used	a	value	of	0.4	pg	of	mRNA	per	cancer	cell.	

Public	external	datasets	used	in	this	study	

• Dataset	1	was	obtained	 from	Zimmermann	and	colleagues	 (Zimmermann	et	al.,	

2016),	 through	 ImmPort	 (http://www.immport.org),	 accession	 SDY67.	 It	

includes	 RNA-Seq	 samples	 from	 PBMC	 of	 healthy	 donors	 before	 and	 after	

influenza	vaccination.	 In	addition,	 the	original	 flow	cytometry	results	 files	were	

available,	containing	multiple	immune	cell	markers.	As	an	independent	validation	

of	EPIC,	we	used	the	data	from	12	pre-vaccination	samples	of	healthy	donors	and	

we	 computed	 the	 corresponding	 immune	 cell	 proportions	 from	 the	 flow	

cytometry	 files	based	on	a	similar	gating	 than	 in	Hoek	et	al.	 (Hoek	et	al.,	2015)	

(obtaining	B,	NK,	T	cells	and	monocytes,	Supplementary	File	5B;	Figure	2A)	

• Dataset	 2	 was	 obtained	 from	 Hoek	 and	 colleagues	 (Hoek	 et	 al.,	 2015),	 GEO	

accession	 GSE64655.	 This	 corresponds	 to	 RNA-Seq	 samples	 from	 2	 different	

donors.	 Samples	have	been	 taken	before	 an	 influenza	vaccination	 and	also	1,	 3	

and	7	 days	 after	 the	 vaccination	 (56	samples	 in	 total).	 In	 their	 experiment,	 the	

authors	 measured	 RNA-Seq	 from	 bulk	 PBMC	 samples	 and	 also	 from	 sorted	

immune	cells	(B,	NK,	T	cells,	myeloid	dendritic	cells,	monocytes	and	neutrophils).	

In	 addition,	 flow	cytometry	was	performed	 to	measure	 the	proportion	of	 these	

cell	types	in	PBMC	before	the	influenza	vaccination	(personally	communicated	by	

the	authors;	Supplementary	File	5C).	

• Dataset	 3	was	obtained	 from	Linsley	 and	 colleagues	 (Linsley	 et	 al.,	 2014),	GEO	

accession	GSE60424.	This	dataset	includes	20	donors	(healthy	donors	and	other	

donors	with	amyotrophic	 lateral	sclerosis,	multiple	sclerosis,	 type	1	diabetes	or	
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sepsis),	for	a	total	of	134	samples.	RNA-Seq	from	these	donors	has	been	extracted	

from	whole	blood	and	sorted	immune	cells	(B,	NK	cells,	monocytes,	neutrophils,	

T	 CD4	 and	 T	 CD8	 cells).	 In	 our	 analyses,	 T	 CD4	 and	 T	 CD8	 cells	 were	 taken	

together	as	T	cells.	In	addition	to	RNA-Seq	data,	complete	blood	counts	data	was	

available	 for	 5	 of	 these	 donors	 (personally	 communicated	 by	 the	 authors;	

Supplementary	File	5D).	

• Dataset	 4	 was	 obtained	 from	 Pabst	 and	 colleagues	 (Pabst	 et	 al.,	 2016),	 GEO	

accession	GSE51984.	This	includes	RNA-Seq	from	5	healthy	donors.	Samples	are	

from	 total	 white	 blood	 cells	 and	 sorted	 immune	 cells	 (B	 cells,	 granulocytes,	

monocytes	and	T	cells).	

• Colon	cancer	dataset	was	obtained	from	Becht	and	colleagues	(Becht	et	al.,	2016),	

GEO	 accession	 GSE39582.	 This	 corresponds	 to	 microarrays	 of	 primary	 colon	

cancer	tumors.	In	addition	to	gene	expression	data,	immunohistochemistry	data	

of	CD3,	CD8	and	CD68	was	available	(personally	communicated	by	the	authors)	

for	33	patients.	

• Melanoma	 dataset	 was	 obtained	 from	 Jönsson	 and	 colleagues	 (Jönsson	 et	 al.,	

2010),	 GEO	 accession	 GSE22153.	 This	 is	 data	 from	 57	 patients,	 with	 biopsies	

obtained	mostly	from	subcutaneous	metastases	but	also	with	some	coming	from	

lymph	 nodes.	 Gene	 expression	was	measured	 by	microarrays	 (we	 downloaded	

the	 non-normalized	 gene	 expression	 data).	 Immunohistochemistry	 data	 of	 CD3	

and	CD20	was	also	available	(Supplementary	File	5E).	

• Single-cell	RNA-Seq	data	from	tumor	infiltrating	cells	were	obtained	from	Tirosh	

and	colleagues	(Tirosh	et	al.,	2016),	GEO	accession	GSE72056.	This	corresponds	

to	 19	 donors	 and	 comprises	 primary	 tumors,	 lymph	 node	metastasis	 or	 other	

lesions.	 It	 includes	 4,645	 cells.	 Cell	 type	 identity	 was	 taken	 from	 Tirosh	 et	 al.		
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(Tirosh	 et	 al.,	 2016)	 (B,	 NK,	 T	 cell,	 macrophage,	 cancer-associated	 fibroblast,	

endothelial	cell,	cancer	cell	as	well	as	cell	not	assigned	a	specific	cell	 type).	The	

data	is	given	as	TPM	counts.	In	silico	reconstructed	bulk	samples	from	each	donor	

were	obtained	as	the	average	per	gene	from	all	samples	of	the	given	donor.	The	

corresponding	cell	fractions	from	these	bulk	samples	are	obtained	as	the	number	

of	cells	from	each	cell	type	divided	by	the	total	number	of	cells	(Supplementary	

File	5F).	In	the	results,	we	split	this	dataset	in	two	depending	on	the	origin	of	the	

biopsies:	 lymphoid	 tissues	 for	 samples	 obtained	 from	 lymph	 node	 and	 spleen	

metastases,	vs.	the	rest	of	samples,	which	were	obtained	from	primary	tumor	and	

other	metastases.	

	

For	 the	 above	 datasets	 1	 and	 2,	 we	 obtained	 raw	 fastq	 files.	 These	 fastq	 files	 were	

mapped	to	the	human	genome,	hg19,	with	TopHat	(Kim	et	al.,	2013)	version	2.0.13	using	

default	parameters	and	Bowtie2	(Langmead	&	Salzberg,	2012)	version	2.2.4,	followed	by	

sorting	with	Samtools	 (H.	 Li	 et	 al.,	 2009)	 version	1.2.	 Raw	 counts	were	 then	obtained	

with	HTSeq	(Anders	et	al.,	2015),	version	0.6.1,	using	the	options	"-i	gene_name	–s	no	–t	

exon	–m	union".		

	

For	the	other	datasets,	we	directly	obtained	the	summary	counts	data	from	these	studies	

without	mapping	the	reads	by	ourselves.	

Reference	gene	expression	profiles	from	circulating	cells	

Reference	gene	expression	profiles	of	sorted	immune	cells	from	peripheral	blood	were	

built	 from	 the	 datasets	 2,	 3	 and	 4	 described	 in	 previous	 section.	 We	 verified	 no	

experimental	biases	were	present	in	these	data	through	unsupervised	clustering	of	the	
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samples,	 with	 help	 of	 a	 principal	 component	 analysis	 based	 on	 the	 normalized	

expression	from	the	1000	most	variable	genes	(Figure	1C).	

Each	 sample	 was	 independently	 normalized	 as	 described	 in	 Supplementary	 File	 1-

method	S1	and	the	median	value	of	normalized	counts	was	computed	per	cell	type	and	

per	gene.	Similarly,	the	interquartile	range	of	the	normalized	counts	was	computed	per	

cell	 type	and	gene,	as	a	measure	of	 the	variability	of	each	gene	expression	 in	each	cell	

type.	Values	of	these	reference	profiles	are	given	in	Supplementary	File	2).	Granulocytes	

from	 dataset	 4	 and	 neutrophils	 from	 datasets	 2	 and	 3	 were	 combined	 to	 build	 the	

reference	 profile	 for	 neutrophils	 (neutrophils	 constitute	 more	 than	 90%	 of	

granulocytes).	No	reference	profile	was	built	for	the	myeloid	dendritic	cells	as	only	few	

samples	 of	 these	 sorted	 cells	 existed	 and	 they	 were	 all	 from	 the	 same	 experiment.	

Monocytes	 are	 not	 found	 in	 tumors	 but	 instead	 there	 are	macrophages,	 mostly	 from	

monocytic	lineage,	that	are	infiltrating	tumors	and	that	are	not	found	in	blood.	For	this	

reason,	 we	 also	 used	 the	 monocyte	 reference	 gene	 expression	 profile	 as	 a	 proxy	 for	

macrophages	when	applying	EPIC	to	tumor	samples.	Such	an	assumption	gave	coherent	

results	as	observed	in	the	results.	

	

In	addition	to	these	raw	counts	based	white	blood	cell	reference	profiles,	we	also	built	

TPM	based	reference	profiles	from	the	same	datasets	(using	RSEM	(B.	Li	&	Dewey,	2011)	

v.1.2.19	and	Bowtie2	 (Langmead	&	Salzberg,	 2012)	version	2.2.4	 instead	of	 the	HTSeq	

(Anders	et	al.,	2015)	based	steps	when	mapping	the	raw	reads	to	the	human	genome).	

This	TPM	based	reference	profile	(Supplementary	File	3)	was	used	with	EPIC	to	predict	

immune	 cell	 proportions	 for	 the	 single-cell	 RNA-Seq	 dataset	 (Tirosh	 et	 al.,	 2016)	 as	

counts	in	this	dataset	were	only	available	as	TPM.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2017. ; https://doi.org/10.1101/117788doi: bioRxiv preprint 

https://doi.org/10.1101/117788
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 22	 Enumeration	of	cancer	and	immune	cell	types	

Reference	profiles	from	tumor	infiltrating	cells	

We	also	built	gene	expression	reference	profiles	 from	tumor	 infiltrating	 immune	cells.	

These	are	based	on	the	single-cell	RNA-Seq	data	from	Tirosh	and	colleagues	(Tirosh	et	

al.,	2016)	described	above.	We	only	used	the	non-lymphoid	tissue	samples	to	build	these	

tumor	 infiltrating	 cell’s	 profiles,	 avoiding	 in	 this	way	potential	 "normal	 immune	 cells"	

present	in	the	lymph	nodes	and	spleen.	These	reference	profiles	(Supplementary	File	4)	

were	built	 in	the	same	way	as	described	above	for	the	reference	profiles	of	circulating	

immune	 cells,	 but	 based	 on	 the	mean	 and	 standard	 deviation	 instead	 of	 median	 and	

interquartile	range	respectively,	due	to	the	nature	of	single-cell	RNA-Seq	data	and	gene	

dropout	present	with	such	technique.	

	

When	 testing	 EPIC	 with	 these	 profiles	 for	 the	 single-cell	 RNA-Seq	 datasets,	 for	 the	

samples	 of	 primary	 tumor	 and	 other	 non-lymph	 node	 metastases,	 a	 leave-one-out	

procedure	was	 applied:	 for	 each	donor	we	built	 reference	 immune	 cell	 profiles	 based	

only	on	the	data	coming	from	the	other	donors.	

Immune	marker	gene	identification	

EPIC	relies	on	signature	genes	that	are	expressed	by	the	reference	cells	but	not	by	the	

uncharacterized	cells	(e.g.,	cancer	cells).	For	each	reference	 immune	cell	 type,	we	thus	

built	a	list	of	20	signature	genes	through	the	following	steps:	

1) The	samples	from	this	immune	cell	type	were	tested	for	overexpression	against:	

a) the	 samples	 from	each	other	 immune	 cell	 (1	 cell	 type	vs.	 1	other	 cell	 type	at	 a	

time);		

b) the	 samples	 of	 the	 Illumina	Human	Body	Map	2.0	Project	 (ArrayExpress	 ID:	E-

MTAB-513)	considering	all	non-immune	related	tissues;	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2017. ; https://doi.org/10.1101/117788doi: bioRxiv preprint 

https://doi.org/10.1101/117788
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 23	 Enumeration	of	cancer	and	immune	cell	types	

c) the	 samples	 from	 GTEx	 (GTEx	 Consortium,	 2015)	 from	 each	 of	 the	 following	

tissues	 (1	 tissue	 at	 a	 time):	 adipose	 subcutaneous;	 bladder;	 colon-transverse;	

ovary;	pancreas;	testis	(data	version	V4).	

2) Only	genes	overexpressed	in	the	given	cell	type	with	an	adjusted	p-value	<	0.01	for	

all	these	tests	were	kept.	Conditions	1b)	and	1c)	are	there	to	ensure	signature	genes	

are	expressed	in	the	immune	cells	and	no	other	tissues.	

3) The	 genes	 that	 passed	 2)	 were	 then	 ranked	 by	 the	 mean	 fold	 change	 from	 the	

overexpression	tests	of	1)	and	the	top	twenty	genes	were	selected	as	signature	genes	

of	the	given	immune	cell.	

4) For	neutrophils,	CSF3R	was	expressed	at	a	 level	much	higher	than	other	genes	and	

thus	was	 totally	biasing	 the	cell	proportion	predictions	 towards	 this	gene.	For	 this	

reason,	 we	 removed	 it	 from	 neutrophils	 signature	 genes,	 in	 order	 to	 keep	 genes	

expressed	at	levels	that	are	more	similar.	

5) For	NK	 cells,	we	 observed	 the	 signature	 genes	 included	GZMA,	GZMB,	GZMH,	 IFNG	

and	PRF1,	which	are	expressed	constitutively	by	NK	cells	but	not	by	resting	T	cells,	

which	 comprise	 the	 majority	 of	 T	 cells	 used	 to	 build	 the	 reference	 profiles	 from	

circulating	cells.	However,	these	genes	are	also	highly	expressed	by	activated	T	cells,	

which	may	affect	the	NK	and	T	cell	 fraction	predictions	in	tumor	samples.	 	For	this	

reason,	we	also	removed	these	genes	from	the	immune	signature	and	replaced	them	

by	the	next	five	best	NK	cell	signature	genes.	

	

All	 the	 differential	 expression	 tests	 were	 performed	 with	 DESeq2	 (Love,	 Huber,	 &	

Anders,	2014).	

	

Supplementary	File	1-table	S1	summarizes	the	full	list	of	signature	genes	per	cell	type.	
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Prediction	of	cell	proportions	in	bulk	samples	with	other	tools	

We	 compared	 EPIC's	 predictions	 with	 those	 from	 various	 cell	 fraction	 prediction	

methods.	These	other	methods	were	run	with	the	following	packages	(using	the	default	

options	when	possible):	

• CIBERSORT	(Newman	et	al.,	2015)	(R	package	version	1.03)	was	run	with	their	

LM22	reference	profiles.	For	comparison	with	the	experimentally	measured	cell	

proportions,	 we	 summed	 together	 the	 sub-types	 predictions	 of	 CIBERSORT	

within	each	major	immune	cell	type.	

• DeconRNASeq	 (v1.12)	 (Gong	 &	 Szustakowski,	 2013)	 does	 not	 contain	 immune	

cell	reference	profiles	and	we	used	the	reference	profiles	built	 in	this	work.	We	

present	the	results	with	“use.scale”	parameter	set	to	FALSE,	which	usually	gave	

better	results.	

• DSA	(Zhong	et	al.,	2013)	only	needs	a	gene	signature	per	cell	type	to	estimate	the	

proportion	 of	 cells	 in	 multiple	 bulk	 samples	 together.	 We	 used	 the	

implementation	 of	 DSA	 found	 in	 CellMix	 (Gaujoux	&	 Seoighe,	 2013)	 R	 package	

(version	 1.6.2).	 As	 DSA	 needs	 many	 samples	 to	 estimate	 simultaneously	 the	

proportions	of	cells	in	these	samples,	we	considered	all	the	PBMC	samples	from	

Hoek	et	al.	data	when	fitting	this	dataset	(8	samples)	and	all	whole	blood	samples	

from	Linsley	et	al.	data	when	fitting	this	other	dataset	(20	samples),	even	though	

the	cell	proportions	have	been	measured	experimentally	only	for	2	and	5	samples	

respectively.	For	 the	gene	signature,	we	used	 the	same	genes	as	 those	used	 for	

EPIC	(Supplementary	File	1-table	S1).	

• ISOpure	(Quon	et	al.,	2013)	estimates	the	profile	and	proportion	of	cancer	cells	

by	comparing	many	bulk	samples	containing	cancer	cells	and	many	healthy	bulk	

samples	 of	 the	 same	 tissue.	 Although	 the	 primary	 goal	 is	 not	 to	 compute	 the	
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proportions	of	the	different	cell	types	composing	a	sample,	cell	fractions	can	still	

be	obtained	with	this	method.	In	particular,	one	output	of	ISOpure	is	how	much	

each	 of	 the	 healthy	 reference	 samples	 is	 contributing	 to	 a	 given	 bulk	 sample.	

Instead	 of	 using	 bulk	 healthy	 samples,	 we	 used	 as	 input	 our	 immune	 cell	

reference	 profiles,	 so	 that	 each	 "reference	 sample"	 corresponded	 to	 a	 different	

cell	type.	The	contribution	of	each	cell	type	was	taken	as	the	relative	contribution	

outputted	 by	 ISOpure	 from	 each	 of	 the	 reference	 cell	 sample.	 The	 R	

implementation	ISOpureR	(Anghel	et	al.,	2015)	version	1.0.20	was	used.	

• MCP-counter	 (Becht	 et	 al.,	 2016)	 (R	 package	 version	 1.1.0)	 was	 run	 with	 the	

"HUGO_symbols"	chosen	as	features.	

• TIMER	 (B.	 Li	 et	 al.,	 2016)	 predictions	 were	 obtained	 by	 slightly	 adapting	 the	

available	 source	 code.	 The	 reference	 profiles	 from	 this	method	were	 used	 and	

predictions	 for	 T	 cells	 were	 defined	 as	 the	 sum	 of	 CD4	 and	 CD8	 T	 cells.	 In	

addition	 to	 bulk	 gene	 expression,	 tumor	 purity	 estimates	 based	 on	 DNA	 copy	

number	 variation	 are	 needed	 in	 TIMER	 to	 refine	 the	 gene	 signature.	 As	 this	

information	 is	 not	 available	 in	 our	 benchmarking	 datasets,	 we	 kept	 all	 the	

original	immune	gene	signatures	for	predictions	in	blood.	For	the	tumor	datasets,	

we	 used	 the	 gene	 signatures	 obtained	 from	 the	 TCGA	 data	 for	 melanoma	 or	

colorectal	cancer	depending	on	the	origin	of	cancer.		

• ESTIMATE	(Yoshihara	et	al.,	2013)	was	run	with	their	R	package	version	1.0.11.	

List	of	abbreviations	

EPIC:	acronym	for	our	method	to	"Estimate	the	Proportion	of	Immune	and	Cancer	cells";	

GEO:	Gene	Expression	Omnibus;	IHC:	immunohistochemistry;	PCA:	principal	component	

analysis;	RMSE:	root	mean	squared	error;	TCGA:	The	Cancer	Genome	Atlas.	
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Figures	

Figure	 1.	 Estimating	 the	 Proportion	 of	 Immune	 and	 Cancer	 cells.	 (A)	 Schematic	

description	 of	 our	 method.	 (B)	 Matrix	 formulation	 of	 our	 algorithm,	 including	 the	

uncharacterized	 cell	 types	 (red	 box)	 with	 no	 or	 very	 low	 expression	 of	 immune	

signature	genes	(green	box).	(C)	Low	dimensionality	representation	(PCA	based	on	the	

1000	most	variable	genes)	of	 the	samples	used	to	build	the	reference	gene	expression	

profiles	from	circulating	immune	cells	(study	1	(Hoek	et	al.,	2015),	study	2	(Linsley	et	al.,	

2014),	study	3	(Pabst	et	al.,	2016)).	(D)	Low	dimensionality	representation	(PCA	based	

on	the	1000	most	variable	genes)	of	the	tumor	infiltrating	immune	cell	gene	expression	

profiles	from	different	patients.	Each	point	corresponds	to	cell-type	averages	per	patient	

of	the	single-cell	RNA-Seq	data	of	Tirosh	et	al.	(Tirosh	et	al.,	2016)	(requiring	at	least	3	

cells	 of	 a	 given	 cell	 type	 per	 patient).	 Only	 samples	 from	 primary	 tumors	 and	 non-

lymphoid	tissue	metastases	were	considered.	Projection	of	the	original	single-cell	RNA-

Seq	data	can	be	found	in	Figure	1-figure	supplement	1.	

Figure	 supplement	 1.	 Low	 dimensionality	 representation	 of	 the	 tumor	 infiltrating	

immune	cell	samples.	

Figure	supplement	2.	Cell	type	mRNA	content.	

	

Figure	 2.	 Predicting	 cell	 fractions	 in	 blood	 samples.	 (A)	 Predicted	 vs.	 measured	

immune	cell	proportions	in	PBMC	(dataset	1	(Zimmermann	et	al.,	2016),	dataset	2	(Hoek	

et	al.,	2015))	and	whole	blood	(dataset	3	(Linsley	et	al.,	2014));	predictions	are	based	on	

the	reference	profiles	from	circulating	immune	cells.	(B)	Performance	comparison	with	

other	 methods.	 (C)	 Predicted	 immune	 cells'	 mRNA	 proportions	 (i.e.,	 without	 mRNA	

renormalization	step)	vs.	measured	values	in	the	same	datasets.	Correlations	are	based	

on	Pearson	correlation;	RMSE:	root	mean	squared	error.	
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Figure	supplement	1.	Comparison	of	multiple	cell	fraction	prediction	methods	in	blood	

datasets.	

	

Figure	 3.	 Predicting	 cell	 fractions	 in	 solid	 tumors.	 (A)	 Comparison	 of	 EPIC	

predictions	 with	 our	 new	 flow	 cytometry	 analysis	 of	 lymph	 nodes	 from	 metastatic	

melanoma	 patients.	 (B)	Comparison	 with	 immunohistochemistry	 data	 from	 colon	

cancer	primary	tumors	(Becht	et	al.,	2016).	(C)	Comparison	with	immunohistochemistry	

data	from	melanoma	samples	(mostly	from	primary	tumors)	(Jönsson	et	al.,	2010).	This	

study	only	reported	absence	of	 the	given	marker,	a	non-brisk	expression	of	 it	 (i.e.	 low	

expression)	 or	 a	 brisk	 expression	 (i.e.	 high).	 One-sided	Wilcoxon	 rank-sum	 tests	 was	

used	to	determine	p-values	(*	p	<	0.1	;	**	p	<	0.05	;	***	p	<	0.01).	(D)	Comparison	with	

single-cell	 RNA-Seq	 data	 (Tirosh	 et	 al.,	 2016)	 from	 melanoma	 samples	 either	 from	

lymphoid	 tissues	 or	 primary	 and	 non-lymphoid	 metastatic	 tumors.	 Correlations	 are	

based	on	Pearson	correlation.	

Figure	 supplement	1.	Sketch	of	the	experiment	designed	to	validate	EPIC	predictions	

starting	from	in	vivo	tumor	samples.	

	

Figure	4.	Predictions	with	reference	profiles	from	tumor	infiltrating	immune	cells.	

Same	as	Figure	3	but	based	on	reference	profiles	built	from	the	single-cell	RNA-Seq	data	

of	 primary	 tumor	 and	 non-lymphoid	metastatic	melanoma	 samples	 from	Tirosh	 et	 al.	

(Tirosh	 et	 al.,	 2016).	 (A)	 Comparison	with	 flow	 cytometry	 data	 of	 lymph	 nodes	 from	

metastatic	 melanoma	 patients.	 (B)	 Comparison	 with	 IHC	 from	 colon	 cancer	 primary	

tumors	 (Becht	 et	 al.,	 2016).	 (C)	 Comparison	with	 IHC	 from	melanoma	 (Jönsson	 et	 al.,	

2010)	(*	p	<	0.1	;	**	p	<	0.05	;	***	p	<	0.01,	see	Figure	3C).	(D)	Comparison	with	single-

cell	RNA-Seq	data	(Tirosh	et	al.,	2016).	
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Figure	 supplement	 1.	 Comparison	 of	 EPIC	 results	 per	 cell	 type	 for	 gene	 expression	

reference	profiles	from	circulating	or	tumor	infiltrating	immune	cells.	

	

Figure	 5.	 Performance	 comparison	 with	 other	 methods	 in	 tumor	 samples.	 (A)	

Pearson	 correlation	 R-values	 between	 the	 cell	 proportions	 predicted	 by	 EPIC	 and	

ISOpure	and	the	observed	proportions	measured	by	flow	cytometry	or	single-cell	RNA-

Seq	(Tirosh	et	al.,	2016),	considering	all	cell	types	together	(i.e.,	B,	NK,	T,	macrophages,	

cancer	+	other	cells).	(B)	Same	analysis	as	in	Figure	5A	but	considering	only	immune	cell	

types	(i.e.,	B,	NK,	T,	macrophages)	in	order	to	include	more	methods	in	the	comparison.	

The	star	(*)	indicates	a	case	where	DSA	could	not	predict	the	cell	type	proportions.	(C)	

Analysis	of	ESTIMATE	predictions	 in	the	single-cell	RNA-Seq	dataset	 for	the	sum	of	all	

immune	cells	and	 the	proportion	of	 cancer	cells	 (cells	 identified	as	melanoma	cells	by	

Tirosh	and	colleagues).	(D)	Same	as	in	Figure	5C	but	for	EPIC	predictions	of	immune	and	

non-immune	cells.	

Figure	 supplement	 1.	 Comparison	 of	 multiple	 cell	 fraction	 prediction	 methods	 in	

tumor	datasets.	

Figure	 supplement	 2.	 Comparison	 of	 cell	 fraction	 prediction	 methods	 with	 flow	

cytometry	data	of	melanoma	tumors.	

Figure	 supplement	 3.	 Comparison	 of	 cell	 fraction	 prediction	 methods	 with	

immunohistochemistry	data	in	colon	cancer	data.	

Figure	 supplement	4.	Comparison	of	cell	 fraction	prediction	methods	with	single-cell	

RNA-Seq	data	from	melanoma	tumors.	

Figure	supplement	5.	Comparison	between	ESTIMATE	scores	and	EPIC	predictions	in	

our	new	flow	cytometry	dataset.	
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Figure	 1-figure	 supplement	 1.	 Low	 dimensionality	 representation	 of	 the	 tumor	

infiltrating	immune	cell	samples.	Principal	component	analysis	of	the	samples	used	to	

build	the	reference	gene	expression	profiles	from	tumor	infiltrating	immune	cells,	based	

on	the	data	from	Tirosh	et	al.	(Tirosh	et	al.,	2016),	considering	only	the	primary	tumor	

and	non-lymphoid	tissue	metastasis	samples.		

	

Figure	1-figure	 supplement	2.	 Cell	 type	mRNA	 content.	 (A)	mRNA	content	per	cell	

type	obtained	for	cell	types	sorted	from	blood.	Values	for	B,	NK,	T	cells	and	monocytes	

were	obtained	as	described	 in	Materials	and	Methods.	Values	 for	Neutrophils	are	 from	

(Subrahmanyam	et	al.,	2001).	(B)	Width	of	the	forward	scatter	values	for	the	different	

immune	 and	 cancer	 cells	 from	 flow	 cytometry	 data	 of	 melanoma	 metastatic	 lymph	

nodes.	 Data	 was	 first	 normalized	 by	 the	 mean	 FSC-W	 for	 each	 donor.	 Error	 bars	

represent	the	standard	deviation	from	data	of	4	patients.	

	

Figure	 2-figure	 supplement	 1.	 Comparison	 of	 multiple	 cell	 fraction	 prediction	

methods	in	blood	datasets	(dataset	1	(Zimmermann	et	al.,	2016),	dataset	2	(Hoek	et	al.,	

2015),	 dataset	 3	 (Linsley,	 Speake,	Whalen,	&	 Chaussabel,	 2014)).	 Heatmaps	 show	 (A)	

the	 Pearson	 R	 correlation	 and	 (B)	 the	 root	 mean	 squared	 error,	 between	 the	 cell	

fractions	predicted	by	each	method	and	the	experimentally	measured	fractions.	Results	

are	based	either	on	all	cell	types	together	(noted	as	"All	cells")	or	for	each	individual	cell	

type	 measured	 experimentally.	 NA's	 indicate	 cases	 where	 the	 cell	 type	 could	 not	 be	

predicted	 by	 a	 method.	 The	 "All	 cells"	 boxes	 are	 hatched	 when	 a	 method	 could	 not	

predict	all	the	cell	types	so	that	the	values	computed	there	correspond	to	less	cell	types	

than	for	the	other	methods.	For	the	dataset	2,	as	there	are	only	2	donors	data,	the	results	

are	only	presented	with	all	cells	together	(includes	8	data	points).	In	(A)	the	significance	
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of	 the	 Pearson	 correlation	 is	 indicated	 by	 stars:	 *	 p.value	 <	 0.1,	 **	 p.value	 <	 0.05,	

***	p.value	<	0.01,	while	not	significant	values	are	inside	parentheses.	

	

Figure	3-figure	supplement	1.	Sketch	of	the	experiment	designed	to	validate	EPIC	

predictions	starting	from	in	vivo	tumor	samples.	

	

Figure	4-figure	 supplement	1.	 Comparison	of	 EPIC	 results	per	 cell	 type	 for	 gene	

expression	reference	profiles	from	circulating	or	tumor	infiltrating	immune	cells.	

(A)	Pearson	 R	 correlation,	 (B)	 RMSE	 and	 (C)	 one-sided	 Wilcoxon	 rank-sum	 tests	 p-

values	between	the	cell	 fractions	predicted	and	the	experimentally	measured	fractions	

(from	flow	cytometry	(this	study),	colorectal	cancer	IHC	(Becht	et	al.,	2016),	single-cell	

RNA-Seq	data	(Tirosh	et	al.,	2016)	and	melanoma	immunohistochemistry	data	(Jönsson	

et	al.,	2010)).	NA’s	indicate	cases	where	the	cell	type	could	not	be	predicted	by	a	method.	

The	"Cancer	+	other	cells"	correspond	to	cancer	cells	and	other	stromal	cells,	 for	which	

no	 reference	 profile.	 No	 RMSE	 value	 can	 be	 computed	 for	 the	 IHC	 data	 in	 (B)	 as	 the	

measured	 values	 are	 not	 for	 all	 cells	 and	 do	 not	 reflect	 cell	 proportions.	 In	 (A)	 the	

significance	of	the	Pearson	correlation	is	indicated	by	stars:	*	p.value	<	0.1,	**	p.value	<	

0.05,	***	p.value	<	0.01,	while	not	significant	values	are	inside	parentheses.	

	

Figure	 5-figure	 supplement	 1.	 Comparison	 of	 multiple	 cell	 fraction	 prediction	

methods	 in	 tumor	 datasets.	 (A)	Pearson	R	correlation,	 (B)	 root	mean	squared	error	

and	 (C)	 one-sided	 Wilcoxon	 rank-sum	 tests	 p-values	 between	 the	 cell	 fractions	

predicted	 by	 each	 method	 and	 the	 experimentally	 measured	 fractions	 (from	 flow	

cytometry	 (this	 study),	 colorectal	 cancer	 immunohistochemistry	 (Becht	 et	 al.,	 2016),	

single-cell	 RNA-Seq	 data	 (Tirosh	 et	 al.,	 2016)	 and	 melanoma	 immunohistochemistry	
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data	 (Jönsson	 et	 al.,	 2010)).	 Results	 are	 based	 either	 on	 cell	 types	 grouped	 together	

(noted	 as	 "All	 cells",	 including	 the	 immune	 and	 cancer	 +	 other	 cells,	 or	 "All	 immune	

cells",	 including	only	 the	 immune	cell	 types)	or	 for	each	 individual	cell	 type	measured	

experimentally.	 NA’s	 indicate	 cases	 where	 the	 cell	 type	 could	 not	 be	 predicted	 by	 a	

method.	The	"Cancer	+	other	cells"	correspond	to	cancer	cells	and	other	stromal	cells,	for	

which	no	reference	profile	or	gene	signature	 is	assumed.	 In	(A)	 the	significance	of	 the	

Pearson	correlation	is	indicated	by	stars:	*	p.value	<	0.1,	**	p.value	<	0.05,	***	p.value	<	

0.01,	while	not	significant	values	are	inside	parentheses.	

	

Figure	 5-figure	 supplement	 2.	 Comparison	 of	 cell	 fraction	 prediction	 methods	

with	 flow	 cytometry	 data	 of	melanoma	 tumors.	 (A)	Comparison	directly	of	 all	 cell	

types	together.	When	a	cell	type	could	not	be	predicted	by	a	given	method,	this	cell	type	

is	 absent	 from	 the	 subfigure.	 (B)	 Comparison	 per	 cell	 type	 for	 MCP-counter	 as	 the	

predictions	are	not	comparable	across	different	cell	types.	Correlation	and	RMSE	values	

are	available	in	Figure	5-figure	supplement	1.	

	

Figure	 5-figure	 supplement	 3.	 Comparison	 of	 cell	 fraction	 prediction	 methods	

with	 immunohistochemistry	data	 in	 colon	 cancer	data	 (Becht	 et	 al.,	 2016)	 for	T	

cell	and	macrophage	infiltration	values.	Observed	values	are	in	number	of	cells/mm2.		

Correlation	values	are	available	in	Figure	5-figure	supplement	1.	

	

Figure	 5-figure	 supplement	 4.	 Comparison	 of	 cell	 fraction	 prediction	 methods	

with	 single-cell	 RNA-Seq	 data	 from	 melanoma	 tumors	 (Tirosh	 et	 al.,	 2016).	

(A)	Comparison	 directly	 of	 all	 cell	 types	 together.	 When	 a	 cell	 type	 could	 not	 be	

predicted	by	a	given	method,	this	cell	type	is	absent	from	the	subfigure.	(B)	Results	for	
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MCP-counter,	 splitting	 the	 different	 cell	 types	 as	 the	 predictions	 are	 not	 comparable	

across	different	cell	types.	Correlation	and	RMSE	values	are	available	in	Figure	5-figure	

supplement	1.	

	

Figure	5-figure	supplement	5.	Comparison	between	ESTIMATE	scores	(A)	and	EPIC	

predictions	(B)	in	our	new	flow	cytometry	dataset.	The	predictions	are	compared	to	

the	observed	cell	proportions.	ESTIMATE	returns	a	score	of	global	 immune	infiltration	

and	thus	the	sum	of	all	observed	immune	cells	has	been	taken	for	the	comparison.	For	

cancer	cells	in	(A),	one	minus	the	fraction	of	cancer	cells	is	plotted	as	ESTIMATE	score	is	

inversely	correlated	to	the	fraction	of	cancer	cells	in	a	sample.	The	observed	cancer	cells	

correspond	 to	 the	 melan-A+	 cells.	 Correlations	 between	 observed	 fractions	 and	

predictions	are	based	on	Spearman	correlations.	

Additional	files	

Supplementary	 File	 1.	 File	 contains	 the	 supplementary	 information	 with	

supplementary	methods,	Table	S1	and	Table	S2.	

	

Supplementary	File	2.	Gene	expression	reference	profiles	built	from	RNA-Seq	data	

of	 immune	 cells	 sorted	 from	 blood	 as	 described	 in	 Materials	 and	 Methods:	

"Reference	 gene	 expression	 profiles	 from	 circulating	 cells".	 The	 file	 includes	 two	

sheets:	(A)	the	reference	gene	expression	values;	(B)	the	gene	variability	relating	to	the	

reference	 profile.	 Columns	 indicate	 the	 reference	 cell	 types;	 rows	 indicate	 the	 gene	

names.	(This	file	will	be	available	upon	publication).	

	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 17, 2017. ; https://doi.org/10.1101/117788doi: bioRxiv preprint 

https://doi.org/10.1101/117788
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 41	 Enumeration	of	cancer	and	immune	cell	types	

Supplementary	 File	 3.	 Gene	 expression	 reference	 profiles,	 built	 from	 TPM	

(transcript	 per	 million)	 normalized	 RNA-Seq	 data	 of	 immune	 cells	 sorted	 from	

blood	 as	 described	 in	 the	 Materials	 and	 Methods:	 "Reference	 gene	 expression	

profiles	 from	 circulating	 cells".	 The	 file	 includes	 two	 sheets:	 (A)	 the	 reference	 gene	

expression	 values;	 (B)	 the	 gene	 variability	 relating	 to	 the	 reference	 profile.	 Columns	

indicate	 the	 reference	 cell	 types;	 rows	 indicate	 the	 gene	 names.	 (This	 file	 will	 be	

available	upon	publication).	

	

Supplementary	 File	 4.	 Gene	 expression	 reference	 profiles	 built	 from	 tumor	

infiltrating	immune	cells	obtained	from	TPM	normalized	single-cell	RNA-Seq	data	

as	 described	 in	 the	 Materials	 and	 Methods:	 "Reference	 profiles	 from	 tumor	

infiltrating	 cells".	 The	 file	 includes	 two	 sheets:	 (A)	 the	 reference	 gene	 expression	

values;	 (B)	 the	 gene	 variability	 relating	 to	 the	 reference	 profile.	 Columns	 indicate	 the	

reference	 cell	 types;	 rows	 indicate	 the	 gene	 names.	 (This	 file	 will	 be	 available	 upon	

publication).	

	

Supplementary	 File	 5.	 Proportion	 of	 cells	 measured	 in	 the	 different	 datasets:	

(A)	this	 study;	 (B)	 dataset	 1	 (Zimmermann	 et	 al.,	 2016);	 (C)	 dataset	 2	 (Hoek	 et	 al.,	

2015);	(D)	dataset	3	(Linsley	et	al.,	2014);	(E)	melanoma	immunohistochemistry	dataset	

(Jönsson	 et	 al.,	 2010)	 and	 (F)	 single-cell	 RNA-Seq	 dataset	 (Tirosh	 et	 al.,	 2016).	 The	

"Other	cells"	 type	correspond	always	 to	 the	rest	of	 the	cells	 that	were	not	assigned	 to	

one	of	the	given	cell	types	from	the	tables.	(This	file	will	be	available	upon	publication).	
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