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Abstract	

Ensemble-averaged	genome	profiling	of	diagnostic	samples	suggests	that	acute	leukemias	

harbor	few	somatic	genetic	alterations.	We	used	single-cell	exome	and	error-corrected	

sequencing	to	survey	the	genetic	diversity	underlying	ETV6-RUNX1	acute	lymphoblastic	

leukemia	(ALL)	at	high	resolution.	The	survey	uncovered	a	vast	range	of	low-frequency	genetic	

variants	that	were	undetected	in	conventional	bulk	assays,	including	additional	clone-specific	

“driver”	RAS	mutations.	Single-cell	exome	sequencing	revealed	APOBEC	mutagenesis	to	be	

important	in	disease	initiation	but	not	in	progression	and	identified	many	more	mutations	per	

cell	than	previously	found.	Using	this	data,	we	created	a	branching	model	of	ETV6-RUNX1	ALL	

development	that	recapitulates	the	genetic	features	of	patients.	Exposure	of	leukemic	

populations	to	chemotherapy	selected	for	specific	clones	in	a	dose-dependent	manner.	

Together,	these	data	have	important	implications	for	understanding	the	development	and	

treatment	response	of	childhood	leukemia,	and	they	provide	a	framework	for	using	population	

genetics	to	deeply	interrogate	cancer	clonal	evolution.	
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Main	text:	

	

Introduction	

Analogous	to	organismal	evolution	in	an	ecosystem,	the	environmental	selection	pressures,	

population	size,	and	rate	of	genome	modification	are	core	determinants	of	tumor	evolutionary	

dynamics1.	Contemporary	bulk	sequencing	methods	that	interrogate	the	ensemble-averaged	

mutational	profiles	of	the	genomes	of	thousands	of	cells	predominantly	identify	those	

mutations	present	in	the	most	dominant	tumor	subclones	at	diagnosis2.	However,	bulk	

sequencing	strategies	are	limited	in	their	ability	to	capture	the	full	genetic	diversity	of	a	

population,	as	they	do	not	identify	lower-frequency	clones	and	variants.	A	deeper	

understanding	of	the	genetic	diversity	within	tumors	is	key	to	understanding	tumor	evolution,	

including	that	of	malignant	cell	populations	that	may	increase	in	size	as	the	relative	fitness	of	

clones	changes	in	response	to	new	selection	pressures	as	patients	undergo	treatment.		

	 	

Our	knowledge	of	the	evolutionary	dynamics	of	acute	leukemias	is	largely	derived	from	bulk	

sequencing	studies,	which	have	concluded	that	acute	leukemias	harbor	minimal	genetic	

complexity	when	compared	to	other	malignant	neoplasms3,4.	In	utero	acquisition	of	an	ETV6-

RUNX1	translocation	has	been	identified	as	the	most	frequent	initiating	event	of	acute	

lymphoblastic	leukemia	(ALL)5,6,	the	most	common	childhood	leukemia.	However,	an	ETV6-

RUNX1	translocation	is	insufficient	for	leukemogenesis7;	recent	genomic	studies	have	identified	

deletions	of	genes	required	for	normal	B-cell	differentiation8	that	harbor	signatures	of	aberrant	

RAG	recombinase	activity	as	frequent	cooperating	lesions9.	In	addition,	ETV6-RUNX1	ALL	cells	
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always	harbor	somatic	single-nucleotide	variants	(SNVs)9,10.	By	using	single-cell	genomics,	we	

determined	that	most	of	the	deletions	occur	before	the	acquisition	of	SNVs,	which	result	in	the	

outgrowth	of	co-dominant	clonal	populations9.	In	addition,	analyses	of	the	SNV	sequence	

motifs	revealed	an	important	mutagenic	role	for	aberrant	cytosine	deaminase	activity	by	an	

APOBEC	(apolipoprotein	B	mRNA-editing	enzyme,	catalytic	polypeptide-like)	protein9,10.	As	

APOBEC	proteins	mediate	innate	defense	against	viral	infections11,	this	finding	supports	the	

hypothesis	that	environmental	exposure	to	viruses	triggers	the	transforming	mutagenesis12.	ALL	

also	undergoes	clonal	evolution	between	its	initial	diagnosis	and	relapse13,14.	However,	the	

magnitude	of	that	evolution	and	the	changes	in	clonal	composition	between	diagnosis	and	

relapse	remains	unknown.		

	

Several	fundamental	questions	regarding	the	genesis	and	treatment	response	of	ETV6-RUNX1	

ALL	could	be	more	precisely	addressed	by	studying	ALL	genetics	on	a	population	scale.	For	

example,	why	are	there	co-dominant	clonal	populations,	especially	when	some	clones	harbor	

known	“driver”	mutations?	What	is	the	total	mutation	burden	across	the	population	of	

malignant	cells,	and	do	the	underlying	mutational	processes	change	over	time?	How	does	this	

population	genetic	diversity	influence	treatment	response?	

	

To	address	these	questions,	we	first	used	single-cell	exome	sequencing	and	error-corrected	

sequencing	to	further	dissect	the	intraclonal	genetic	diversity	and	the	shift	in	mutational	

processes	that	occurred	during	ETV6-RUNX1	ALL	development.	These	analyses	revealed	

evidence	of	massive	population	genetic	diversity.	Then,	after	patients	began	therapy,	we	
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examined	the	evolution	of	those	leukemic	clones	by	exposing	samples	to	standard	

chemotherapy	drugs.	Together,	our	findings	enhance	our	understanding	of	the	development	

and	treatment	response	of	ETV6-RUNX1	ALL	at	the	single-cell	level	and	have	significant	clinical	

implications.	

	

Results	

Clone-specific	“driver”	mutations	identified	by	single-cell	exome	sequencing	

To	further	characterize	the	genomic	diversity	of	clones	previously	defined	by	segregating	

variants	identified	in	the	bulk	sample	to	single	cells10,	we	performed	single-cell	exome	

sequencing	on	3	cells	from	each	clone	and	on	3	normal	cells	from	the	same	patient	(Fig.	1A).	

We	achieved	a	mean	saturating	coverage	breadth	of	82%	of	the	target	exome	with	60	million	

reads,	as	compared	to	95%	coverage	of	the	target	exome	in	bulk	samples	(Supplementary	Fig.	

1).	Using	only	the	single	cells,	we	called	mutations	by	requiring	at	least	2	cells	to	have	the	same	

base	change	at	the	same	genomic	position.	The	initial	clonal	structure	had	5	high-frequency	

clones,	with	one	of	the	2	largest	clones	harboring	an	E63K	KRAS	mutation,	whereas	we	could	

not	clearly	identify	transforming	alterations	in	the	other	clones	(Fig.	1A).	We	then	identified	a	

further	10	to	29	mutations	per	clone	(Fig.	1B).	Using	the	normal	cells	as	a	control,	we	identified	

a	low	false-variant	call	rate	at	7	sites,	possibly	resulting	from	clonal	mutations	acquired	in	

nonmalignant	cells,	amplification	artifacts,	or	sequencing	errors.	We	then	compared	the	

mutagenic	base-change	pattern	of	the	earlier,	higher-frequency	mutations	that	were	detected	

in	bulk	and	were	shared	between	clones	to	the	later,	clone-specific	changes	that	were	detected	

only	with	single-cell	exome	sequencing.	Interestingly,	the	early	mutations	were	strongly	
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enriched	for	C-to-T	and	C-to-G	changes	with	an	associated	APOBEC	motif	(T	preceding	C),	

whereas	the	most	common	later	mutations	were	A-to-G,	A-to-C,	and	C-to-T,	with	enrichment	

for	G	following	C.	That	signature	is	most	consistent	with	replication	errors	(Fig.	1C,D)15.	We	also	

found	a	KRAS	G12S	mutation	that	was	confined	to	a	less	abundant	clone,	as	well	as	another	

clone-specific	NRAS	G12D	variant;	both	of	these	mutations	were	C-to-T	changes	(Fig.	1A).	

Because	the	3	activating	RAS	mutations	(G12R,	G12S,	E63K)	were	acquired	in	distinct	clones	and	

not	sequentially,	we	hypothesized	that	they	occurred	over	a	relatively	short	time.	We	then	

proposed	that	more	oncogenic	mutations	would	be	acquired	slightly	later	than	the	dominant	

clones,	resulting	in	their	being	present	at	even	lower	frequencies.	

	

Deeper	interrogation	identifies	massive	population	genetic	diversity	

To	more	deeply	characterize	oncogenic	mutations	in	the	bulk	sample	from	the	same	patient,	

we	performed	error-corrected	targeted	sequencing	of	50	mutational	hotspots	in	ALL	

(Supplementary	Table	1).	We	identified	the	same	3	RAS	mutations	(G12R,	G12S,	E63K)	that	

were	detected	through	bulk	and	single-cell	exome	sequencing,	along	with	2	additional	known	

activating	KRAS	mutations	(G12D,	D119N)	(Fig.	2A)16–19,	all	of	which	were	C-to-T	substitutions.	

We	found	no	evidence	of	mutations	in	the	other	37	genes	that	we	examined	using	a	Fisher’s	

exact	test	cutoff	of	0.01.	The	only	benign	lesion	found	in	a	RAS	gene	was	a	G12G	mutation	that	

was	part	of	the	dinucleotide	G12D	variant.		

	

To	evaluate	whether	these	findings	were	applicable	to	a	wider	range	of	ETV6-RUNX1	leukemias,	

we	performed	error-corrected	sequencing	on	samples	from	6	patients	with	a	single	RAS	
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mutation	identified	by	bulk	sequencing	and	on	6	samples	from	patients	with	no	known	RAS	

mutations.	We	detected	no	RAS	mutations	in	the	latter	6	samples;	however,	we	found	a	median	

of	5	activating	RAS	mutations	in	the	6	patients	for	whom	a	mutation	was	detected	in	the	bulk	

samples	(Fig.	2B).	On	examining	the	additional	RAS	variants	more	closely,	we	found	the	

mutations	to	be	clustered	at	known	RAS	mutational	hotspots,	namely	KRAS	codons	12,	13,	119,	

and	146	and	NRAS	codons	12	and	13.	There	was	no	clear	propensity	for	variants	at	specific	

codons	to	be	subclonal,	supporting	the	assertion	that	the	timing	of	the	acquisition	determined	

whether	a	mutation	became	dominant,	as	opposed	to	the	change	in	RAS	signaling	activity	due	

to	the	specific	amino	acid	change	(Fig.	3C).	

	

We	hypothesized	that	even	more	sensitive	measurements	would	identify	additional	RAS	

mutations.	We	performed	limited	sample	dilutions	followed	by	error-corrected	sequencing	of	

patient	SJETV075,	hypothesizing	that	some	RAS	mutations	that	were	just	below	our	detection	

threshold	would	randomly	be	present	at	slightly	higher	frequencies	in	the	dilute	samples.	By	

this	approach,	we	identified	3	additional	low-frequency	KRAS	mutations	(G12R,	A146T,	L19F)	

for	a	total	of	9	known	activating	RAS	mutations	in	patient	SJETV075.	Our	examination	of	all	RAS	

mutations	in	this	cohort	revealed	that	of	the	33	mutations	identified,	31	were	C-to-T	or	C-to-G	

changes.	The	5	C-to-G	changes	were	enriched	for	the	APOBEC	motif,	but	no	similar	enrichment	

was	found	in	the	C-to-T	mutations,	suggesting	that	they	resulted	from	near-target	APOBEC	

activity	or	replication-associated	mutagenesis.	This	contrasts	with	lung	cancer,	in	which	

approximately	60%	of	KRAS	mutations	are	G12C	or	G12V,	resulting	from	C-to-A	substitutions20.	

Together,	these	observations	further	support	the	hypothesis	that	APOBEC	activity	and	
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replication-associated	mutagenesis	are	the	underlying	processes	driving	the	evolution	of	ETV6-

RUNX1	ALL.	

	

We	then	considered	the	variables	that	would	result	in	such	a	large	intra-patient	activating	RAS	

mutation	burden.	In	our	first	model,	we	proposed	that	a	large	population	of	cells	was	at	risk	for	

rapid	RAS-mediated	expansion	and	underwent	a	widespread	mutagenesis	process,	resulting	in	

the	concurrent	outgrowth	of	multiple	clones	containing	mutations	conferring	similar	fitness.	In	

our	second	model,	we	proposed	that	a	smaller	population	was	at	risk	for	transformation,	with	a	

lower	global	mutation	rate,	but	that	RAS	was	a	mutational	hotspot,	resulting	in	the	acquisition	

of	multiple	RAS	mutations	during	the	period	of	leukemic	transformation.	If	the	RAS	genes	were	

mutational	hotspots	for	ETV6-RUNX1	ALL,	we	would	expect	to	find	additional	benign	mutations	

as	passengers	of	the	activating	mutations.	However,	even	our	more	sensitive	approach	to	

mutation	detection,	using	both	single-cell	and	error-corrected	sequencing,	found	no	additional	

somatic	variants	within	KRAS,	NRAS,	or	HRAS.	

	

Taken	together,	these	findings	support	the	model	in	which	a	massive	mutation	burden	develops	

within	a	relatively	short	time	in	a	population	at	risk	for	transformation.	To	further	support	this	

model,	we	measured	the	mutation	rate	in	single	leukemia	cells	and	used	the	normal	cells	from	

the	same	sample	that	had	undergone	whole-genome	amplification	in	the	same	microfluidic	

chip	to	control	for	the	background	mutations	and	for	amplification	and	sequencing	errors.	By	

this	approach,	we	measured	a	mean	of	208	coding	mutations	per	cell	that	were	above	the	

background	rate	in	the	normal	cells	(Fig.	3A).	Compared	to	our	previous	mutation	estimation,	
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this	approach	estimated	greater	genetic	diversity,	with	each	cell	harboring	a	mean	of	150	

coding	variants	that	were	not	detected	by	bulk	sequencing	or	intraclonal	exome	sequencing	

(Fig.	3B).	

	

Simulation	estimates	the	size	and	genetic	diversity	of	leukemic	populations	

Given	the	large	number	of	mutations	per	cell,	we	devised	a	model	to	estimate	the	population	

size	in	order	to	approximate	the	total	genetic	diversity	across	all	the	clonal	populations	at	the	

time	ALL	is	diagnosed.	To	accomplish	this,	we	used	those	variables	that	could	be	estimated	

from	the	results	of	previous	studies,	along	with	our	current	measurements,	to	simulate	ETV6-

RUNX1	ALL	development.	We	know	that	the	disease	is	initiated	from	a	single	cell	by	an	ETV6-

RUNX1	translocation,	as	all	cells	harbor	the	same	breakpoint5.	Furthermore,	each	population	

acquires	a	mean	of	12	deletions9.	We	also	know	that	the	disease	is	initiated	in	utero	and	

develops	over	a	mean	of	4.7	years21;	that	lymphocyte	precursors	divide	approximately	every	

11.9	days22,	whereas	primary	leukemic	cells	divide	much	more	frequently;	and	that	replication	

errors	occur	in	coding	regions	with	a	frequency	of	approximately	once	in	every	300	human	cell	

divisions24.	From	our	results,	we	estimate	that	each	cell	had	acquired	approximately	200	coding	

SNVs,	with	many	of	them	arising	from	APOBEC	mutagenesis	that	occurred	in	a	burst	over	a	

short	time,	randomly	resulting	in	the	16	activating	RAS	mutations	identified	in	our	ETV6-RUNX1	

ALL	cohort.	Cells	harboring	ETV6-RUNX1,	a	recurrent	deletion,	and	a	RAS	mutation	have	

significantly	increased	rates	of	replication,	resulting	in	the	clinical	diagnosis	when	children	reach	

a	total	leukemic	cell	burden	of	approximately	1 × 1011	cells	(Fig.	4A).	
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Using	those	parameters,	we	initiated	100	simulations	in	which	the	mutation	rates	resulted	in	

each	cell	acquiring	a	mean	of	13	deletions	and	229	SNVs	by	a	mean	of	28	days	after	a	burst	of	

APOBEC	mutagenesis	(Supplementary	Table	2,	Fig.	4B).	Defining	clones	based	on	cells	with	the	

same	somatic	mutation	profile	in	coding	regions,	we	estimate	that	there	were	330	million	

clones	in	total	(Supplementary	Table	2).	However,	most	clones	were	created	when	the	overall	

population	size	was	high,	making	them	rare	(Fig.	4C).	The	number	of	high-frequency	clones	was	

variable	and	depended	on	the	time	and	frequency	of	RAS	mutation	acquisition	(Fig.	4D).	We	

also	found	evidence	that	APOBEC	mutagenesis	and	not	replication	errors	caused	most	of	the	

distinct	RAS	mutations	and	that	the	number	of	unique	RAS	mutations	varied	considerably	

between	simulations	(Supplementary	Fig.	3).	Taken	together,	these	simulation	results	are	

consistent	with	our	experimental	data	and	support	the	assertion	that	there	is	massive	

population	genetic	diversity	at	the	time	a	patient	is	diagnosed	with	ALL.	

	

Massive	population	diversity	drives	treatment	dynamics	in	a	patient	sample	

With	such	high	population	genetic	diversity,	we	hypothesized	that	some	clones	already	

harbored	mutations	at	diagnosis	that	altered	their	susceptibility	to	treatment.	To	test	that	

hypothesis,	we	exposed	leukemic	cells	to	5	standard	ALL	chemotherapy	drugs	(mercaptopurine,	

vincristine,	prednisolone,	daunorubicin,	asparaginase)	and	used	exome	sequencing	to	evaluate	

the	mutational	composition	after	drug	exposure.	From	this	initial	screen,	we	identified	537	

putative	mutations	in	at	least	one	treatment.	We	then	performed	error-corrected	sequencing	

of	those	sites	in	triplicate	for	each	treatment	to	confirm	that	the	mutations	were	pre-existing.	

We	detected	224	specific	base	changes	at	the	same	location	in	more	than	one	sample	
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(Supplemental	Table	3)—approximately	5	times	as	many	mutations	as	the	41	that	we	identified	

in	the	initial	bulk	sequencing.	

	

To	identify	resistant	clones,	we	treated	the	cells	with	an	increasing	dose	of	each	chemotherapy	

drug	and	looked	for	mutations	exhibiting	a	dose-dependent	increase	in	frequency.	The	control	

cells	treated	with	no	drug	or	DMSO,	as	well	as	the	cells	treated	with	the	lowest	dose	of	

asparaginase,	showed	an	increase	in	a	distinct	cluster	of	mutations.	This	cluster	included	the	

highest-frequency	146V	KRAS	mutation,	along	with	2	nonsynonymous	TP53	mutations	(Fig.	5,	

cluster	7).	Interestingly,	2	mutations	(FOLH1	R281H	and	RGPD3	P816C)	were	strongly	selected	

for	in	all	control	and	treatment	samples	but	were	not	detected	in	the	diagnostic	sample,	

suggesting	they	were	selected	for	by	the	culture	conditions.	Treatment	with	low-dose	

mercaptopurine	or	higher	doses	of	asparaginase	resulted	in	reduced	expansion	of	the	KRAS	

A146V	clone.	This	is	consistent	with	the	known	pharmacokinetics	of	asparaginase,	whereby	

increasing	the	dose	after	target	saturation	has	no	effect	on	cell	killing25.	Treatment	with	

vincristine	or	dose	level	2	of	mercaptopurine	further	decreased	the	clone(s)	in	mutation	cluster	

7	and	decreased	the	frequency	of	the	highest-frequency	mutations	in	cluster	1.	Finally,	

exposure	to	prednisolone,	the	highest	doses	of	mercaptopurine,	or	daunorubicin	resulted	in	the	

greatest	decrease	in	mutations	in	clusters	1	and	7,	whereas	mutations	in	clusters	2	through	4	

increased	in	frequency	as	a	result	of	these	treatments.	Treatment	with	the	highest	doses	of	

daunorubicin	killed	all	cellular	populations.	Taken	together,	these	data	show	that	the	

underlying	genetic	diversity	when	ALL	is	diagnosed	does	affect	the	treatment	dynamics.		
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Discussion	

We	have	presented	the	results	of	a	combination	of	error-corrected	and	single-cell	sequencing	

of	ETV6-RUNX1	ALL	cells	collected	at	diagnosis	in	order	to	further	resolve	the	temporal	changes	

in	clonal	structures	and	mutational	processes	that	occur	during	the	development	of	the	disease.	

The	shift	in	the	relative	frequency	of	different	types	of	cytosine	mutation	revealed	an	APOBEC	

mutagenesis	pattern	that	decreases	over	time,	suggesting	that	this	process	is	important	for	

disease	progression	but	is	not	required	for	persistence	or	ongoing	expansion	of	leukemic	

clones.	We	detected	an	unexpectedly	high	population	mutation	burden,	which	revealed	

differences	in	the	treatment	response	among	the	clones	that	arose	from	the	population	that	

had	previously	undergone	APOBEC	and	replication-mediated	mutagenesis.	This	finding	

emphasizes	the	dynamic	nature	of	leukemic	evolution,	as	the	relative	importance	of	mutations	

required	for	cell	survival	shifts	under	distinct	selection	pressures	as	patients	undergo	

treatment.	We	have	integrated	these	findings	with	previous	knowledge	to	create	a	new	model	

of	ETV6-RUNX1	ALL,	which	is	presented	in	Figure	6.	

	

These	new	details	of	temporal	shifts	in	the	mutational	processes	of	ALL	in	the	period	leading	up	

to	a	patient's	clinical	presentation	highlight	how	single-cell	genomics	can	be	used	to	trace	back	

the	mutational	histories	of	tumors.	The	decrease	in	APOBEC-mediated	mutagenesis	during	

disease	progression	removes	a	major	contributor	to	the	global	mutation	rate	in	those	patients.	

This	change	in	the	mutation	rate	may	be	one	reason	why	ALL	patients	are	cured	at	such	high	

rates	compared	to	patients	with	other	tumor	types	in	which	the	source	of	the	mutagenesis,	

such	as	a	mutation	that	decreases	the	fidelity	of	the	DNA	repair	pathway,	does	not	decrease	
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over	time26.	From	our	results,	it	is	unclear	what	effect	ongoing	exposure	to	mutagenic	

chemotherapy	agents	has	on	the	induction	of	drug-resistant	clones,	but	the	effect	could	be	

significant	in	pediatric	patients	with	ALL,	most	of	whom	undergo	treatment	for	2	to	3	years27.		

	

Mutations	that	are	considered	driving	lesions,	such	as	variants	in	KRAS	or	TP53,	were	not	

dominant	at	diagnosis	or	after	undergoing	selection	during	drug	treatment,	suggesting	that	

combinations	of	mutations	mediate	the	clinical	behaviors	of	clones.	We	also	observed	the	rise	

of	clusters	of	mutations,	but	it	is	unclear	how	many	distinct	clonal	populations	those	clusters	

represent.	This	is	an	area	where	higher-resolution	studies	using	single-cell	sequencing	to	

determine	the	co-occurrence	patterns	of	mutations	will	provide	additional	insights	into	drug	

resistance.	The	putative	high	number	and	differential	drug	sensitivity	of	leukemic	clones	also	

provide	insights	into	the	need	for	combination	therapy	to	cure	children	with	ALL.	Although	the	

sheer	genetic	diversity	of	the	population	presents	new	challenges	for	the	design	of	targeted	

treatment	strategies,	the	presence	of	massive	population	genetic	diversity	in	ALL	also	provides	

an	opportunity	to	probe	those	samples	to	learn	why	we	can	already	overcome	the	pre-existent	

resistance	in	most	patients	with	ALL.	Focusing	on	specific	mutations	that	are	selected	for	by	

particular	drugs	could	yield	mechanistic	insights	into	drug-specific	resistance	and	provide	a	new	

rationale	for	choosing	drug	combinations.		

	

In	summary,	we	have	provided	new	insights	into	the	development	of	ETV6-RUNX1	ALL	and	its	

resistance	to	treatment	by	studying	population	genetics.	Our	findings	underscore	the	

importance	of	studying	the	mutation	burden,	size,	and	mutation	rate	of	the	population	as	a	
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whole,	not	just	the	highest-frequency	variants	detected	by	standard	bulk	sequencing,	when	

trying	to	understand	and	predict	treatment	response.	Greater	genetic	diversity	has	also	

recently	been	reported	in	other	premalignant	and	malignant	states28,29,	suggesting	that	the	

study	of	cancer	population	genetics	is	important	for	understanding	most	tumor	types.	

Together,	these	studies	have	revealed	new	layers	of	complexity	in	leukemic	evolution	that	need	

to	be	fully	understood	in	order	to	more	effectively	eradicate	premalignant	and	malignant	ALL	

cell	populations	with	less	treatment-related	toxicity,	and	they	have	provided	a	framework	for	

studying	intra-tumor	evolution	in	a	wide	range	of	malignant	neoplasms.	

	

	

Online	Methods	

	

Single-cell	exome	sequencing	and	mutation	calling	

Amplified	DNA	from	patient	4	that	had	undergone	single-cell	isolation	and	whole-genome	

amplification	using	the	Fluidigm	C1	System	as	previously	described10	was	used	for	library	

construction	and	exome	capture	with	the	Nextera	Rapid	Capture	Exome	Kit	(Illumina),	used	in	

accordance	with	the	manufacturer's	instructions.	Exome-enriched	libraries	then	underwent	

sequencing	using	2 ××100	reads	on	4	flow	cells	of	a	HiSeq	2000	or	2500	Sequencing	System	

(Illumina).	Adapters	were	trimmed	from	each	of	the	cells	by	using	Trimmomatic	

(ILLUMINACLIP:nextera_adapters.fa:2:30:10	TRAILING:25	LEADING:25	SLIDINGWINDOW:4:20	

MINLEN:30),	followed	by	alignment	with	BWA	using	default	parameters.	Duplicates	were	

marked	using	Picard	(https://broadinstitute.github.io/picard),	and	local	realignment	followed	
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by	base	score	recalibration	was	performed	using	GATK	

(https://software.broadinstitute.org/gatk).	We	then	called	variants	by	using	GATK	and	followed	

this	with	filtering	using	the	parameter	“QD	<	2.0	||	FS	>	60.0	||	MQ	<	40.0	||	HaplotypeScore	>	

13.0	||	MQRankSum	<	−12.5	||	ReadPosRankSum	<	−8.0”.	On-target	coverage	was	calculated	

with	Picard	HsMetrics;	this	was	repeated	after	subsampling	for	an	increasing	number	of	reads	

using	custom	bash	scripts.	Custom	bash	scripts	were	also	used	to	identify	locations	that	had	the	

same	mutation	called	in	more	than	one	cell.	Germline	SNP	locations	identified	by	bulk	

sequencing	were	then	filtered	out,	after	which	locations	that	were	identified	in	any	of	the	

normal	single	cells	were	removed.	

	

Error-corrected	sequencing	

Adapters	with	unique	identifiers	were	prepared	as	previously	described.	Aliquots	of	250	or	500	

ng	of	genomic	DNA	then	underwent	30	min	of	chemical	fragmentation	and	standard	library	

preparation	by	using	the	KAPA	HyperPlus	Kit	(Kapa	Biosystems)	with	adapters	that	contained	

unique	molecular	identifiers	as	described30,	using	3	μg	of	adapter	per	reaction	(a	10:1	molar	

ratio).	PCR	amplification	and	hybrid	capture	were	performed	as	previously	described31.	

Sequencing	was	performed	using	MiSeq	V2	chemistry,	using	2 × 150-bp	PE	reads.	We	then	

trimmed	the	sequences	to	125	bp	with	Trimmomatic	and	placed	the	unique	molecular	

identifiers	into	the	header	by	using	the	script	tag_to_header.py30.	Reads	were	aligned	using	

BWA	ALN	with	standard	parameters.	We	sorted	and	indexed	using	Picard	then	performed	

consensus	calling	by	using	ConsensusMaker.py	with	parameters	–minmem	3,	–cutoff	0.8,	and	--

Ncutoff	0.7.	Unmapped	reads	were	removed	with	SAMtools	(http://samtools.sourceforge.net/),	
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then	local	realignment	was	performed	using	GATK	before	creating	an	mpileup	file.	Normal	and	

Tumor	mpileup	files	were	then	compared	using	VarScan	Somatic,	with	somatic	mutations	

requiring	a	P-value	of	less	than	10−4,	as	computed	using	Fisher’s	exact	test	by	VarScan	

(http://varscan.sourceforge.net).	We	also	required	the	germline	sample	to	have	fewer	than	5	

reads	and	that	no	more	than	90%	of	variant	reads	were	on	the	same	DNA	strand.	Variants	

underwent	RefSeq	annotation	with	ANNOVAR.	

	

Estimation	of	mutation	rates	

To	estimate	the	mutation	rate,	we	downsampled	each	of	the	files	to	70	million	reads.	We	then	

created	marked,	realigned,	and	base	score–recalibrated	BAM	files	as	described	above.	This	was	

followed	by	further	variant	calling	and	filtering	using	the	GATK	filtering	parameters	detailed	

above.	We	then	subtracted	those	sites	that	were	found	in	the	bulk	germline	sequencing.	To	

subtract	the	background	error	rate	due	to	amplification	errors,	the	somatic	mosaicism	rates	in	

normal	cells,	and	mutation	miscalls,	we	subtracted	the	mean	mutation	rate	in	the	3	normal	cells	

from	that	of	each	of	the	single	tumor	cells	and	plotted	the	distribution	of	the	mutations	rates.	

	

Simulation	

We	designed	a	computational	model	to	investigate	when	RAG-mediated	deletions	and	RAS	

mutations	occur,	the	clonal	burden,	and	the	timing	of	disease	onset.	The	model	is	initiated	with	

a	single	cell	with	an	ETV6-RUNX1	translocation	that	is	capable	of	differentiation	and	divides	

every	12	days,	defined	as	cell	type	0.	At	each	time	point,	cells	may	gain	a	deletion	or,	if	dividing	

or	if	APOBEC	mutagenesis	is	active,	an	SNV.	Type	1	cells	are	created	when	type	0	cells	gain	a	
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specific	RAG-mediated	deletion,	which	occurs	with	probability	pRAG_DA.	Type	1	cells	are	

considered	to	have	differentiation	arrest,	but	they	divide	at	the	same	rate	as	type	0	cells.	Type	

2	cells	are	created	when	type	1	cells	have	a	mutation	within	RAS,	which	occurs	with	probability	

pMut_IP.	Type	2	cells	have	differentiation	arrest	as	well	as	increased	proliferation,	duplicating	

every	day.	The	number	of	cells	within	each	cell	type	with	a	specific	amount	of	mutations	and	

deletions	are	tracked.	One	time	point	is	equivalent	to	1	day,	and	each	cell	is	stochastically	

sampled.	

	

For	each	cell	of	a	given	type,	a	random	number	is	generated	from	1	to	1/pDel,	where	pDel	is	the	

probability	of	gaining	a	deletion.	A	deletion	occurs	within	cells	for	which	this	random	number	

equals	1.	A	second	random	number	is	generated	from	1:	1/pRAG_DA	for	each	type	0	cell	that	

acquires	a	deletion.	Any	cell	in	which	this	second	number	is	1	contains	a	deletion	that	causes	it	

to	transform	into	a	type	1	cell.	This	same	process	is	carried	out	when	calculating	the	mutational	

burden	as	well	as	the	transformation	of	type	2	cells	into	type	3	cells.	

APOBEC	mutagenesis	starts	on	a	fixed	day,	if	cell	type	3	has	not	been	generated,	and	continues	

for	2	days	after	cell	type	3	has	formed.	Mutations	generated	from	APOBEC	are	calculated	in	the	

same	way	as	previously	described,	with	the	exception	that	every	cell	within	cell	types	1	and	2	

undergoes	APOBEC	mutagenesis	and	the	number	of	mutations	caused	by	APOBEC	within	a	

given	cell	is	determined	by	randomly	sampling	from	1:Burst.	The	simulation	completes	when	

cell	type	3	has	reached	1 × 1011	cells.	We	estimate	the	number	of	cells	per	clone	by	the	timing	

of	the	newly	acquired	mutation	and	replication	rate,	accounting	for	the	branching	of	cells	such	

that	the	sum	of	all	cells	equals	the	number	of	cells	of	a	given	type.	
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Simulations	were	run	using	our	new	R	package,	which	is	called	RepALL	and	is	available	at	

https://github.com/mjdm/RepALL.	We	ran	the	simulation	with	the	following	default	

parameters:	

Probability	of	gaining	a	RAG-mediated	deletion,	pRAG:	.008	

Probability	of	causing	differentiation	arrest,	given	a	deletion	(Type	0),	pRAG_DA:	2e-7	

Probability	of	gaining	a	mutation	due	to	replication	error,	pBGMut:	0.003	

APOBEC	mutagenesis	start	day:	1290	

APOBEC	duration	after	leukemic	cell-type	initiation:	3	days	

Maximum	number	of	APOBEC	mutations	generated	per	cell	per	day,	Burst:	75	

Probability	of	gaining	a	RAS	mutation,	given	a	mutation	(Type	1),	pMut_IP:	16/(3e9*.02)	=	2.6e-

7	

	

Primary	cell	culture	and	drug	treatment	

Primary	samples	were	from	patients	that	had	provided	consent	in	studies	approved	by	the	St.	

Jude	IRB.	At	the	time	of	sample	collection,	mononuclear	cells	were	isolated	using	Ficoll-Paque	

(GE	Life	Sciences)	followed	by	cryopreservation.	One	vial	of	cells	from	each	patient	was	thawed	

slowly	using	the	ThawSTAR	system	(MedCision),	and	the	cells	were	placed	in	culture	under	the	

conditions	previously	described32.	For	the	limited	dilution	experiment,	750,000	cells	were	

plated	in	each	well	of	a	12-well	plate	and	were	grown	in	culture	for	3	weeks.	For	drug	

treatments,	the	drugs	and	350,000	cells	were	plated	in	each	well	of	a	24-well	plate.	In	both	

experiments,	the	medium	was	changed	twice	weekly	by	carefully	removing	half	of	it	and	
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replacing	it	with	fresh	medium.	The	replacement	medium	included	a	2×	drug	concentration	if	

the	cell	sample	was	undergoing	chemotherapy	exposure.	All	drugs	were	purchased	from	Sigma-

Aldrich,	and	the	concentration	ranges	were	based	on	solubility	limits	and	previously	published	

data32.	The	drugs	used	were	mercaptopurine	(500,	250,	125,	and	62.5	μg/mL	

ConsensusMaker.py	and	90	μg/mL),	vincristine	(810,	162,	32.4,	and	6.5	μg/mL),	daunorubicin	

(31,	6.2,	1.2,	and	0.2	μg/mL),	and	asparaginase	(19,	9.5,	4.8,	and	2.4	μg/mL).	Live	cells	were	

isolated	by	using	a	dead	cell	removal	kit	(Miltenyl).	DNA	was	extracted	using	a	DNA	Universal	

Kit	(Zymo	Research),	and	libraries	were	prepared	using	the	HyperPlus	Kit	(Kapa	Biosciences).	

Exome	or	custom	capture	was	performed	using	oligonucleotides	and	the	standard	protocol	

from	Integrated	DNA	Technologies.	Quality	trimming,	alignment,	and	mutation	calling	were	

performed	using	the	pipeline	outlined	above.	
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Figure	Legends:	

	

Figure	1.	Identification	of	clone-specific	“driver”	mutations	by	using	single-cell	exome	

sequencing.	(A)	The	clonal	structure	of	an	ETV6-RUNX1	diagnostic	patient	sample	that	was	

identified	by	interrogating	single	cells	for	mutations	first	detected	in	the	bulk	sample	was	

further	resolved	by	calling	mutations	in	the	single	cells	alone.	The	clone-specific	“driver”	RAS	

mutations	identified	as	possible	causes	of	the	clonal	expansions	are	noted.	(B)	The	number	of	

new	mutations	identified	in	each	clone	using	phasing	of	bulk	mutations	and	2-cell	mutation	

calls.	(C)	Base	substitution	patterns	seen	in	shared	(early)	and	clone-specific	(later)	mutations.	

(D)	The	surrounding	motifs	in	C-to-T	mutations	in	early	and	late	SNVs,	showing	that	the	strong	

APOBEC	motif	is	only	present	in	the	early	mutations.		

	

Figure	2.	Evidence	for	large	population	genetic	diversity	in	ETV6-RUNX1	ALL.	(A)	Error-corrected	

sequencing	confirmed	3	clone-specific	activating	RAS	mutations	and	identified	2	additional	

lower-frequency	activating	mutations.	(B)	Subclonal	RAS	mutations	were	also	common	in	a	

larger	cohort	in	which	each	patient	had	one	mutation	identified	in	the	bulk	sample	but	had	a	

median	of	5	activating	RAS	mutations.	(C)	The	allele	frequency	distributions	of	RAS	mutations	

show	no	evidence	of	preferential	selection	of	specific	amino	acid	changes.	(D)	The	increased	

sensitivity	of	mutation	detection	with	limiting	dilution	identifies	additional	activating	RAS	

mutations.		
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Figure	3.	Estimating	single-cell	mutation	rates.	(A)	Comparison	of	the	number	of	exome	

mutation	calls	in	leukemia	cells	to	that	in	normal	cells	after	removing	germline	SNVs.	

Subtracting	the	number	of	mutation	calls	in	the	normal	cells	provides	an	estimate	of	the	

mutations	acquired	by	each	leukemia	cell.	(B)	Increasing	the	resolution	of	mutation	calls	

identifies	lower-frequency	mutations.	The	increasing	genetic	diversity	at	higher-resolution	

measurements	further	supports	the	existence	of	much	higher	population	genetic	diversity.	

	

Figure	4.	One	hundred	simulations	of	the	development	of	ETV6-RUNX1	ALL.	(A)	Overview	of	

ETV6-RUNX1	simulation	in	which	a	single	cell	with	an	ETV6-RUNX1	translocation	evolves	over	

the	years.	Cells	that	acquire	deletions	that	cause	differentiation	arrest	are	at	risk	for	

transformation	by	either	replication	or	APOBEC	mutations	that	create	an	activating	RAS	

mutation.	The	cells	expand	until	the	subject	acquires	a	total	leukemic	cell	burden	of	

approximately	1 × 1011.	(B)	The	timing	of	differentiation	arrest,	APOBEC	mutagenesis,	

appearance	of	the	first	activating	RAS	mutant	clone,	and	clinical	presentation	of	disease,	using	

the	described	parameters,	are	similar	to	what	is	seen	in	patients.	(C)	When	defining	a	clone	

based	on	the	somatic	coding	mutation	profile	of	each	cell,	there	is	an	inverse	correlation	

between	the	size	and	frequency	of	clones.	The	number	of	clones	with	the	largest	number	of	

cells	is	more	variable	across	simulations	as	a	result	of	the	timing	and	frequency	of	activating	

RAS	mutations	in	cells	that	already	harbor	an	ETV6-RUNX1	translocation	and	a	deletion	that	

causes	differentiation	arrest.	(D)	Tracking	the	clone	size	and	frequency	for	each	of	the	100	

simulations	shows	the	variance	in	the	number	of	high-frequency	clones	across	simulations.	
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Figure	5.	Differential	sensitivity	of	leukemic	populations	to	chemotherapy.	Clusters	of	

mutations	showing	patterns	of	response	to	drug	treatment	and	dosage.	Clones	with	cluster	7	

mutations,	which	includes	KRAS	A146V	and	two	TP53	mutations,	expanded	without	treatment	

or	upon	exposure	to	low-dose	asparaginase	when	compared	to	the	diagnostic	sample	that	was	

not	placed	in	culture.	Mutations	in	clusters	8	and	9	were	selected	in	all	samples	under	the	

culture	conditions	used.	Low-dose	mercaptopurine	or	higher	doses	of	asparaginase	limited	the	

expansion	of	mutation	cluster	7.	Exposure	to	vincristine	or	an	increased	dose	of	

mercaptopurine	further	reduced	mutation	cluster	7.	Higher	doses	of	mercaptopurine,	as	well	as	

exposure	to	prednisolone	or	daunorubicin,	further	decreased	the	frequency	of	mutations	in	

clusters	1	and	7	while	selecting	for	clones	with	mutations	in	clusters	2	through	4.		

	

Figure	6.	Model	of	ETV6-RUNX1	evolution.	A	massive	number	of	clonal	populations	are	present	

at	diagnosis,	with	a	subset	containing	variants	that	allow	them	to	become	the	most	abundant	

(red).	After	selection	pressures	change	during	treatment,	some	of	the	high-frequency	clones	

contract,	whereas	other	clones	with	different	somatic	mutation	profiles	undergo	positive	

selection	(dashed	line).	
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SUPPLEMENTARY	MATERIALS	

	

Supplementary	Table	1.	List	of	ALL	hotspot	mutation	locations	in	the	error-corrected	

sequencing	capture	panel.	

	

Supplementary	Table	2.	List	of	recurrent	mutations	detected	in	patient	SJETV077.	

	
Supplementary	Table	3.	Statistics	from	the	simulation	of	the	development	of	ETV6-RUNX1	ALL.	

	

Supplementary	Figure	1.	Saturation	of	sequencing	coverage	at	increasing	depth.	(A)	Exome	

sequencing	of	bulk	samples	reached	a	saturating	coverage	breadth	of	94%	at	40	million	reads.	

(B)	Single	cells	reached	a	saturating	coverage	breadth	of	82%	at	60	million	reads.	

	

Supplementary	Figure	2.	Distribution	of	duplicate	numbers	in	error-corrected	sequencing.	

Unique	molecular	identifier	family	size	distributions	for	(A)	germline	and	(B)	leukemia	samples.	

	

Supplementary	Figure	3.	Estimating	the	relative	contribution	of	APOBEC	and	replication	

mutagenesis	to	activating	RAS	mutations.	There	is	significant	variability	in	the	number	of	

activating	RAS	mutations	produced	by	each	simulation.	Most	of	the	activating	RAS	mutations	in	

the	simulations	were	produced	by	APOBEC	(A)	rather	than	by	replication-mediated	(B)	

mutations.	
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