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Abstract
Motivation: High throughput chromatin conformation capture (3C) technologies, such as Hi­C and ChIA­PET, have the 
potential  to elucidate the functional roles of non­coding variants. However, most of published genome­wide unbiased 
chromatin organization studies have used cultured cell lines, limiting their generalizability. 
Results: We developed a web browser, HUGIn, to visualize Hi­C data generated from 21 human primary tissues and cell 
liens. HUGIn enables assessment of chromatin contacts both constitutive across and specific to tissue(s) and/or cell 
line(s) at any genomic loci, including GWAS SNPs, eQTLs and cis­regulatory elements, facilitating the understanding of 
both GWAS and eQTLs results and functional genomics data.
Availability: HUGIn is available at http://yunliweb.its.unc.edu/HUGIn.
Contact: yunli  @med.unc.edu and hum@ccf.org
Supplementary information: 

1 Introduction 
2 Elucidating  the  functional  roles  of  the  vast  majority  (>80-

90%)  of  non-coding  variants  identified  from  GWAS,  and 
subsequently  finding  their  target  gene(s),  are  pressing  and 
daunting tasks. Investigators have only recently realized the 
power and value of high throughput chromatin conformation 
capture (3C) technologies, such as Hi-C (Lieberman-Aiden et  
al.,  2009),  TCC  (Kalhor  et  al.,  2011) and  ChIA-PET 
(Fullwood  et  al.,  2009),  for  potential  target  gene 
identification (Pombo and Dillon, 2015; Dekker et al., 2017). 
Several 3D genome browsers,  including WashU Epigenome 
Browser  (Zhou  et  al.,  2013) and  Juicebox  (Durand  et  al., 
2016),  have  been  developed  to  visualize  3C-based  data. 
However,  the  vast  majority  of  genome-wide  unbiased 
chromatin organization studies published to date have used 
cultured  cell  lines,  limiting  their  generalizability. 
Understanding  chromatin  structure  and  understanding 
complex  trait  genetic  architecture  are  each  daunting 
challenges. Understanding both simultaneously is even more 
daunting,  but  of  paramount  importance  to  unveil  genetic 
mechanisms underlying complex diseases  (Gamazon  et  al., 
2015; Jakobsdottir et al., 2009).
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4 Methods
5 We developed HUGIn (Hi-C Unifying Genomic Interrogator) 

to  host  our  recently  published  compendium  of  Hi-C  data 

across 14 human primary tissues and 7 cell lines (Schmitt et 
al.,  2016) (http://yunliweb.its.unc.edu/HUGIn/).  For  each 
tissue  or  cell  line,  HUGIn  visualizes  the  observed  and 
expected  read  counts  between  two  genomic  loci,  and  the 
corresponding  statistical  significance,  for  long  range 
chromatin interactions, in both heatmap and virtual 4C plots 
(detailed tutorial in Supplementary Material Section 1 and 
Fig. S1). Compared to existing 3D genome browsers, HUGIn 
has five major unique features. First, HUGIn simultaneously 
visualizes a compendium of Hi-C data, which is continually 
updated  as  new  data  become  available  (Supplementary 
Material Section 2). Second, it directly enables detection of 
chromosomal organizations both specific to, and constitutive 
across, tissue(s) and/or cell line(s). Third, HUGIn can display 
Hi-C data anchored at genomic locus of any size, suggesting 
potential target gene(s) for GWAS variants in a tissue or cell 
line informative manner. This feature is particularly important 
for evaluating a GWAS locus, which can range from a single 
nucleotide  to  a  region  of  linkage  disequilibrium extending 
over  tens  of  thousands  of  base  pairs  (Smith  et  al.,  2005). 
Fourth,  HUGIn  also  hosts  gene  expression  and  a  rich 
collection  of  epigenomic  data,  including  typical  and  super 
enhancers, CTCF binding sites, frequently interacting regions 
(FIREs)  (Schmitt  et  al.,  2016),  and  several  core  histone 
modifications (Supplementary Material Section 1). Lastly, 
HUGIn generates a list of most likely target gene(s) for any 
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genomic loci of interest. Such a gene list can be used for gene 
set  enrichment  analysis  or  prioritization  for  follow-up 
functional studies. 

6 Results
7 Figure 1 is a virtual 4C plot in which we display a long range 

chromatin interaction between the type 2 diabetes (T2D)- and 
adiponectin-associated  SNP rs6450176  with  the  gene  FST 
(Civelek et al., 2017). Although the SNP is located within the 
ARL15 gene, it was shown to be an eQTL for  FST but not 
ARL15 in  subcutaneous  adipose  tissue.  In  addition, 
expression  level  of  FST but  not  ARL15 is  correlated  with 
adiponectin levels (Civelek et al., 2017). More details and the 
virtual 4C plot for the rs6450176-FST interaction are shown 
in Fig.  S2.  Two  more  examples,  a  long  range  interaction 
between BMI-associated SNP rs9930506 and the gene  IRX3 
(Smemo et al., 2014), and between schizophrenia-associated 
SNP rs1191551 and the gene FOXG1 (Won et al., 2016), are 
shown in  Fig. S3-S4.  We further investigated all intergenic 
SNPs in the NHGRI catalog of published GWAS for seven 
diseases  including  schizophrenia,  leukemia,  Alzheimer’s 
disease,  autism,  depression,  type  1  diabetes  and  type  2 
diabetes  (Supplementary  Material  Section  3).  We  found 
that, across all diseases examined, >85% of HUGIn-annotated 
genes are not the gene closest to the GWAS SNP (Table S1); 
and that HUGIn-annotated gene lists tend to provide stronger 
evidence for enrichment with biologically relevant terms or 
gene sets (Tables S2-S3). 
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9 Conclusions
10 With  the  continuing  accumulation  of  high  resolution  3C-

based data in disease-relevant human tissues, we expect that 
HUGIn will become an increasingly valuable tool for many 
investigators,  including biologists  interested in  fundamental 
chromosome organization  across  cell  lines,  tissue  types,  or 
developmental stages, and geneticists seeking to understand 
the genetic architecture and mechanism underlying complex 
diseases and traits.
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Figure 1. Virtual 4C plot view of the interaction between the T2D- and adiponectin-associated SNP rs6450176 and its potential target gene  
FST. Virtual 4C plot of the long range chromatin interactions anchored at the 40kb bin (chr5:53,280,001-53,320,000), shown as a gray bar, containing  
the type 2 diabetes (T2D)- and adiponectin-associated GWAS SNP rs6450176 (Civelek et al., 2017), shown as a vertical black line within the gray bar, 
in H1 human embryonic cell line (A), in liver tissue (B), and in spleen tissue (C). The observed and expected chromatin contact frequency are repre-
sented by the black and red lines, respectively. The left Y axis displays the range of chromatin contact frequency. The statistical significance (i.e., –
log10(p-value)) of each long range chromatin interaction reported by Fit-Hi-C (Ay et al., 2014) is represented by the blue line, with its range listed in 
the right Y axis. The cell or tissue specific FDR 5% threshold is shown as a cyan horizontal dashed line, and the more stringent Bonferroni 0.05 thresh-
old is shown as a blue horizontal dashed line. Above each virtual 4C plot is a diagram of genes that are within the 400kb viewing window (chr5:  
53,280,001-53,320,000). The highlighted yellow bar is the gene FST (chr5: 52,776,264-52,782,304).
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