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Chloé Bessière1,2,#, May Taha1,2,3,#, Florent Petitprez1,2, Jimmy
Vandel1,4, Jean-Michel Marin1,3, Laurent Bréhélin1,4,*, Sophie
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Montpellier; Université de Montpellier, 163 rue Auguste

Broussonnet, 34090 Montpellier, France
#, ∗contributed equally to this work

∗corresponding authors: brehelin@lirmm.fr,
sophie.lebre@umontpellier.fr, charles.lecellier@igmm.cnrs.fr

March 16, 2017

1

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/117499doi: bioRxiv preprint 

https://doi.org/10.1101/117499
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Gene expression is orchestrated by distinct regulatory regions (e.g.
promoters, enhancers, UTRs) to ensure a wide variety of cell types and
functions. A challenge is to identify which regulatory regions are active,
what are their associated features and how they work together in each
cell type. Several approaches have tackled this problem by modeling gene
expression based on epigenetic marks (e.g. ChIP-seq, methylation, DNase
hypersensitivity), with the ultimate goal of identifying driving genomic re-
gions and mutations that are clinically relevant in particular in precision
medicine. However, these models rely on experimental data, which are
limited to specific samples (even often to cell lines) and cannot be gener-
ated for all regulators and all patients. In addition, we show here that, al-
though these approaches are accurate in predicting gene expression, their
biological interpretation can be misleading. Finally these methods are
not designed to capture potential regulation instructions present at the
sequence level, before the binding of regulators or the opening of the chro-
matin. We develop here a method for predicting mRNA levels based solely
on sequence features collected from distinct regulatory regions, which is as
accurate as methods based on experimental data. Our approach confirms
the importance of nucleotide composition in predicting gene expression
and ranks regulatory regions according to their contribution. It also un-
veils strong influence of gene body sequence, in particular introns. We
further provide evidence that the contribution of nucleotide content can
be linked to co-regulations associated with genome 3D architecture and
to associations of genes within topologically associated domains.
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INTRODUCTION

The diversity of cell types and cellular functions is defined by specific pat-
terns of gene expression. The regulation of gene expression involves a plethora
of DNA/RNA-binding proteins that bind specific motifs present in various
DNA/RNA regulatory regions. At the DNA level, transcription factors (TFs)
typically bind 6-8bp-long motifs present in promoter regions, which are close
to transcription start site (TSS). TFs can also bind enhancer regions, which
are distal to TSSs and often interspersed along considerable physical distance
through the genome [1]. The current view is that DNA looping mediated by
specific proteins and RNAs places enhancers in close proximity with target gene
promoters (for review [2, 3, 4, 5]). High-resolution chromatin conformation cap-
ture (Hi-C) technology identified contiguous genomic regions with high contact
frequencies, referred to as topologically associated domains (TADs) [6]. Within
a TAD, enhancers can work with many promoters and, on the other hand, pro-
moters can contact more than one enhancer [7, 5].

At the RNA level, RNA-binding proteins (RBPs) can co- or post-
transcriptionally regulate the fate of RNAs. The vast majority of RBPs appears
to bind target sequences in single-strand RNA, and none absolutely requires a
specific RNA secondary structure [8, 9, 10]. Some RBPs guided by small non-
coding RNAs i.e. microRNAs (miRNAs) can also recognize specific sequences
in their RNA targets leading eventually to RNA degradation [11]. The miRNAs
are thought to fine-tune the RNA levels but their regulatory power appears
overshadowed by TFs [12]. The RNA regions involved in post-transcriptional
regulations mostly correspond to the 5’ and 3’ untranslated regions (5’UTR and
3’UTR) [8, 13, 14]. The coding DNA sequence (CDS) also plays key role in post-
transcriptional [15, 16, 17, 18] as well as transcriptional [19] regulations. Note
that the situation is obviously different in the case of non coding RNAs, which
are not considered in this study. Intronic sequences have also been reported to
affect gene regulation in many ways, from transcription to RNA stability, that
are distinct from splicing [20, 21].

Several large-scale data derived from high-throughput experiments (such
as ChIP-seq [22], SELEX-seq [23], RNAcompete [24]) can be used to highlight
TF/RBP binding preferences and build Position Weight Matrixes (PWMs) [25].
The human genome is thought to encode ∼2,000 TFs [26] and >1,500 RBPs [14].
It follows that gene regulation is achieved primarily by allowing the proper com-
bination to occur i.e. enabling cell- and/or function-specific regulators (TFs or
RBPs) to bind the proper sequences in the appropriate regulatory regions. In
that context, epigenetics clearly plays a central role as it influences the bind-
ing of the regulators and ultimately gene expression [27]. Provided the variety
of regulatory mechanisms, deciphering their combination requires mathemati-
cal/computational methods able to consider all possible combinations.

Several methods have recently been proposed to tackle this problem
[28, 12, 29, 30]. Although these models appear very efficient in predicting gene
expression and identifying key regulators, they mostly rely on experimental data
(ChIP-seq, methylation, DNase hypersensitivity), which are limited to specific
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samples (often to cell lines) and which cannot be generated for all TFs/RBPs
and all cell types. These technological features impede from using this type of
approaches in a clinical context in particular in precision medicine. In addition,
we show here that, although these approaches are accurate, their biological inter-
pretation can be misleading. Finally these methods are not designed to capture
regulation instructions that may lie at the sequence-level before the binding of
regulators or the opening of the chromatin. There is indeed a growing body of
evidence suggesting that the DNA sequence per se contains information able
to shape the epigenome and explain gene expression [31, 32, 33, 34, 35]. Sev-
eral studies have shown that sequence variations affect histone modifications
[32, 33, 34]. Specific DNA motifs can be associated with specific epigenetic
marks and the presence of these motifs can predict the epigenome in a given
cell type [35]. Quante and Bird proposed that proteins able to ”read” domains
of relatively uniform DNA base composition may modulate the epigenome and
ultimately gene expression [31]. In that view, modeling gene expression using
only DNA sequences and a set of predefined DNA/RNA features (without con-
sidering experimental data others than expression data) would be feasible. In
line with this proposal, Raghava and Han developed a Support Vector Machine
(SVM)-based method to predict gene expression from amino acid and dipeptide
composition in Saccharomyces cerevisiae [16].

Here, we built a global regression model per sample to predict the expression
of the different genes using their nucleotide compositions as predictive variables.
The idea beyond our approach is that the selected variables (defining the model)
are specific to each sample. Hence the expression of a given gene may be pre-
dicted by different variables in different samples. This approach was tested
on several RNA-sequencing data from The Cancer Genome Atlas (TCGA) and
showed accuracy similar to that of methods based on experimental data. We
thus confirmed the importance of nucleotide composition in predicting gene ex-
pression. Moreover, the gene body (introns, CDS and UTRs), as opposed to
sequences located upstream (promoter) or downstream, had the most significant
contribution in our model. We further provided evidence that the contribution of
nucleotide composition in predicting gene expression is linked to co-regulations
associated with genome architecture and TADs.
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MATERIAL AND METHODS

Datasets, sequences and online resources

RNA-seq V2 level 3 processed data were downloaded from the TCGA
Data Portal. Our training data set contained 241 samples randomly cho-
sen from 12 different cancers (20 cancerous samples for each cancer ex-
cept 21 for LAML, see Supplementary Table S7). Isoform expression data
(.rsem.isoforms.normalized results files) were downloaded from the Broad
TCGA GDAC (http://gdac.broadinstitute.org) using firehose get. We collected
data for 73599 isoforms in 225 samples of the 241 initially considered. All the
genes and isoforms not detected (no read) in any of the considered samples were
removed from the analyses. Expression data were log transformed.

All sequences were mapped to the hg38 human genome and the UCSC
liftover tool was used when necessary. Gene TSS positions were extracted from
GENCODEv24. UTR and CDS coordinates were extra@cted from ENSEMBL
Biomart. To assign only one 5UTR sequence to one gene, we merged all anno-
tated 5UTRs associated with the gene of interest using Bedtools merge [36] and
further concatenated all sequences. The same procedure was used for 3UTRs
and CDSs. Intron sequences are GENCODEv24 genes to which 5UTR, 3UTR
and CDS sequences described above were substracted using Bedtools substract
[36]. These sequences therefore corresponded to constitutive introns. The intron
sequences were concatenated per gene. The downstream flanking region (DFR)
was defined as the region spanning 1kb after GENCODE v24 gene end. Fasta
files were generated using UCSC Table Browser or Bedtools getfasta [36].

TCGA isoform TSSs were retrieved from https://webshare.bioinf.unc.

edu/public/mRNAseq_TCGA/unc_hg19.bed and converted into hg38 coordi-
nates with UCSC liftover. For other regulatory regions associated to transcript
isoforms (UTRs, CDS, introns and DFR), we used GENCODE v24 annotations.

Nucleotide composition

The nucleotide (n=4) and dinucleotide (n=16) percentages were computed from
the different regulatory sequences where:

percentage(N, s) =
]N

l

is the percentage of nucleotide N in the regulatory sequence s, with N in
{A,C,G, T} and l the length of sequence s, and

percentage(NpM, s) =
]NpM

l − 1

is the NpM dinucleotide percentage in the regulatory sequence s, with N and
M in {A,C,G, T} and l the length of sequence s.
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Motif scores

Motif scores in core promoters were computed using the method explained in [25]
and Position Weight Matrix (PWM) available in JASPAR CORE 2016 database
[37]. Let w be a motif and s a nucleic acid sequence. For all nucleotide N in
{A,C,G, T}, we denoted by P (N |wj) the probability of nucleotide N in position
j of motif w obtained from the PWM, and by P (N) the prior probability of
nucleotide N in all sequences.

The score of motif w at position i of sequence s is computed as follows:

score(w, s, i) =

|w|−1∑
j=0

log
P (si+j |wj)

P (si+j)

with |w| the length of motif w, si+j the nucleotide at position i+ j in sequence
s, The score of motif w for sequence s is computed as the maximal score that
can be achieved at any position of s, i.e.:

score(w, s) =
l−|w|
max
i=0

score(w, s, i),

with l the length of sequence s.

DNAshape scores

DNA shape scores were computed using DNAshapeR [38].

Enhancers

The coordinates of the enhancers mapped by FANTOM on the hg19 assembly
[7] were converted into hg38 using UCSC liftover and further intersected with
the different regulatory regions. We computed the density of enhancers per
regulatory region (R) by dividing the sum, for all genes, of the intersection length
of enhancers with gene i (Lenhi) by the sum of the lengths of this regulatory
region for all genes:

enhDensity(R) =

∑
i (Lenhi

in Ri)∑
i length(Ri)

Expression quantitative trait loci

The v6p GTex cis-eQTLs were downloaded from the GTex Portal (http://www.
gtexportal.org/home/). The hg19 cis-eQTL coordinates were converted into
hg38 using UCSC liftover and further intersected with the different regulatory
regions. We restricted our analyses to cis-eQTLs impacting their own host gene.
We computed the density of cis-eQTL per regulatory region (R) by dividing the
sum, for all genes, of the number of cis-eQTLs of gene i (eQTLsi) located in
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the considered region for gene i (Ri) by the sum of the lengths of this regulatory
region for all genes:

eQTLdensity(R) =

∑
i # (eQTLsi in Ri)∑

i length(Ri)

Methylation

Illumina Infinium Human DNA Methylation 450 level 3 data were down-
loaded from the Broad TCGA GDAC (http://gdac.broadinstitute.org) using
firehose get. The coordinates of the methylation sites (hg18) were converted
into hg38 using the UCSC liftover and further intersected with that of the core
promoters (hg38). For each gene, we computed the median of the beta values
of the methylation sites present in the core promoter and further calculated the
median of these values in 21 LAML and 17 READ samples with both RNA-seq
and methylation data. We compared the overall methylation status of the core
promoters in LAML and READ using a wilcoxon test.

Functional enrichment

Gene functional enrichments were computed using the database for annotation,
visualization and integrated discovery (DAVID) [39].

Linear regression with `1-norm penalty (Lasso)

We performed estimation of the linear regression model (1) via the lasso [40].
Given a linear regression with standardized predictors and centered response
values, the lasso solves the `1-penalized regression problem of finding the vector
coefficient β = {βi} in order to minimize

Min

(
||Y c(g)−

∑
i

βix
s
i,g||2 + λ

∑
i

|βi|

)
,

where Y c(g) is the centered gene expression for all gene g, xsi,g is the standardized
DNA feature i for gene g and

∑
i |βi| is the `1-norm of the vector coefficient β.

Parameter λ is the tuning parameter chosen by 10 fold cross validation. The
highest value of λ, the less variables selected. This is equivalent to minimizing
the sum of squares with a constraint of the form

∑
i |βi| ≤ s. Gene expression

predictions are computed using coefficient β estimated with the value of λ that
minimizes the mean square error. Lasso inference was performed using the
function cv.glmnet from the R package glmnet [41].

Stable variable selection

Consistently selected variables were identified using the two functions stabpath
and stabsel from the R package C060 for glmnet models [42]. In the first step,
for each sample, the lasso inference is repeated 500 times such that, for each
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iteration, only 50% of the genes is used (uniformly sampled) and each predictive
variable is reweighted by a random weight (uniformly sampled in [0.5; 1]). In
the second step, variables are considered as stable if they are selected in more
than 70% of the iterations using the method proposed in [42] to set the value
of λ.

Regression trees

Regression trees were implemented with the rpart package in R [41]. In order
to avoid over-fitting, trees were pruned based on a criterion chosen by cross
validation to minimize mean square error. The minimum number of genes was
set to 100 genes per leaf.

TAD enrichment

We considered TADs mapped in IMR90 cells [6] containing more than 10 genes
(373 out of 2243 TADs with average number of genes = 14). The largest TAD
had 76 associated genes. First, for each TAD and for each region considered,
the percentage of each nucleotide and dinucleotide associated to the embedded
genes were compared to that of all other genes using a Kolmogorov-Smirnov
test. Correction for multiple tests was applied using the False Discovery Rate
(FDR) < 0.05 [43] and the R function p.adjust [41]. Second, for each of the
967 groups of genes (identified by the regression trees, with mean error < mean
error of the 1st quartile), the over-representation of each TAD within each group
was tested using the R hypergeometric test function phyper [41]. Correction for
multiple tests was applied using FDR< 0.05 [43].

Cancer acronyms

ovarian serous cystadenocarcinoma, OV; bladder urothelial carcinoma, BLCA;
breast invasive carcinoma, BRCA; colon adenocarcinoma, COAD; lymphoid
neoplasm diffuse large B-cell lymphoma, DLBC; acute myeloid leukemia, LAML;
brain lower grade glioma, LGG; liver hepatocellular carcinoma, LIHC; lung ade-
nocarcinoma, LUAD; pancreatic adenocarcinoma, PAAD; prostate adenocarci-
noma, PRAD; rectum adenocarcinoma, READ.

Data availability

The matrices of predicted variables (log transformed RNA seq data) and pre-
dictive variables (nucleotide and dinucleotide percentages, motifs and DNA
shape scores computed for all genes as described above) as well as the TCGA
barcodes of the 241 samples used in our study have been made available at
http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics.
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RESULTS

Mathematical approach to predict gene expression

We built a global linear regression model to predict the expression of genes using
DNA/RNA features associated with their regulatory regions (e.g. nucleotide
composition, TF motifs, DNA shapes):

Y (g) = a+
∑
i

bixi,g + e(g) (1)

where Y (g) is the expression of gene g, xi,g is feature i for gene g, e(g) is the
residual error associated with gene g, a is the intercept and bi is the regression
coefficient associated with feature i.

The advantage of this approach is that it allows to unveil, into a single model,
the most important regulatory features responsible for the observed gene expres-
sion. The relative contribution of each feature can thus be easily assessed. It is
important to note that the model is specific to each sample. Hence the expres-
sion of a given gene may be predicted by different variables depending on the
sample. Our computational approach was based on two steps. First, a linear
regression model (1) was trained with a lasso penalty [40] to select sequence
features relevant for predicting gene expression. Second, the performances of
our model was evaluated by computing the mean square of the residual er-
rors, and the correlation between the predicted and the observed expression for
all genes. Our approach was applied to a set of RNA sequencing data from
TCGA. We randomly selected 241 gene expression data from 12 cancer types
(see http://www.univ-montp3.fr/miap/~lebre/IBCRegulatoryGenomics for
the barcode list). For each dataset (i.e sample), a regression model was learned
and evaluated. See Materials and Methods for a complete description of the
data, the construction of the predictor variables and the inference procedure.

Contribution of the promoter nucleotide composition

We first evaluated the contribution of promoters, which are one of the most im-
portant regulatory sequences implicated in gene regulation [44]. We extracted
DNA sequences encompassing ±2000 bases around all GENCODE v24 TSSs
and looked at the percentage of dinucleotides along the sequences (Supplemen-
tary Figure S1). Based on these distributions, we segmented the promoter into
three distinct regions: -2000/-500 (referred here to as distal upstream promoter,
DU), -500/+500 (thereafter called core promoter though longer than the core
promoter traditionally considered) and +500/+2000 (distal downstream pro-
moter, DD)(Figure 1). We computed the nucleotide (n=4) and dinucleotide
(n=16) relative frequencies in the three distinct regions of each gene. For each
sample, we trained one model using the 20 nucleotide/dinucleotide relative fre-
quencies from each promoter segment separately, and from each combination of
promoter segments. We observed that the core promoter had the strongest con-
tribution compared to DU and DD (Figure 2(a)). Considering promoter as one
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unique sequence spanning -2000/+2000 around TSS achieved lower model ac-
curacy than combining different promoter segments (Figure 2(a)). The highest
accuracy was obtained combining all three promoter segments Figure 2(a)).

Promoters are often centered around the 5’ most upstream TSS (i.e. gene
start). However genes can have multiple transcriptional start sites. The median
number of alternative TSSs for the 19,393 genes listed in the TCGA RNA-seq
V2 data is 5 and only 2,753 genes harbor a single TSS (Supplementary Figure
S2). We therefore evaluated the performance of our model comparing different
promoters centered around the first, second, third and last TSS (Figure 2(b)).
In the absence of second TSS, we used the first TSS and likewise the second TSS
in the absence of a third TSS. The last TSS represents the most downstream
TSS in all cases. We found that our model achieved higher predictive accuracy
with the promoters centered around the second TSS (Figure 2(b)), in agreement
with [28].

We noticed that incorporating the number of TSSs associated with each gene
drastically increased the performance of our model (Supplementary Figure S3).
Multiplying TSSs may represent a genuine mechanism to control gene expression
level. On the other hand this effect may merely be due to the fact that the more
a gene is expressed, the more its different isoforms will be detected (and hence
more TSSs will be annotated). Because the number of known TSSs results from
annotations deduced from experiments, we decided not to include this variable
into our final model.

Contribution of specific features associated with promoters

Provided the importance of CpGs in promoter activity [44], we first compared
our model with a model built only on promoter CpG content. We confirmed that
CpG content had an important contribution in predicting gene expression (me-
dian R = 0.417, Figure 2(c)). However considering other dinucleotides achieved
better model performances, indicating that dinucleotides other than CpG con-
tribute to gene regulation. This is in agreement with results obtained by Nguyen
et al., who showed that CpG content is insufficient to encode promoter activity
and that other features might be involved [45].

We integrated TF motifs considering Position Weight Matrix scores com-
puted in the core promoter and observed a slight but significant increase of the
regression performance (median r = 0.543 with motif scores vs. r = 0.502 with-
out motif scores, Figure 2(d)). As three-dimensional local structure of the DNA
(DNA shape) improve TF motif predictions [46], we also computed, for each
promoter segment, the mean scores of the four DNA shape features provided by
DNAshapeR [38] (helix twist, minor groove width, propeller twist, and Roll).
Although the difference between models with and without DNA shapes is also
significant, the increase in performance is more modest than when including TF
motif scores (Figure 2(d)).

Our model suggested that nucleotide composition had a greater contribution
in predicting gene expression compared to TF motifs and DNA shapes. This is
in agreement with the findings revealing the influence of the nucleotide environ-
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ment in TFBS recognition [47]. Note however that nucleotide composition, TF
motifs and DNA shapes may be redundant variables. Besides, a linear model
may not be optimal to efficiently capture the contributions of TF motifs and/or
DNA shapes. The highest performance was achieved by combining nucleotide
composition with TF motifs (Figure 2(d)). In the following analyses, the model
was built on both dinucleotide composition and core promoter TF motifs.

Comparison with models based on experimental data

The wealth of TF ChIP-seq, epigenetic and expression data has allowed the de-
velopment of methods aimed at predicting gene expression based on differential
binding of TFs and epigenetic marks [28, 12, 29, 30]. We sought to compare
our approach, which does not necessitate such cell-specific experimental data,
to these methods. We first compared our results to that of Li et al. who used
a regression approach called RACER to predict gene expression on the basis
of experimental data, in particular ChIP-seq data and DNA methylation [12].
Note that, with this model, the contribution of TF regulation in predicting gene
expression is higher than that of DNA methylation [12].

We computed the Spearman correlations between expressions observed in the
subsets of LAMLs studied in [12] and expressions predicted by our model or by
RACER (Figure 3(a)). For the sake of comparison, we used the RACER model
built solely on ChIP-seq data, hereafter referred to as ”ChIP-based model”.
Overall our model was as accurate as ChIP-based model (median correlation r
= 0.529 with our model vs. median r = 0.527 with ChIP-based model (Fig-
ure 3(a))). We then controlled the biological information retrieved by the two
approaches by randomly permuting, for each gene, the values of the predictive
variables (dinucleotide counts/motif scores in our model and ChIP-seq signals
in the ChIP-based model). This creates a situation where the links between the
combination of predictive variables and expression is broken, while preserving
the score distribution associated with each gene. In such situation, a regression
model is expected to poorly perform. Surprisingly, the accuracy of ChIP-based
model was not affected by the randomization process (median r = 0.517, Fig-
ure 3(a)) while that of our model was severely impaired (median r = 0.076,
Figure 3(a)). We built another control model using a single predictive variable
per gene corresponding to the maximum value of all predictive variables ini-
tially considered. Here again the ChIP-based model was not affected by this
process (median r = 0.520, Figure 3(a)) while our model failed to accurately
predict gene expression with this type of control variable (median r = -0.016,
Figure 3(a)).

ChIP-seq data are probably the best way to measure the activity of a TF
because binding of DNA reflects the output of RNA/protein expression as well as
any appropriate post-translational modifications and subcellular localizations.
However this type of data also reflects chromatin accessibility (i.e. most TFs
bind accessible genomic regions) and TFs tend to form clusters on regulatory
regions [48]. The binding of one TF in the promoter region is therefore likely
accompanied by the binding of others. Hence, rather than inferring the TF
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combination responsible for gene expression, linear models based of ChIP-seq
data may capture the quantity of TFs (i.e. the opening of the chromatin) in the
promoter region of each gene, which explains their good accuracy on randomized
or maximized variables.

We indeed observed a similar bias in the results obtained by TEPIC [30], a
regression method that predicts gene expression from PWM scores and open-
chromatin data. Specifically, TEPIC computes a TF-affinity score for each gene
and each PWM by summing up the TF affinities in all open-chromatin peaks
(DNaseI-seq) within a close (3,000 bp) or large (50,000 bp) window around TSSs.
This scoring takes into account the scores of PWMs in the open-chromatin peaks
but is also influenced by the number of open-chromatin peaks in the analyzed
sequences and the abundance of open-chromatin peaks (”scaled” version). As
a result, genes with many open-chromatin peaks tend to get higher TF-affinity
scores than genes with low number of open-chromatin peaks. We trained lin-
ear models on three cell-lines using either the four TEPIC affinity-scores or our
variables and compared the results (Figure 3(b)). As for the ChIP-based mod-
els, we observed that our model was approximately as accurate as TEPIC score
model. Applying the random permutations on the TEPIC scores did not sig-
nificantly impact the accuracy of the approach in most cases, especially for the
scaled versions (Figure 3(b)). Hence, as for the ChIP-based model, the TEPIC
score model seems to mainly capture the level of chromatin opening rather than
the TF combinations responsible for gene expression. Conversely, our model
solely built on DNA sequence features is not influenced by the chromatin ac-
cessibility and thus can yield relevant combinations of explanatory features (see
the randomized control in Figures 3(a) and 3(b)). Note that the non-scaled
version of TEPIC did show a loss of accuracy for cell-line H1-hESC (as well as
a moderate loss for K562, but none for GM12878) when randomizing or maxi-
mizing the variables (Figure 3(b)). This result indicates that, although taking
the abundance of open-chromatin peaks in the analyzed sequences does increase
expression prediction accuracy, it might generate more irrelevant combinations
of explanatory features than non-scaled versions.

Contribution of additional genomic regions

Additional genomic regions were integrated into our model. We first thought to
consider enhancer sequences implicated in transcriptional regulation. We used
the enhancer mapping made by the FANTOM5 project, which identified 38,554
human enhancers across 808 samples [7]. This mapping uses the CAGE tech-
nology, which captures the level of activity for both promoters and enhancers in
the same samples. It is then possible to predict the potential target genes of the
enhancers by correlating the activity levels of these regulatory regions over hun-
dreds of human samples [7]. However FANTOM5 enhancers are only assigned
to 11,359 genes from the TCGA data, which correspond to the most expressed
genes across different cancers (Supplementary Figure S4). Provided that the
detection of enhancers relies on their activity, it is expected that enhancers are
better characterized for the most frequently expressed genes. Because consid-

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/117499doi: bioRxiv preprint 

https://doi.org/10.1101/117499
http://creativecommons.org/licenses/by-nc-nd/4.0/


ering enhancers would considerably reduce the number of genes and introduce
a strong bias in the performance of our model, we decided not to include these
regulatory regions.

Second we analyzed the contribution of regions defined at the RNA level
namely 5’UTR, CDS, 3’UTR and introns (Figure 1). For all genes, we extracted
all annotated 5’UTRs, 3’UTRs and CDSs, which were further merged and con-
catenated to a single 5’UTR, a single CDS, and a single 3’UTR per gene. Introns
were defined as the remaining sequence (Figure 1). We also tested the potential
contribution of the 1kb region located downstream the gene end, called there-
after Downstream Flanking Region (DFR, Figure 1). Our rationale was based
on reports showing the presence of transient RNA downstream of polyadenyla-
tion sites [49], the potential presence of enhancers [7] and the existence of 5’ to
3’ gene looping [50].

We used a forward selection procedure by adding one region at a time: (i) all
regions were tested separately and the region leading to the highest Spearman
correlation between observed and predicted expression was selected as the ’first’
seed region, (ii) each region not already in the model was added separately
and the region yielding the best correlation was selected (’second region’), (iii)
the procedure was repeated till all regions were included in the model. The
correlations computed at each steps are indicated in Supplementary Table S1.
As shown in Figure 4, the nucleotide composition of intronic sequences had
the strongest contribution in the accuracy of our model, followed by UTRs (5’
then 3’) and CDS (Figure 4). The nucleotide composition of core promoter
moderately increased the prediction accuracy. In contrast the composition of
regions flanking core promoter (DU and DD, Figure 1) as well as regions located
downstream the end of gene (DFR, Figure 1) did not significantly improve the
predictions of our model.

Because RNA-associated regions (introns, UTRs, CDSs) had greater contri-
bution to the prediction accuracy compared to DNA regions (promoters, DFR),
we compared the accuracy of our model in predicting gene vs. transcript ex-
pression. We retrieved the normalized results for gene expression (RNAseqV2
rsem.genes.normalized results) and the matched normalized expression signal
of individual isoforms (RNAseqV2 rsem.isoforms.normalized results) for 225
TCGA samples. Accordingly, we generated a set a predictive variables spe-
cific to each isoform (see Material and Methods). We found that models built
on isoforms are less accurate than models built on genes (median r = 0.35, Sup-
plementary Figure S5 and Table S2). This results is likely due to the fact that
reconstructing and quantifying full-length mRNA transcripts is a difficult task,
and no satisfying solution exists for now [51]. Consequently isoform as opposed
to gene expression is more difficult to measure and thus to predict.

Selecting DNA features related to gene expression

We sought the main DNA features related to gene expression. The complete
model built on all 8 regions (160 variables) selected ∼ 129 predictive variables
per sample. We used the stability selection algorithm developed by Meinshausen
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et al. [52] to identify the variables that are consistently selected after data sub-
sampling (see Materials and Methods for a complete description of the proce-
dure). This procedure selected ∼ 16 variables per sample. The barplot in Figure
5(a) shows, for each variable, the proportion of samples in which the variable is
selected with high consistency (> 70% of the subsets).

We next determined whether stable variables exert a positive (activating) or
a negative (inhibiting) effect on gene expression. For each sample, we fitted a
linear regression model predicting gene expression using only the standardized
variables that are stable for this sample. The activating/inhibiting effect of a
variable is then indicated by the sign of its regression coefficient: < 0 for a neg-
ative effect and > 0 for a positive effect. The outcome of these analyses for all
variables and all samples is shown Figure 5(b). With the noticeable exception
of CpG in the core promoter, all stable variables had an invariable positive (e.g.
GpT in introns) or negative (e.g. CpA in DD and in 5UTR) contribution in
gene expression prediction in all samples. In contrast, CpG in the core promoter
had an alternating effect being positive in LAML and LGG for instance while
negative in READ. It is also the only variable with a regression coefficient close
to 0 (absolute value of median = 0.1, see Supplementary Figure S6), providing
a partial explanation for the observed changes. As CpG methylation inhibits
gene expression [44], we also investigated potential differences in core promoter
methylation in LAML (positive contribution of CpG CORE) and READ (nega-
tive contribution of CpG CORE). We used the Illumina Infinium Human DNA
Methylation 450 made available by TCGA and focused on the estimated methy-
lation level (beta values) of the sites intersecting with the core promoter. We
noticed that core promoters in LAML were overall more methylated (median =
0.85) than in READ (median = 0.69, wilcoxon test p-value < 2.2e-16), opposite
to the sign of CpG coefficient in LAML (positive contribution of CpG CORE)
and READ (negative contribution of CpG CORE). This argued against a con-
tribution of methylation in the alternating effect of CpG CORE.

In order to characterize well predicted genes, we used a regression tree [53]
to classify genes according to the prediction accuracy of our model (i.e. absolute
error). The nucleotide and dinucleotide compositions of the various considered
regions were used as classifiers. This approach identified groups of genes with
similar (di)nucleotide composition in the regulatory regions considered and for
which our model showed similar accuracy (Supplemental Figure S7). Implicitly,
it identified the variables associated with a better or a poorer prediction. We
applied this approach to the 241 linear models. The number of groups built
by a regression tree differs from one sample to another (average number =
14). The resulting 3,680 groups can be visualized in the heatmap depicted in
Figure 6, wherein each column represents a sample and each line corresponds
to a group of genes identified by a regression tree. This analysis showed that
our model is not equally accurate in predicting the expression of all genes but
mainly fits certain classes of genes (bottom rows of the heatmap, Figure 6) with
specific genomic features (Supplementary Figure S7). Note that the groups
well predicted in all cancers likely correspond to ubiquitously expressed (ie.
housekeeping) genes (Supplementary Figure S7(a) and Supplementary Table
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S3). In contrast, some groups were well predicted in only certain cancers and
were associated to specific biological function (compare for instance white groups
of PAAD and LGG vs. LAML, DBLC and LIHC in Figure 6, Supplementary
Figure S7(b) and Supplementary Table S4).

Relationships between selected nucleotide composition and
genome architecture

We probed the regulatory activities of the selected regions. We first noticed that
several regions considered, in particular introns and DFRs, contain enhancers
mapped by the FANTOM consortium [7] (Supplementary Table S5). Enhancers
and promoters share several similarities including the binding of TFs through
discrete motifs [1], that can be affected by genomic variations [54]. We then
used the v6p GTEx release to compute the average frequencies of cis expression
quantitative trait loci (cis-eQTLs) present in the considered genomic regions and
directly linked to their host genes (Supplementary Table S6). Introns contained
the smallest number of eQTLs (10 times less than any other regions), indicating
that these sequences, as opposed to DFRs and core promoters for instance
(Supplementary Table S6), harbor few specific motifs, in particular TF binding
motifs, that can be affected by single nucleotide variations. It was therefore
unlikely that the effect of introns was solely due to the presence of intronic
enhancers. It rather unveiled the existence of another layer of regulation, which
is not mediated by specific motifs but presumably involves larger DNA regions.
Note that, because introns represent the most important region contributing to
our model, cis-eQTL frequencies also confirmed that our model is more efficient
in evaluating the contributions of nucleotide environment than that of short
motifs, as already suggested by the secondary contribution of TF motifs and
DNA shapes (Figure 2(d)).

We then asked whether the groups of genes identified by the regression trees
(Figure 6) correspond to specific TADs. Genes within the same TAD tend to
be coordinately expressed [55, 56]. TADs with similar chromatin states tend
to associate to form two genomic compartments called A and B: A contains
transcriptionally active regions while B corresponds to transcriptionally inac-
tive regions [57]. The driving forces behind this compartmentalization and the
transitions between compartments observed in different cell types are not fully
understood, but chromatin composition and transcription are supposed to play
key roles [5]. We reasoned that the groups of genes identified by the regression
trees reflect gene associations within TADs and beyond assignment of TADs
to compartments A or B. This rationale implied first that TADs can be dis-
tinguished according to the nucleotide composition of their resident genes. We
used the 373 TADs containing more than 10 genes mapped in IMR90 cells [6].
For each TAD, we compared the nucleotide compositions of the embedded genes
and the nucleotide compositions of all other genes using a Kolmogorov-Smirnov
test. We used a Benjamini-Hochberg multiple testing correction to control the
False Discovery Rate (FDR), which was fixed at 0.05. We found that 324 TADs
out of 373 (∼87%) are characterized by at least one specific nucleotide signature
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(Figure 7(a)). In addition, our results clearly showed the existence of distinct
classes of TADs related to GC content (GC-rich, GC-poor and intermediate GC
content) (Figure 7(a)). This is in line with the results of Jabbari and Bernardi,
who showed that the distribution of GCs along the genome (i.e. isochores) can
help define TADs [58].

We next considered the 967 groups of genes defined in Figure 6 whose ex-
pression is accurately predicted by our model (i.e. groups with mean error <
mean error of the 1st quartile). We thus focused our analyses on genes for which
we did learn some regulatory features. We evaluated the enrichment for specific
TADs in each group (considering only TADs containing more than 10 genes)
using an hypergeometric test (Figure 7(b)). We found that 60% of these groups
were enriched for at least one TAD (p-value < 0.05). Hence, several groups
of genes identified by the regression trees (Figure 6) do correspond to specific
TADs (Figure 7(b)). Overall our results are in agreement with the idea that
TADs regroup genes according to their nucleotide compositions.
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DISCUSSION

In this study, we challenged the hypothesis that DNA sequence contains infor-
mation able to explain gene expression [31, 32, 33, 34, 35]. We built a global
regression model to predict, in any given sample, the expression of the differ-
ent genes using only nucleotide compositions as predictive variables. Overall
our model provided a framework to study gene regulation, in particular the
influence of regulatory regions and their associated nucleotide composition.

A collateral and surprising result of our study is the limited biological in-
formation brought by linear models built on experimental data (ChIP-seq and
DNaseI-seq) [12, 30]. The similar accuracy of these models on real and randomly
permuted data indicated that, though the experimental data are biologically rel-
evant, their interpretation through a linear model is not straightforward. An
interesting perspective would be to devise a strategy to infer TF combinations
from experimental data without being influenced by the opening of the chro-
matin.

The accuracy of our model confirmed that DNA sequence per se and basic
information like dinucleotide frequencies have very high predictive power. It
remains to determine the exact nature of these sequence-level instructions. In-
terestingly, nucleotide environment contributes to prediction of TF binding sites
and motifs bound by a TF have a unique sequence environment that resembles
the motif itself [47]. Hence, the potential of the nucleotide content to predict
gene expression may be related to the presence of regulatory motifs and TFBSs.
However, we showed that the gene body (introns, CDS and UTRs), as opposed
to sequences located upstream (promoter) or downstream (DFR), had the most
significant contribution in our model. Moreover, cis-eQTL frequencies argue
against the presence of short regulatory motifs notably in introns, suggesting
the existence of another layer of regulation that implicates large DNA regions.

We indeed provided evidence that the contribution of nucleotide composi-
tion in predicting gene expression might be linked to co-regulations associated
with genome 3D architecture. We specifically showed that TADs regroup genes
according to their nucleotide composition. In line with our results, Kornyshev
et al. have shown that physical attractive forces between DNA fragments rely
on sequence homology [59]. Paralog genes, which are generated by tandem du-
plication and therefore have similar nucleotide composition, are co-regulated
according to TADs [60]. Strikingly, Singh et al. developed deep learning models
able to predict enhancer-promoter interactions based on sequence-based features
only [61]. These results are reminiscent of the sequence-encoded ”enhancer-core-
promoter specificity” observed in Drosophila [62]. The same rationale might be
envisaged for gene interactions within TADs as enhancers prefer to activate pro-
moters resembling those of their parent genes [62, 63]. These results together
with our findings suggest that our genome encodes sequence-level instructions
that help determine genomic interactions. Although the sequence instructions
encoded by genomic DNA are - almost - identical in all cell types of an indi-
vidual, their usage must however be cell-type specific to allow the proper A/B
compartimentalization of TADs and ultimately the diversity of cell types and
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functions. At this stage, the mechanisms driving this cell-type specific selection
of nucleotide compositions remain to be characterized.
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FIGURES LEGENDS

Figure 1 — Genomic regions considered for gene expression prediction. An illustra-
tive transcript is shown as example.

Figure 2 — (a) Contribution of the promoter segments. The model was built us-
ing 20 variables corresponding to the nucleotide (4) and dinucleotide (16) percentages
computed in the CORE promoter (red), DU (green) or DD (yellow). These variables
were then added in different combinations: CORE+DU (pink, 40 variables); CORE+DD
(orange, 40 variables); CORE+DU+DD (light blue, 60 variables). Promoter segments
were centered around the first most upstream TSS. The model was also built on 20 vari-
ables corresponding to the nucleotide and dinucleotide compositions of the non segmented
promoters (-2000/+2000 around the first most upstream TSS)(light blue). All different
models were fitted on 19393 genes for each of the 241 samples considered. The prediction
accuracy was evaluated in each sample by evaluating the Spearman correlation coefficients
between observed and predicted gene expressions. The correlations obtained in all sam-
ples are shown as violin plots. (b) Prediction accuracy comparing alternative TSSs.
The model was built using the 60 nucleotide/dinucleotide percentages computed in the
3 promoter segments (CORE+DU+DD) centered around 1st, 2nd, 3rd and last TSSs.
(c) Contribution of CpG. The model was built using the 60 nucleotide/dinucleotide or
only the 3 CpG percentages computed in the 3 promoter segments (CORE+DU+DD)
centered around the 2nd TSS. (d) Contribution of motifs and local DNA shapes.
The model was built using (i) 60 nucleotide/dinucleotide percentages computed in the 3
promoter segments (CORE+DU+DD) (”dint”, pink),(ii) 471 JASPAR2016 PWM scores
computed in the CORE segment (”motifs”, light blue) and (iii) the 12 DNA shapes cor-
responding to the 4 known DNAshapes computed in CORE, DU and DD (”DNAshape”,
green). All sequences were centered around the 2nd TSS. These variables were further
added in different combinations to build the models indicated: dint+motifs (531 variables,
green), dint+DNAshapes (32 variables, dark blue), motifs+DNAshapes (483 variables,
light green).

Figure 3 — (a) Comparison with model integrating TF-binding signals. The model
was built using 531 variables corresponding to the 60 nucleotide/dinucleotide percentages
and the 471 motif scores computed in the 3 promoter segments (CORE, DU, DD) centered
around the 2nd TSS (pink). A model built on ChIP-seq data [12] was used for comparison
(green). Both models were fitted on the same gene set (n=16298) for 21 LAML samples.
The two models were also built on randomized values of predictive variables (rand) and
on the maximum value of all predictive variables (max). (b) Comparison with model
integrating open-chromatin signals. The linear model was built using the 531 variables
(nucleotide/dinucleotide percentages and motif scores in CORE, DU and DD) and the
expression data obtained in K562, hESC and GM12878 [30]. TEPIC was built as described
in [30], within a 3 kb or a 50 kb window around TSSs. The scaled version of TEPIC
incorporates the abundance of open-chromatin peaks in the analyzed sequences. All types
of TEPIC models were tested (3kb, 3kb-scaled, 50kb and 50kb-scaled). In each case, our
model was built on the set of genes considered by TEPIC. Models were further built on
randomized values of predictive variables (rand) and on the maximum value of all predictive
variables (max).
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Figure 4 — Contribution of additional genomic regions. Genomic regions
were ranked according to their contribution in predicting gene expression. First,
all regions were tested separately. Introns yielded the highest Spearman correlation
between observed and predicted expressions and was selected as the ’first’ seed
region. Second, each region not already in the model was added separately. 5UTR
in association with introns yielded the best correlation and was therefore selected
as the ’second’ region. Third, the procedure was repeated till all regions were
included in the model. The contribution of each region is then visualized starting
from the most important (left) to the less important (right). Note that the distance
between the second TSS and the first ATG is > 2000 bp for only 189 genes implying
that 5UTR and DD regions overlap. The correlations computed at each steps are
indicated in Supplementary Table S1. ns, non significant.

Figure 5 — (a) Consistently selected variables among 12 types of cancer. For
each variable, the fraction of samples in which the variable is considered as stable (i.
e. selected in more than 70% of the subsets after subsampling) is shown. Each color
refers to a specific type of cancer. Only variables consistently selected in at least one
sample are shown (out of the 160 variables). See Materials and Methods for stable
variable selection procedure and cancer acronyms. (b) Biological effect of the
stable variables. For each of the 241 samples (columns), a linear model was fitted
using the variables (rows) stable for this sample only. The sign of the contribution of
each variable in each sample is represented as follows: red for positive contribution,
dark blue for negative contribution and sky blue refers to variables not selected (i.e.
not stably selected for the considered sample). Only the variables stable in at least
one sample are represented. Cancers and samples from the same cancer types are
ranked by decreasing mean error of the linear model.

Figure 6 — Gene classification according to prediction accuracy. Columns
represent the various samples gathered by cancer type. Samples from the same
cancer type are ranked by decreasing mean squared prediction error. Lines represent
the 3,680 groups of gene obtained with the regression trees (one tree for each of the
241 samples) ranked by decreasing mean squared prediction error. Groups gathering
the top 25% well predicted genes (error <∼ 1.77) are indicated in red and light
blue.

Figure 7 — (a) Nucleotide compositions of resident genes distinguish TADs.
For each TAD and for each region considered, the percentage of each nucleotide
and dinucleotide associated to the embedded genes were compared to that of all
other genes using a Kolmogorov-Smirnov test. Red indicates FDR-corrected p-value
≥ 0.05 and yellow FDR-corrected p-value < 0.05. TAD clustering was made using
this binary information. Only TADs with at least one p-value < 0.05 are shown
(i.e. 87% of the TADs containing at least 10 genes) (b) TAD enrichment within
groups of genes whose expression is accurately predicted by our model. The
enrichment for each TAD (containing more than 10 genes) in each gene group
accurately predicted by our model (i.e. groups with mean error < mean errors of
the 1st quartile) was evaluated using an hypergeometric test. The fraction of groups
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with enriched TADs (p-value < 0.05) is represented.
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