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Next-generation sequencing studies on cancer somatic mutations
have discovered that driver mutations tend to appear in most tu-
mor samples, but they barely overlap in any single tumor sample,
presumably because a single driver mutation can perturb the whole
pathway. Based on the corresponding new concepts of coverage and
mutual exclusivity, new methods can be designed for de novo discov-
ery of mutated driver pathways in cancer. Since the computational
problem is a combinatorial optimization with an objective function
involving a discontinuous indicator function in high dimension, many
existing optimization algorithms, such as a brute force enumeration,
gradient descent and Newton’s methods, are practically infeasible or
directly inapplicable. We develop a new algorithm based on a novel
formulation of the problem as non-convex programming and non-
convex regularization. The method is computationally more efficient,
effective and scalable than existing Monte Carlo searching and several
other algorithms, which have been applied to The Cancer Genome At-
las (TCGA) project. We also extend the new method for integrative
analysis of both mutation and gene expression data. We demonstrate
the promising performance of the new methods with applications to
three cancer datasets to discover de novo mutated driver pathways.

1. Introduction. It is known that cancer is characterized by numer-
ous somatic mutations, of which only a subset, named ”driver” mutations,
contribute to tumor growth and progression. With next-generation whole-
genome or whole-exome sequencing, somatic mutations are measured in large
numbers of cancer samples (Mardis & Wilson, 2008; Meyerson et al., 2010).
To improve understanding and treatment of cancers, it is critical to dis-
tinguish driver mutations from neutral ”passenger” mutations. A standard
approach to predicting driver mutations is to identify recurrent mutations
in cancer patients (Beroukhim et al., 2007; Getz et al., 2007), which has
its drawback in its inability to capture mutational heterogeneity of cancer
genomes (Ding et al., 2008; Jones et al., 2008). An emerging discovery is that
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2 LIU ET AL.

in a given sample driver mutations typically target one, but not all, of several
genes in cellular signaling and regulatory pathways (Vogelstein & Kinzler,
2004). Hence the research has shifted from the gene level to pathway level
(Boca, 2010; Efroni, 2011). Recent studies indicated that mutations arising
in driver pathways often cover a majority of samples, but, importantly, for
a single sample only a single or few mutations appear because a single mu-
tation is capable to perturb the whole pathway; the latter concept is the so-
called mutual exclusivity. By using mutual exclusivity, new pathway-based
methods are developed to identify de novo driver mutations and pathways
(Ciriello et al., 2012; Masica et al., 2011; Miller et al., 2011). For example,
Miller et al. (2011) proposed a method to find functional sets of mutations by
using patterns of recurrent and mutually exclusive aberrations; Ciriello et al.
(2012) not only used the mutual exclusivity pattern, but also incorporated
a gene functional network constructed based on prior knowledge. Recently
Vandin et al. (2012) introduced a novel scoring function combining the two
concepts, coverage and mutual exclusivity, to identify mutated driver
pathways through optimizing this scoring function, which has been used in
some large-scale cancer sequencing studies. It is solved by stochastic search
methods: a greedy algorithm and a Markov chain Monte Carlo method.
Other proposals based on binary linear programming, genetic search algo-
rithm, and integer linear programming have appeared (Zhao et al., 2012;
Leiserson et al., 2013), all of which are still relatively slow, especially for
large-scale problems. To address these issues, we reformulate the problem
of identifying mutated driver pathways as a statistical problem of subset
identification to minimize a new cost function, what we call minimum cost
subset selection (MCSS). A key component is a novel approximation to a
combinatorial problem through regularization, where a discontinuous indi-
cator function is approximated by a continuous and non-convex truncated
L1 (TL) function (Shen et al., 2012). Furthermore, we add a truncated L1

penalty (TLP) to the cost function to seek a sparse solution, as well as
adding a small ridge penalty to alleviate the problem of multiple solutions.
As a result, a combinatorial optimization problem becomes a continuous
but non-convex one in the Euclidean space, which can be efficiently solved
through a non-convex optimization technique, leading to high computational
improvement.

Another advantage of the proposed method is that it is able to find mul-
tiple mutated driver pathways. An existing method to identify multiple mu-
tated driver pathways is Multi-Dendrix (Leiserson et al., 2013), in which
the number of pathways and the number of the genes in each pathway have
to be specified in advance. On the contrary, our proposed method does not

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 17, 2017. ; https://doi.org/10.1101/117473doi: bioRxiv preprint 

https://doi.org/10.1101/117473
http://creativecommons.org/licenses/by-nc-nd/4.0/


MCSS 3

need to fix such numbers beforehand. Based on a series of randomly selected
initial estimates, a series of low-cost estimates of mutated driver pathways
can be obtained. Moreover, the proposed method is general so that other
types of information can be incorporated in a simple way. For example, if
a gene interaction network is available, it can be incorporated by adding
a network-based penalty to the current cost function as in Li & Li (2008);
since it is more informative to combine mutation data with other types of
data such as gene expression data (Zhang and Zhou , 2014), an integrative
version can be developed by adding other cost functions for other types of
data into the current one. As a concrete example, we propose a new method
to integrate mutation data with gene expression data.

2. Methods.

2.1. Problem. Consider mutation data with n patients and p genes, rep-
resented as an n × p mutation matrix A with entry Aij = 1 if gene j is
mutated in patient i, and Aij = 0 otherwise. For gene j ∈ V = {1, ..., p},
let Γ(j) = {i : Aij = 1} be a subgroup of patients whose gene j is mutated.
Moreover, given a subset of genes B ⊆ {1, ..., p}, let Γ(B) be a subgroup of
patients with at least one of the genes in B mutated, i.e. Γ(B) =

⋃
j∈B Γ(j).

Cancer sequencing studies have motivated to identify a set of mutated genes
across a large number of patients, whereas only a small number of patients
have mutations in more than one gene in the set, that is, these muta-
tions are approximately exclusive. This amounts to finding a set B ⊆ V
of genes such that (i) the coverage is high, that is, most patients have at
least one mutation in B; (ii) the genes in B are approximately exclusive,
that is, most patients have no more than one mutation in B. A measure
ω(B) =

∑
j∈B |Γ(j)| − |Γ(B)| was proposed by Vandin et al. (2012), called

the coverage overlap, to balance the trade-off between coverage and exclu-
sivity. To maximize the coverage |Γ(B)| and minimize the coverage overlap
ω(B) simultaneously, Vandin et al. (2012) suggests to minimize

f(B) =
ω(B)

n
− |Γ(B)|

n
=

1

n

∑
j∈B
|Γ(j)| − 2

n
|Γ(B)|(2.1)

with respect to B, thus obtaining an estimate B̂. Minimizing f(B) is equiv-
alent to maximizing the weight function −f(B), which is called the max-
imum weight sub-matrix problem (MWSP). Note that minimizing f(B) is
a non-trivial combinatorial problem, to which most existing optimization
algorithms based on the gradient descent or Newton’s algorithm cannot be
directly applied. A popular method called Dendrix is based on a Monte
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Carlo search algorithm to seek an approximate solution to minimize f(B)
(Vandin et al., 2012).

2.2. New formulation. As indicated in (2.1), MWSP is a combinatorial
problem, for which a brute force search is time-consuming and not scalable
for large (n, p), while many existing algorithms like gradient descent or New-
ton’s method cannot be directly applied. Here we formulate it as nonconvex
minimization and examine a regularized version by imposing penalties to
ensure proper solutions. Specifically, for any β ∈ Rp, let B = B(β) = {j ∈
V : |βj | 6= 0}, and we rewrite |Γ(B)| =

∑n
i=1 I

(∑p
j=1AijI(|βj | 6= 0) 6= 0

)
,∑

j∈B |Γ(j)| =
∑p

j=1 I(|βj | 6= 0)A·,j , A·,j =
∑n

i=1Aij and |Γ(j)| = A·,j for
each j ∈ {1, · · · , p}. Then (2.1) becomes

f(B(β)) =
1

n

p∑
j=1

I(|βj | 6= 0)A·,j −
2

n

n∑
i=1

I
( p∑
j=1

AijI(|βj | 6= 0) 6= 0
)
.(2.2)

Minimizing (2.2) in β yields an estimate β̌ = (β̌1, · · · , β̌p)′, and thus an
estimated set B̌ = {j : |β̌j | 6= 0}. However, due to the discontinuity with
the indicator function I(.), it is difficult to minimize (2.2) directly; instead,
since min(|βj |/τ1, 1) → I(|βj | 6= 0) as τ1 → 0+, we propose a surrogate to
minimize

S(β) =
1

n

p∑
j=1

min (βj/τ1, 1)A·,j −
2

n

n∑
i=1

min
( p∑
j=1

Aijβj/τ1, 1
)

+λ

p∑
j=1

min
(
βj/τ2, 1

)
+
α

n

p∑
j=1

β2
j ,(2.3)

with respect to β = (β1, . . . , βp)
′ ∈ [0,+∞)p; that is, β is a vector of param-

eters to be estimated; λ, α, τ1 and τ2 are non-negative tuning parameters
to be determined via a grid search in cross-validation (as used in the later
experiments); Aij ’s are observed and known. Note that in (2.3), the last two
terms, as a TLP and a ridge penalty respectively, ensure sparse and proper
solutions.

2.3. Computation. To solve nonconvex minimization (2.3), we employ
difference convex (DC) programming by decomposing the objective function
into a difference of two convex functions, on which convex relaxation is
performed through iterative approximations of the trailing convex function
through majorization. Specifically, min( zτ , 1) can be written as a difference
of two convex functions: min(z/τ, 1) = z/τ −max

(
z/τ − 1, 0

)
for any z > 0
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and τ > 0. Then, we obtain a sequence of upper approximations S(m)(β) of
S(β) at iteration m (up to a constant) as follows:

S(m)(β) =β′
(
diag(A·)I(β̂

(m−1) ≤ τ1)/nτ1 + λI(β̂
(m−1) ≤ τ2)/τ2 −

2A·
nτ1

)
+

2

n

n∑
i=1

max(

p∑
j=1

Aijβj/τ1 − 1, 0) +
α

n
β′β,(2.4)

where β ∈ [0,+∞)p,A· = (A·,1, . . . , A·,p)
′, and diag(A·) is a diagonal matrix

with elements of A· as diagonals. Now S(m)(β) is strictly convex (since the
first term is linear in β, the second is convex while the last is quadratic
in β with α 6= 0), we use some existing convex program package (CVX in
Matlab), or more efficiently, the subgradient descent method (as shown in

the appendix) (Shor , 1985), to obtain a unique minimizer β̂
(m)

; we repeat

the process until convergence to obtain β̃ = β̂
(+∞)

.
Interestingly, one may replace the TLP in S(β) in (2.3) with the L1-

penalty, yielding β̂
L

. This, together with, other randomly generated num-

bers, can be use as an initial value β̂
(0)

for our method. For selection of
tuning parameters, we may consider cross-validation, as discussed later.

The following algorithm summarizes our computational method.

Algorithm 1. Given the parameters τ1, τ2, λ, α.

Initialization Supply an initial estimate β̂
(0)

.

Iteration At iteration m, compute β̂
(m)

by minimizing (2.4).

Stopping rule Terminate when S(β̂
(m−1)

)−S(β̂
(m)

) ≤ 0. The estimate is

β̃ = β̂
(m?−1)

, where m? is the smallest index satisfying the termination
criterion. The estimated subset is B̃ = {j ∈ {1, · · · , p} : β̃j 6= 0}.

The following convergence property of Algorithm 1 has been established.

Theorem 1. β̂
(m)

in Algorithm 1 converges in finite steps to a local

minimizer β̃ of S(β) in (2.3). S(β̂
(m)

) strictly decreases in m until β̂
(m)

=

β̂
(m−1)

= β̂
(m?−1)

for all m ≥ m?.

2.4. Initial estimate. In general, a large number of good or randomly
selected initial estimates may be used to obtain multiple solutions, from
which a subset of more promising ones with smaller objective or cost function
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6 LIU ET AL.

values can be selected. Below, we describe a simple way to obtain a good
initial estimate, which was used in later simulations; we modify S(β) such
that the modified version SL(β) becomes much easier to optimize. A local
condition of (2.3) can be established based on regular subdifferentials

A·,jb
(1)
j

nτ1
+ 2

n∑
i=1

b
(2)
ij

nτ1
+
λb

(3)
j

τ2
+ 2

α

n
βj = 0, j = 1, · · · , p,

where b
(1)
j ∈ [−1, 1] if βj = 0, b

(1)
j = sign(βj) if 0 < |βj | < τ1, b

(1)
j = 0

if |βj | > τ1 and b
(1)
j = ∅ if |βj | = τ1 for j = 1, · · · , p; b(3)

j ∈ [−1, 1] if

βj = 0, b
(3)
j = sign(βj) if 0 < |βj | < τ2, b

(1)
j = 0 if |βj | > τ2 and b

(3)
j = ∅ if

|βj | = τ2 for j = 1, · · · , p. Note that b
(2)
ij is more complicated as it depends

on the values of Aij′ and βj′ , j
′ ∈ {1, · · · , p}, and b

(2)
ij = 0 or b

(2)
ij = −Aij

or b
(2)
ij ∈ [−Aij , 0] for βj > 0. Based on these regular subdifferentials, we

develop the following lemma.

Lemma 1. If there exists a non-zero local minimizer β∗ of S(β) in (2.3)
on Rp, then 0 ≤ |β∗j | ≤ τ1 for each j ∈ {1, · · · , p}.

Lemma 1 says that the set of all local minimizers of S(β) in (2.3) over
[0,+∞]p is the same as that obtained from the following cost function over
[0, τ1]p:

S(β) =
1

n

p∑
j=1

βjA·,j
τ1

− 2

n

n∑
i=1

min
(∑p

j=1Aijβj

τ1
, 1
)

+
α

n

p∑
j=1

β2
j + λ

p∑
j=1

min(
βj
τ2
, 1), β ∈ [0, τ1]p.(2.5)

If we use the L1-penalty as opposed to the truncated L1-penalty in (2.5),
then the cost function becomes

SL(β) =
1

n

p∑
j=1

βjA·,j
τ1

− 2

n

n∑
i=1

min
(∑p

j=1Aijβj

τ1
, 1
)

+
α

n

p∑
j=1

β2
j + λ

p∑
j=1

βj
τ2
, β ∈ [0, τ1]p,

which is strictly convex in β ∈ [0, τ1]p, yielding a unique minimizer β̂L.
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2.5. Model selection. Tuning parameters (λ, r) need to be estimated from
data, where τ2 = rτ1 (0 < r < 1), while α is fixed at a sufficiently small
positive number, say α = 10−3, and τ1 is fixed at any positive value, say
τ1 = 1. Tuning of (λ, r) can be achieved through sample splitting. As a
matter of fact, the term α

n

∑p
j=1 β

2
j is introduced to yield a unique mini-

mizer of (2.4) so that the bias caused by the ridge penalty is ignorable for
sufficiently small α. On the other hand, given the ratio r, an exact value
of (τ1, τ2) is unimportant. This is because minβ∈[0,+∞)p S(β;Kτ1, r, λ, α

′) =
minβ′∈[0,+∞)p S(β′; τ1, r, λ, α

′) = minβ∈[0,+∞)p S(β; τ1, r, λ, α
′) if S(β;Kτ1,

r, λ, α′) = S(β′; τ1, r, λ, α
′) with β′ = β/K and α = α′/τ2

1 for any K > 0.
Consequently, given the ratio r, optimization in terms of different choices
of τ1 are equivalent. Given a n × p mutation matrix A, a candidate set
Λ ⊆ (0,+∞) of the tuning parameter λ and a candidate set R ⊆ (0,+∞)
of the tuning parameter r = τ2/τ1, we use a sample splitting procedure to
select the tuning parameters λ̂ ∈ Λ and r̂ ∈ R:

Initialization Supply a randomly selected initial estimate β̂
(0)

.
Partition Randomly partition the rows of the mutation matrix A into two

parts: training data Atr and tuning data Atu.
Training For each λ ∈ Λ and each r ∈ R, apply Algorithm 1 to the training

data Atr with the initial estimate β̂
(0)

and parameters λ and r to get

the corresponding estimate β̂
tr

(λ, r).
Tuning Based on the tuning data Atu, we formulate a tuning error for each

β̂
tr

(λ, r) as

TE(β̂
tr

(λ, r),Atu) =
1

ntu

p∑
j=1

I(β̂tr(λ, r)j > 0)Atu·,j

− 2

ntu

ntu∑
i=1

I
( p∑
j=1

Atuij β̂
tr(λ, r)j > 0

)
,

where ntu denotes the number of rows of Atu, that is, the patient

number in the tuning data, and Atu·,j =
∑ntu

i=1A
tu
ij . We select λ and r as

(λ̂, r̂) = arg min(λ,r)∈Λ×RTE(β̂
tr

(λ, r),Atu).

Given λ = λ̂ and r = r̂, we apply Algorithm 1 to the original mutation
matrix A to find β̂ ∈ [0,+∞)p that minimizes S(β) in (2.3).

2.6. Integrative analysis. An advantage of the proposed algorithm is its
possible extensions to include other types of genomic data, in addition to
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8 LIU ET AL.

mutation data. To this end, we modify the proposed cost function and algo-
rithm to incorporate other types of data such as gene expression. Let fME(B)
denote the integrative cost function, which is the sum of the original cost
function f(B) and a new one fE(B) for gene expression data:

fME(B) = f(B) + γfE(B) =
1

n

∑
j∈B
|Γ(j)| − 2

n
|Γ(B)| − γ

∑
j,k∈B,j 6=k

cjk

where cjk is the Pearson correlation coefficient of the expression profiles
of genes j and k. Note that the integrative cost function is based on the
observation that the genes in the same pathway usually collaborate with
each other to execute a common function. Therefore, the expression profiles
of the genes in the same pathway usually have higher correlations than those
from different pathways (Qiu et al., 2010; Zhao et al., 2012).

To minimize fME(B), we develop a similar algorithm as before, called

MCSS ME, where S(β) and S(m)(β) are replaced by SME(β) and S
(m)
ME(β)

respectively as follows.

SME(β) =
1

n

p∑
j=1

min (βj/τ1, 1)A·,j −
2

n

n∑
i=1

min

 p∑
j=1

Aijβj/τ1, 1


− γ

∑
j,k

cjk min (βj/τ1, 1) min (βk/τ1, 1)

+ λ

p∑
j=1

min (βj/τ2, 1) +
α

n

p∑
j=1

β2
j

and

S
(m)
ME(β) =β′

(diag(A·)I(β̂
(m−1) ≤ τ1)

nτ1
+
λI(β̂

(m−1) ≤ τ2)

τ2
− 2γ

Dβ̂
(m−1)

τ2
1

− 2
A·
nτ1
− 2γdiag(I(β̂

(m−1)
> τ1))D

max(β̂
(m−1)

/τ1 − 1, 0)

τ1

)
+ 2γC.′diag(max(β/τ1 − 1, 0)) max(β/τ1 − 1, 0)

+ 2γC.′diag(β)β/τ2
1 + 4γmax(β/τ1 − 1, 0)′Cβ/τ1

+
2

n
|max(Aβ/τ1 − 1, 0)|+ α

n
β′β,

whereD = C+diag(C.),C = [cjk] (cjj = 0) andC. is the row sum vector of
C. Here we use the subgradient descent method (as shown in the appendix)

to obtain a minimizer of S
(m)
ME(β).
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MCSS 9

To choose a suitable γ in situations with no prior information, we propose
a method to balance the contributions to the new cost function from muta-
tion data and from gene expression data. Specifically, we randomly select a
large number of subsets, say B1, B2,..., BR, of the genes from {1, 2, · · · , p}
with the size of each subset |Bj | randomly generated from {2, 3, · · · , np},
then we choose γ = minj f(Bj)/minj fE(Bj), which aims to give an equal
weight on the contribution of the mutation data and that of the expression
data to the overall cost function fME(). In our following experiments, we
always used R = 10000 and np = 8, though other values may be used.

After determining γ, we choose the other tuning parameters similarly as
before but according to an integrative version of the tuning error

TEME(β̂
tr

(λ, r),Atu)

=
1

ntu

p∑
j=1

I(β̂tr(λ, r)j > 0)Atu·,j −
2

ntu

ntu∑
i=1

I
( p∑
j=1

Atuij β̂
tr(λ, r)j > 0

)
− γ

‖β̂tr(λ, r)‖0

∑
j,k

cjkI(β̂
tr

(λ, r)j > 0)I(β̂
tr

(λ, r)k > 0).

2.6.1. Evaluation metrics. Several metrics are used for evaluation, in-
cluding the correct (C) or incorrect (IC) numbers of non-zero estimates for
the mutations/genes in the true pathway B0, and average differences of the
cost function values (ADC) between the true set B0 and the estimated set
B̂ of the driver mutations/genes; that is, C=|B0

⋂
B̂|, IC=|Bc

0

⋂
B̂|, ADC=

(f(B0)− f(B̂))/n. We also included the running time (RT) (in minutes)
of each algorithm. Note that ADC is important, because the basic task for
minimum cost subset selection is to identify a set of mutations with the
minimum cost.

In addition to using the correct (C) or incorrect (IC) numbers of non-zero
estimates and ADC to measure how close the estimated pathways are close
to the true pathway, we also investigate several other metrics in decomposing
the cost function into the coverage (cc) and exclusivity (ce), and displaying
the proportion of the patients carrying a mutation of a gene in a pathway
(c1), as well as the proportion of those carrying multiple mutations in more
than one gene in the pathway (c2). Specifically, we define

f(B) = ce + cc,

ce = ω(B0)/n, ĉe = ω(B̂)/n,

cc = −|Γ(B0)|/n, ĉc = −|Γ(B̂)|/n,
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c1 =
n∑
i=1

I(
∑
j∈B0

Aij = 1)/n, ĉ1 =
n∑
i=1

I(
∑
j∈B̂

Aij = 1)/n,

c2 =
n∑
i=1

I(
∑
j∈B0

Aij = 2)/n, ĉ2 =
n∑
i=1

I(
∑
j∈B̂

Aij = 2)/n.

Due to the coverage and exclusivity of a pathway, c1 is often similar to −cc
while c2 is similar to ce.

3. Results.

3.1. Real data examples. In this section we first illustrate the applica-
tion of the proposed method to two cancer datasets that were previously
examined by Vandin et al. (2012), then to a more recent and larger dataset
including both mutation and expression data. As argued by Vandin et al.
(2012), a set of mutated genes with a low cost function value is likely to be
a mutated driver pathway, based on which our primary objective is to iden-
tify such mutated driver pathways through minimum cost subset selection
of mutated genes. For each of the first two datasets, the proposed method
was applied with the tuning parameter λ chosen from a tuning set of size 10,
while 100 randomly generated initial estimates were used. For each initial
estimate, we applied the proposed method, by which we identified multiple
low-cost sets of mutations.

3.1.1. Lung adenocarcinoma. The original data set contains 1013 so-
matic mutations in 623 sequenced genes from 188 lung adenocarcinoma pa-
tients in the Tumor Sequencing Project (Ding et al., 2008). For our purpose,
we examined 356 genes that were mutated for at least one patient from a
group of 162 patients, as in Vandin et al. (2012).

The proposed method was applied to identify multiple sets of mutated
genes with low cost function values. Using 100 randomly selected initial val-
ues for MCSS, it cost 0.85 minutes and identified some gene sets with low
cost. To demonstrate the resulting low-cost sets of mutations as possible
candidates for mutated driver pathways, in Table 1 we group these discov-
ered sets in terms of known pathways. In Table 1, all the discovered sets
related to two known pathways associated with lung adenocarcinoma: the
mTOR signaling pathway and the cell cycle pathway. Gene interactions in
these pathways were reported in Ding et al. (2008) as depicted in Figure 1.

First, as indicated in Figure 1 (see Figure 6 of Ding et al. (2008)), the
mTOR signaling pathway consists of some highly mutated genes, such as
EGFR, EPHA3, KRAS, NF1 and STK11. EGFR is a well-known oncogene,
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whose mutations are strongly associated with lung cancer (da Cunha Santos
et al., 2011). In contrast, EPHA3 is one of the most frequently mutated genes
in lung cancer, which however has not yet been extensively investigated. As
suggested by Zhuang et al. (2012), tumor-suppressive effects of wild-type
EPHA3 could be overridden in trans by dominant negative EPHA3 somatic
mutations discovered in patients with lung cancer. KRAS is an oncogene
associated with non-squamous non-small cell lung cancer. As indicated by
many studies as well as our analysis, the mutations of KRAS and EGFR
are strongly mutually exclusive. KRAS serves as a mediator between ex-
tracellular ligand binding and intracellular transduction of signals from the
EGFR to the nucleus. The presence of activating KRAS mutations has been
identified as a potent predictor of resistance to EGFR-directed antibodies
(Heinemann et al., 2009). STK11 encodes a tumor suppressor enzyme, and
its mutations can allow cells to grow and divide uncontrollably, leading to
the formation of cancerous cells (Gill et al., 2007). In particular, STK11
mutations are found in non-squamous non-small cell lung cancer, however
uncommon in most other types of cancer.

Interestingly, all the identified sets of mutated genes with the cost function
values f(B̂) lower than −0.556 = 90/162 are related to these five genes.
Recall that in Ding et al. (2008), (EGFR, KRAS ) (f(B̂) = −0.556) and
(KRAS, STK11 ) (f(B̂) = −0.420) are the most significant pairs in the
mutual exclusiveness test, and in Vandin et al. (2012), the triplet (EGFR,
KRAS, STK11 ) (f(B̂) = −0.593) was found with a lower cost, which was
reported as a novel discovery. As indicated in Table 1, we could find not only
this triplet (the second set in Table 1), but also another set (EGFR, KRAS,
NF1, STK11 ) (f(B̂) = −0.611) (the first set in Table 1) that contains this
triplet and has a lower cost function value. It is a better characterized gene
set, containing the already discovered (EGFR, KRAS, STK11 ). In addition,
we also identified four low-cost sets: (EGFR, KRAS, NF1 ) (f(B̂) = −0.574),
(EGFR, EPHA3, KRAS, NF1 ) (f(B̂) = −0.574), (EGFR, EPHA3, KRAS )
(f(B̂) = −0.568) and (EGFR, KRAS ) (f(B̂) = −0.556). These discoveries
suggest possible roles of these genes related to the mTOR signaling pathway.

Second, the cell cycle pathway includes two highly mutated genes, ATM
and TP53. ATM plays a central role in cell division and DNA repair, and the
protein encoded by this gene is an important cell cycle checkpoint kinase,
which functions as a regulator of a wide variety of downstream proteins.
Some studies suggested that ATM mutations may increase the risk for lung
cancer (Lo et al., 2010). On the other hand, TP53 encodes a tumor sup-
pressor protein p53 that regulates cell division by keeping cells from growing
and dividing too fast or in an uncontrolled way. TP53 mutations are the
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Fig 1. The mTOR signaling pathway and the cell cycle pathway associated with lung
adenocarcinoma as reported in Ding et al. (2008). The KRAS gene is one of the three
oncogenes in the Ras family.

most common genetic changes found in human cancer, in particular as one
of the most significant events in lung cancer while playing an important role
in the tumorigenesis of lung epithelial cells (Ding et al., 2008).

The pair (ATM, TP53 ) was identified by the proposed method with the
cost function value of −0.463, which was also discovered in Vandin et al.
(2012) by removing the triplet (EGFR, KRAS, STK11 ) from the original
dataset. Note that among the identified low-cost sets in Table 1, the cost
function value of (ATM, TP53 ) was relatively high due to its low value
of the coverage: |Γ(B̂)| = 76, much smaller than the maximum value of
n = 162. As hypothesized in Vandin et al. (2012), the low coverage is possibly
because somatic mutations were measured in only a small subset of genes,
or because only single-nucleotide mutations and small indels in these genes
were measured, and other types of genomic or epigenetic alterations might
occur in the ”unmutated” patients.

In addition, we identified some low-cost sets consisting of the genes related
to both the mTOR signaling and the cell cycle pathways, namely, (ATM,
EGFR, STK11, TP53) (f(B̂) = −0.525), (KRAS, TP53 ) (f(B̂) = −0.469)
and (EGFR, TP53 ) (f(B̂) = −0.444). Presumably these discoveries are
related to that EGFR and KRAS are upstream regulators of TP53, as sug-
gested by Ding et al. (2008).

3.1.2. Glioblastoma multiforme (A). Next, we analyzed the mutation
data of 84 glioblastoma multiforme (GBM) patients from The Cancer
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Genome Atlas (The Cancer Genome Atlas Research Network, 2008), where
601 somatic mutations in these patients occurred. The mutation data con-
sist of 84 patients and 178 genes, with each mutation occurring in at least
one patient. The proposed method was applied to identify multiple sets of
mutations with low cost values. Using 100 randomly selected initial values
for MCSS, it cost 0.66 minutes and identified some gene sets with low cost.
In Table 2 we also group the identified low-cost sets in terms of the possibly
associated pathways. Most of the sets are associated with three important
pathways of glioblastoma multiforme: the p53 signalling pathway, the RB
signalling pathway and the RAS/RTK/PI(3)K signalling pathway. Interac-
tions in these pathways were reported in The Cancer Genome Atlas Research
Network (2008) as described in Figure 2. Below we discuss each pathway and
the discovered sets of mutations.

First, the p53 signalling pathway consists of some highly mutated genes,
CDKN2A, MDM2, MDM4 and TP53. Importantly, mutations in the tu-
mour suppressor gene TP53 are typical events in primary glioblastoma
multiforme, which is characterised by a short clinical history and the ab-
sence of a pre-existing, less malignant astrocytoma. In contrast, the cellular
oncogene MDM2 is viewed as an important negative regulator of the p53
tumor suppressor, whose overexpression is a characteristic feature of sec-
ondary glioblastoma multiforme, progressing from less malignant astrocy-
toma (Stark et al., 2003).

Interestingly, the set of these four genes (CDKN2A, MDM2, MDM4,
TP53 ) (f(B̂) = −0.655 = −55/84) was identified by the proposed method
as a novel discovery unreported before, e.g., in comparison with the pair
(CDKN2A, TP53 ) (f(B̂) = −0.631) identified by Vandin et al. (2012). As
indicated in Table 2, the pair (CDKN2A, TP53 ) was also uncovered by
the proposed method, in addition to another two sets, (CDKN2A, DTX3,
TP53 ) (f(B̂) = −0.679) and (CDKN2B, TP53 ) (f(B̂) = −0.631). Since
CDKN2A and CDKN2B are tumor suppressor genes located on a common
homozygous deletion region on the human genome, they mutate almost si-
multaneously, which leads to a low cost function value of (CDKN2B, TP53 ).
However, for (CDKN2A, DTX3, TP53 ), currently without further biolog-
ical evidence, we conjecture that it has a low cost function value mainly
because it consists of a low-cost set (CDKN2A, TP53 ) and gene DTX3
with infrequent mutations.

Second, the RB signalling pathway consists of some highly mutated genes,
CDKN2A/B, CDK4, RB1, where CDKN2A and CDKN2B are tumor sup-
pressor genes, whose gene products, p16INK4A and p15INK4B, are both
able to inhibit the binding of CDK4 and CDK6 to cyclin D, preventing
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the cell cycle progression at G1 phase. As a result, by negatively control-
ling cell cycle progression, these genes function as a critical defense against
tumorigenesis of a great variety of human cancers, including glioblastoma
multiforme (Feng et al., 2012). The main set of mutations identified by the
proposed method and associated with this pathway is likely to be (CDKN2B,
CYP27B1, RB1 ) (f(B̂) = −0.738) since it has very low cost and often over-
laps with other sets with low cost, which is coincided with that identified
by Vandin et al. (2012). Since the mutational profile of CYP27B1 is nearly
identical to a metagene including CDK4, Vandin et al. (2012) believed that
the triplet (CDKN2B, CDK4, RB1 ) may be of interest. For (CDKN2B,
CYP27B1, RB1 ), the low cost function value is mainly due to the inclusion
of CDKN2B and CYP27B1. As shown in Table 2, we identified several other
sets containing CDKN2A/CDKN2B and CYP27B1, namely, (CDKN2A,
CYP27B1, RB1 ) (f(B̂) = −0.667), (CDKN2B, CYP27B1, NF1 ) (f(B̂) =
−0.667), (CDKN2A, CYP27B1, NF1 ) (f(B̂) = −0.643) and (CDKN2B,
CYP27B1 ) (f(B̂) = −0.643). In addition, we also uncovered a set (CDKN2B,
ERBB2, RB1, TSPAN31 ) (f(B̂) = −0.762), which is another new discov-
ery by the proposed method. Interestingly, TSPAN31 belongs to the same
metagene including CDK4.

Third, the RAS/RTK/PI(3)K signalling pathway consists of some highly
mutated genes, EGFR, NF1, PI(3)K and PTEN. Associated with this path-
way, we identified a set of (EGFR, KDR, NF1 ) (f(B̂) = −0.619). Its low
cost function value is likely due to the inclusion of EGFR and NF1.

Finally, among the other identified low-cost sets in Table 2, (MTAP,
TP53, TSFM ) (f(B̂) = −0.667), (CYP27B1, MTAP, PTEN ) (f(B̂) =
−0.655) and (CDK4, MTAP, PTEN ) (f(B̂) = −0.655) are not known to be
related to the pathways associated with glioblastoma multiforme. Hopefully,
these low-cost sets will be useful for suggesting new links to glioblastoma
multiforme. For (EGFR, TP53 ) (f(B̂) = −0.619), its low cost function
value is possibly due to the approximate exclusiveness of EGFR and TP53.
In particular, tumors in the ‘classical’ subtype of glioblastoma multiforme
often carry extra copies of EGFR and are rarely mutated in TP53.

In summary, as shown in the above two real data examples, nearly all
of the identified low-cost sets by the proposed method are associated with
some known mutated driver pathways. This suggests potential usefulness
of the proposed method. More importantly, in comparison with an exist-
ing method, some new discoveries were obtained, such as (EGFR, KRAS,
NF1, STK11 ) (f(B̂) = −0.611 = −99/162) associated with the mTOR
signalling pathway of lung cancer, and (CDKN2A, MDM2, MDM4, TP53 )
(f(B̂) = −0.656 = −55/84) associated with the p53 signalling pathway of
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ĉ
c

ĉ
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Fig 2. Three pathways associated with glioblastoma multiforme as reported in The Cancer
Genome Atlas Research Network (2008).

glioblastoma multiforme.

3.1.3. Glioblastoma multiforme (B). Finally we analyzed a larger dataset
of glioblastoma multiforme (GBM) patients from The Cancer Genome Atlas
(Brennan et al., 2013). The mutation data consist of 291 patients and 9539
genes, while the gene expression data include 558 patients and 12042 genes.
Focusing on the intersection of the two gene sets, we obtained 5959 genes.
Hence, we studied the filtered mutation data with 291 patients and 5959
genes, and the filtered expression data with 558 patients and 5959 genes.

First, the proposed MCSS was applied to identify multiple sets of mu-
tations with low cost values using only the filtered mutation data. Using
10000 randomly selected initial values for all genes and 10000 randomly se-
lected initial values for the subset of the genes with mutation rate larger
than 0.05, MCSS identified some top gene sets with the six lowest cost func-
tion values (Table 3); note some gene sets with tied cost function values.
They are mainly the variations and combinations of two core sets, (EGFR,
KEL, NF1, TP53) and (IDH1, PIK3CA, PTEN), as contained in the top
two sets identified. The list includes many well-known GBM genes, such as
EGFR, PTEN, IDH1, TP53 and NF1 (Frattini et al., 2013). Nevertheless,
it is surprising that some top genes identified in Table 2 do not show up in
the current list. Accordingly, we examined the top gene sets identified in the
previous section but calculated their cost function values using the current
data. From Table 4, we see that the top sets obtained earlier all have higher
(i.e. worse) cost function values than those obtained in Table 3, indicating
some inherent differences between the two datasets. For example, some high-
mutation genes in the previous dataset, such as CDKN2A, MDM2, MDM4,
CDKN2B, CYP27B1, ERBB2 and TSPAN31, had a low-mutation rate <5%
in the current dataset. We use the less frequent mutation (LFM) (i.e. with
a mutation rate < 5% among the subjects) ratio (i.e. the proportion of the
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Table 3
Application to the mutation data of glioblastoma multiforme (data GBM B) (Brennan
et al., 2013): the top gene sets with the six lowest cost function values identified by the

new method MCSS.

B̂ f(B̂) ĉe ĉc ĉ1 ĉ2
(EGFR, KEL, NF1, CNTNAP2, TP53 ) -0.515 0.127 -0.642 0.526 0.106
(EGFR, MUC4, KEL, CNTNAP2, TP53 ) -0.509 0.103 -0.612 0.512 0.096
(FCGBP, IDH1, MUC16, PIK3CA, PTEN ) -0.509 0.110 -0.619 0.512 0.103
(EGFR, NF1, CNTNAP2, TP53 ) -0.505 0.103 -0.608 0.509 0.096
(EGFR, MUC4, CNTNAP2, TP53, RYR3 ) -0.505 0.110 -0.615 0.509 0.103
(FCGBP, IDH1, MUC16, PTEN ) -0.498 0.065 -0.563 0.502 0.058
(IDH1, MUC16, PIK3CA, PTEN ) -0.498 0.089 -0.587 0.498 0.089
(DSP, MUC4, FCGBP, IDH1, NF1, MUC16, PTEN ) -0.498 0.175 -0.673 0.512 0.148
(IDH1, NF1, MUC16, PTEN ) -0.495 0.096 -0.591 0.495 0.096
(EGFR, KEL, TP53, FLG) -0.491 0.131 -0.622 0.502 0.110
(EGFR, MUC4, CNTNAP2, TP53 ) -0.491 0.083 -0.574 0.491 0.082
(EGFR, USH2A, CNTNAP2, TP53 ) -0.491 0.096 -0.587 0.498 0.082
(DSP, IDH1, MUC16, DNAH3, PTEN ) -0.491 0.100 -0.591 0.495 0.093
(ATRX, FCGBP, MUC16, PIK3CA, PTEN ) -0.491 0.124 -0.615 0.502 0.103
(EGFR, CNTNAP2, TP53, RYR3 ) -0.491 0.089 -0.581 0.491 0.089
(EGFR, IDH1, NF1, MUC16, RELN ) -0.491 0.110 -0.601 0.495 0.103

LFM genes in a gene set) to indicate the presence of LFM genes in Table
4. The inherent differences between the two datasets confirm the genomic
heterogeneity of GBM, one of the biggest challenges in current data analysis.

Finally, MCSS ME was applied in an integrative analysis of both the fil-
tered mutation and gene expression data. We did not apply the GA method
because its current implementation requires the same set of the subjects
with both mutation and gene expression data, which did not hold here. Us-
ing 10000 randomly selected initial values, MCSS ME identified its top 10
gene sets shown in Table 5. We note that several genes were also identified

Table 4
The cost function values of the gene sets in the larger GBM (B) dataset with the gene

sets identified from the smaller GBM (A) dataset.

B̂ f(B̂) ĉe ĉc ĉ1 ĉ2 LFM ratio
(CDKN2A, MDM2, MDM4, TP53 ) -0.285 0.007 -0.292 0.285 0.007 3/4
(CDKN2A, TP53 ) -0.289 0 -0.289 0.289 0 1/2
(CDKN2B, TP53 ) -0.285 0 -0.285 0285 0 1/2
(CDKN2B, CYP27B1, RB1 ) -0.103 0 -0.103 0.103 0 2/3
(CDKN2B, ERBB2, RB1, TSPAN31 ) -0.103 0 -0.103 0.103 0 3/4
(CDKN2A, CYP27B1, RB1 ) -0.107 0 -0.107 0.107 0 2/3
(CDKN2B, CYP27B1, NF1 ) -0.124 0 -0.124 0.124 0 2/3
(CDKN2A, CYP27B1, NF1 ) -0.124 0 -0.124 0.124 0 2/3
(CDKN2B, CYP27B1 ) -0.127 0 -0.127 0.127 0 2/2
(EGFR, KDR, NF1 ) -0.354 0.024 -0.378 0.354 0.024 1/3
(EGFR, TP53 ) -0.447 0.048 -0.495 0.447 0.048 0/2
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from the other dataset in the previous section. Many selected genes are anno-
tated in the Cancer Gene Census in the Catalogue Of Somatic Mutations In
Cancer (COSMIC) (Forbes et al., 2015), including well-known GBM genes
(EGFR, PTEN, IDH1, TP53 and NF1, among others) (Frattini et al., 2013).
Here we only highlight a few examples. Gene ATRX was an important mem-
ber of the H3.3-ATRX-DAXX chromatin remodelling pathway, among the
most frequently mutated genes in paediatric and adult GBM Schwartzen-
truber et al. (2012). Gene PIK3CA, encoding a protein that antagonizes the
function of PTEN protein in the PI3K/Akt pathway; an exclusive mutation
pattern was observed in PIK3CA and PTEN (Hartmann et al. , 2005). Mu-
tations in a single gene, IDH1, resulted in reorganization of the methylome
and transcriptome in glioblastomas and other cancers (Turcan et al., 2012).
As reviewed in Sturm et al. (2014), unsupervised clustering of the gene
expression data from 200 adult GBM samples from TCGA identified four
different molecular subtypes: proneural, neural, classical and mesenchymal.
The proneural subtype was largely characterized by abnormalities in platelet
derived growth factor receptor α (PDGFRA) or isocitrate dehydrogenase 1
(IDH1), whereas mutation of the epidermal growth factor receptor (EGFR)
was found in the classical subgroup and mutations in neurofibromin (NF1)
were common in mesenchymal tumours. In particular, Sturm et al. (2014)
mentioned the detection of lower-frequency events in both cancer-related as
well as previously un-associated genes such as ATRX and KEL.

Note that all the gene sets identified with only the mutation data include
only high-mutation genes (i.e. with a mutation rate > 5% among the sub-
jects), while it is of interest but difficult to identify driver genes with less
frequent mutations (i.e. with a mutation rate ≤ 5%) (LFM). Hence, we show
the LFM ratio in Table 5. It is interesting to note the presence of two LFM
genes, CNTP2 and DH3. In summary, our preliminary results seem to sup-
port the use of integrative analysis as advocated by others (Frattini et al.,
2013).

3.2. Simulations. Due to the difficulties in evaluating de novo discover-
ies with real data, we performed extensive simulations to study the operat-
ing characteristics of the proposed method and compared its performance
against its competitors. All simulations were performed on a single processor
of an Intel(R) Xeon(R) 2.83GHz PC.

3.2.1. Simulation I: a single driver pathway. We first considered the case
with only a single driver pathway, in which the focus was on comparing our
new method with its strong competitor, the MCMC algorithm of Dendrix as
implemented in Python (Vandin et al., 2012), though several other methods
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ĉ
e

ĉ
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were also included.
For the proposed method, we fixed τ1 = 1, τ2 = 0.1 and α = 10−3, and

tuned λ over a tuning set Λ. Specifically, λ was selected by minimizing a
tuning error over a set of 10 equally-spaced points. We used 100 random
initial estimates for MCSS (based on the subgradient descent algorithm),
containing the Lasso estimate β̂L, as well as the other 99 random initial
estimates. For the algorithm of Dendrix Vandin et al. (2012), 1000000 it-
erations were run for MCMC with sampling sets of size 4 for every 1000
iterations. Moreover, the algorithm was run with the number of driver mu-
tations varying from 1 to 10 to select the best fitted subset with the lowest
cost of f(·) in (2.1) as the final result.

For each simulated dataset, an n × p mutation matrix A was generated
with a 1 indicating a mutation and 0 otherwise. For each patient, a gene in a
driver pathway B0 = {1, 2, 3, 4} was randomly selected and it mutated with
probability p1, and another gene inB0 was randomly selected to have a muta-
tion with probability p2. Consequently, p1 and p2 controlled the coverage and
exclusiveness of B0 respectively. Other genes outside B0 mutated with prob-
ability p3. Six set-ups were examined with (p1, p2, p3) = (0.95, 0.01, 0.05):
(1) n = 50 and p = 1000, (2) n = 100 and p = 1000, (3) n = 1000 and
p = 50, (4) n = 1000 and p = 100, (5) n = 50 and p = 10000, (6) n = 100
and p = 10000. With (p1, p2, p3) = (0.8, 0.02, 0.05), we had similar set-ups.
The simulation results are summarized in Tables 6 and 7.

As suggested in Tables 6 and 7, the proposed method outperformed the
MCMC algorithm of Dendrix, especially in the high-dimensional situations,
with respect to the accuracy of selection as well as computational efficiency
measured by the values of C, IC, ADC and RT respectively. The amount of
improvement of the proposed method over the competitor ranged from low
to high. For the running time, the proposed algorithm was overwhelmingly
faster than the MCMC algorithm of Dendrix. In particular, it was often
more than 50 times faster than the MCMC algorithm of Dendrix. As ex-
pected, both methods tended to perform worse as the amount of coverage
and exclusiveness of a mutated driver pathway decreased.

We also compared our new method with several other alternative meth-
ods that were proposed more recently, including Multi-dendrix-MCMC of
Leiserson et al. (2013), BLP (binary linear programming) and GA (genetic
algorithm) of Zhao et al. (2012). The numerical results of the three methods
are also summarized in Tables 6 and 7. These results suggest that the perfor-
mance of Multi-dendrix-MCMC was quite similar to that of Dendrix-MCMC
but much faster; BLP and GA performed better than their competitors if the
algorithms could finish running; however, they were not robust with frequent
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Fig 3. Tuning error, cost and number of non-zero (i.e. true positive) estimates of MCSS
versus the tuning parameter value λ ∈ Λ with |Λ| = 100 for the first simulation set-up:
n = 50, p = 1000 and (p1, p2, p3) = (0.95, 0.01, 0.05).

running errors (up to 15% failing to converge or giving output properly).
In particular, BLP ran quite unsteadily in high-dimensional situations, say
n = 50 and p = 1000 or 10000, while GA was too slow in high-dimensional
situations since it tried to seek an exact solution. As expected, we see that
these three methods also tended to perform worse as the amount of cover-
age and exclusiveness of a mutated driver pathway decreased. Since a rarely
mutated gene may by chance satisfy the (approximate) exclusivity property
with a highly mutated gene, the union of the highly mutated gene and some
rarely mutated genes could drive down the cost function value, leading to
false positives. To investigate this issue, we conducted a simulation study.
As before, the driver pathway contained four genes. We set the 1st gene
to have mutation in a fraction p∗0 of all n patients, while setting the other
three driver genes {2, 3, 4} to have mutations only in the remaining patients,
for whom a gene from {2, 3, 4} was randomly selected with probability p∗1 to
have a mutation, and another gene in {2, 3, 4} was randomly selected to have
a mutation with probability p∗2. Finally, other genes outside B0 = {1, 2, 3, 4}
mutated with a background probability p∗3. The corresponding simulation
results are summarized in Table 8, suggesting that the proposed method
still performed well.

To evaluate the performance involving cross-validation, consider the first
set-up: n = 50 and p = 1000 with (p1, p2, p3) = (0.95, 0.01, 0.05). The cross-
validation procedure was applied with an enlarged size of Λ, say 100, and
Algorithm 1 was applied to A for each λ ∈ Λ separately. The results are
displayed in Figure 3, demonstrating that the λ’s minimizing the tuning
error corresponded to the minimum cost of (2.1) and the true size of B0,
say 4.

Moreover, the current tuning error is obtained by applying the cross-
validation procedure for once in consideration of computational efficiency.
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Fig 4. The correct (C #) and incorrect (IC #) numbers of non-zero (i.e. true positive) es-
timates, the average difference of the costs (ADC) and running time (RT) of MCSS versus
the fold number of cross-validation used in Algorithm 2 (CV #) for the first simulation
set-up: n = 50, p = 1000 and (p1, p2, p3) = (0.95, 0.01, 0.05).

Table 9
Results in Simulation II based on 100 simulation replications with

(p1, p2, p3) = (0.8, 0.02, 0.05).

n p Method C IC ADC RT
50 1000 Multi-dendrix-MCMC 2.70 (1.65) 13.40 (6.09) -.27 (.07) .59 (.02)

MCSS 7.35 (.67) .55 (.89) -.03 (.06) .35 (.06)
100 1000 Multi-dendrix-MCMC 8 (0) 2.80 (1.19) .05 (.01) .85 (.01)

MCSS 8 (0) 0 (0) 0 (0) .57 (.06)
50 10000 Multi-dendrix-MCMC .25 (.55) 18.55 (1.73) -.37 (.08) 1.88 (.05)

MCSS 5.52 (1.54) 1.91 (1.89) -.14 (.10) 3.69 (.38)
100 10000 Multi-dendrix-MCMC 5.75 (1.06) 2.75 (3.91) -.25 (.07) 3.87 (.04)

MCSS 7.42 (.82) .65 (.67) -.14 (.13) 7.15 (1.11)

For instance, in the first set-up with (n = 50, p = 1000) and (p1, p2, p3) =
(0.95, 0.01, 0.05), as indicated in Figure 4, as the cross-validation fold number
increased, the performance of the proposed method measured by C, IC and
ADC did not improve, while RT increased linearly.

3.2.2. Simulation II: multiple driver pathways. We further compared the
performance of MCSS against Multi-dendrix in identifying multiple true
driver pathways as follows.

The simulation set-up was similar as before except that there were two
true driver pathways B1 and B2. We used 100 random initial estimates for
MCSS. We compared their performance using the top two estimated sets
(with the minimum cost function values) by each method for each dataset.
As shown in Table 9, MCSS performed much better for the most challenging
high-dimensional case with p = 10000 and n = 50: it correctly identified
a much larger number of the genes in the two true driver pathways (i.e.
with a larger number of estimated true positives) while yielding fewer false
positives. On the other hand, as the sample size n increased to 100, the
performance of Multi-dendrix caught up.
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3.2.3. Simulation III: with both mutation and gene expression data. We
generated the mutation data as in Table 7 and the gene expression data
from a multivariate normal distribution N(0, V ). Specifically, we divided
the genes {1, · · · , p} into mutually disjoint subsets B0 = {1, 2, 3, 4}, B1, B2,
...BK , where for each k ∈ {1, · · · ,K}, the gene set size |Bk| was random from
{2, · · · , 20}. V is a correlation matrix with all diagonal elements Vjj = 1;
for any j1 < j2 both in the same Bk, Vj1j2 = Vj2j1 = 0.9; otherwise, Vj1j2 =
Vj2j1 = 0.1. The rationale is that, for the genes in the same set, due to their
shared function, their expression levels are also highly correlated. We used
our proposed method to select all the tuning parameters, including γ. The
simulation results for the integrative analysis of both mutation data and
gene expression data are summarized in Table 10, where the new method
MCSS ME is compared with GA ME, the integrative version of GA (Zhao
et al., 2012). Note that, to our knowledge, the integrative version of BLP
in Zhao et al. (2012) is not yet publicly available. From Table 10, we see
that GA ME failed in situations with the dimension p much smaller than
the sample size n; in contrast, the new method MCSS ME performed well.
Furthermore, GA ME was much time-consuming for large p.

4. Conclusions. This paper has introduced a new computational
method for a combinatorial optimization problem motivated from cancer
genomics. It approximates a combinatorial cost function with a continuous
and non-convex relaxation. In particular, the indicator function is approx-
imated by a non-convex truncated L1-function. The proposed method is
computationally more efficient than an existing approach based on stochastic
search, and compares favorably over several existing methods in simulations.
Through both real data and simulated data analyses, the proposed method
was shown to be promising for discovering mutated driver pathways with
tumor sequencing data. In light of that Dendrix and other methods have
been successfully applied to the TCGA (Kandoth et al., 2013), it would be
interesting to apply our proposed method to on-going large cancer genomics
projects. Furthermore, the current problem differs from existing pathway
analysis of genome-wide association studies (GWAS) (Wang et al., 2007;
Torkamani et al., 2007; Schaid et al., 2012) in two aspects: (i) the current
problem is more challenging in the sense that no pathway is given a priori;
(ii) however, GWAS data is different with genetic variants (or mutations)
present for healthy control subjects, and it is also higher-dimensional with
a larger number of genetic variants. It would be interesting to see whether
the key concept of mutation exclusivity and associated methodology in the
current context can be extended and applied to GWAS for de novo pathway
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or gene subnetwork (Liu et al., 2014) discovery to handle genetic hetero-
geneity. Finally, the main idea of our algorithm is quite general and may be
modified and extended for other challenging combinatorial search problems.

Matlab code implementing the new method and a manual are available
at https://github.com/ChongWu-Biostat/MCSS .

APPENDIX

Proof of Theorem 1. For convergence of Algorithm 1, by construction, we

have, for m ∈ N, S(β̂
(m)

) = S(m+1)(β̂
(m)

) ≤ S(m)(β̂
(m)

) ≤ S(m)(β̂
(m−1)

) =

S(β̂
(m−1)

). Since S(β) is obviously bounded below, the convergence is proved.

Converging finitely follows from the strict decreasing character of S(m)(β̂
(m)

)
in m, uniqueness of minimizer of S(m)(β) and finite possible values of

∇S2(β̂
(m−1)

) in (2.4). After termination occurs at m?, β̂
(m)

remains un-

changed for m ≥ m?, so does the cost function S(β̂
(m)

) in (2.3) for m ≥ m?.

By construction of S(β), we have that β̃ = β̂
(m)

= β̂
(m?−1)

, for all m ≥ m?.

β̃ is uniquely defined, because for each m ∈ N, the minimizer β̂
(m)

of S(m)(β)

is uniquely defined. Since∇S(m?)(β̂
(m?)

) = ∇S1(β̂
(m?)

)−∇S2(β̂
(m?−1)

) = 0,

we get that∇S1(β̂
(m?)

) = ∇S2(β̂
(m?−1)

) = ∇S2(β̂
(m?)

). Thus,∇S(β̂
(m?)

) =

∇S1(β̂
(m?)

)−∇S2(β̂
(m?)

) = 0, which completes the proof.

Proof of Lemma 1. We prove by contradiction. By construction of S(β),
we see that |β∗| = (|β∗1 |, · · · , |β∗p |)T is also a local minimum of S(β), β ∈ Rp.
Without loss of generality, we assume that |β∗1 | > τ1. Let

s1(β1, · · · , βp) =
1

n

p∑
j=1

min
( |βj |
τ1

, 1
)
A·,j + λ

p∑
j=1

min
( |βj |
τ2

, 1
)
,

s2(β1, · · · , βp) = − 2

n

n∑
i=1

min
(∑p

j=1Aij |βj |
τ1

, 1
)

+
α

n

p∑
j=1

β2
j ,

s∗1(β1) = s1(β1, |β∗2 |, · · · , |β∗p |),
s∗2(β1) = s2(β1, |β∗2 |, · · · , |β∗p |),
s∗(β1) = S(β1, |β∗2 |, · · · , |β∗p |) = s∗1(β1) + s∗2(β1).

Since
∂s∗1(β1)
∂β1

= 0 and
∂s∗2(β1)
∂β1

> 0 whenever |β∗1 | > τ1, we see that |β∗1 | is not
a local minimizer of s∗(β1), which is contrary to the assumption.
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Proof of Lemma 2. We prove by contradiction. We assume that β∗ 6= 0
is a local minimizer of S(β) in (A.1) on Rp. By construction of S(β), we
see that |β∗| = (|β∗1 |, · · · , |β∗p |)T is also a local minimum of S(β), β ∈ Rp.
Without loss of generality, we assume that |β∗1 | > 0. Let

s1(β1, · · · , βp) =
1

n

p∑
j=1

min
( |βj |
τ11

, 1
)
A·,j + λ

p∑
j=1

min
( |βj |
τ2

, 1
)
,

s2(β1, · · · , βp) = − 2

n

n∑
i=1

min
(∑p

j=1Aij |βj |
τ12

, 1
)

+
α

n

p∑
j=1

β2
j ,

s∗1(β1) = s1(β1, |β∗2 |, · · · , |β∗p |),
s∗2(β1) = s2(β1, |β∗2 |, · · · , |β∗p |),
s∗(β1) = S(β1, |β∗2 |, · · · , |β∗p |) = s∗1(β1) + s∗2(β1).

We first consider the situation of |β∗1 | = τ11. Denote by the right derivative
of s∗1(β1) at |β∗1 | to be b. By construction of s∗1(·), its left derivative at

|β∗1 | must be b +
A·,1
nτ11

. Let c1 and c2 denote the left derivative and right
derivative of s∗2(β1) at |β∗1 | respectively. Since s∗(β1) achieves a minimum

at |β∗1 |, we have that c1 + b +
A·,1
nτ11

≤ 0 and c2 + b ≥ 0, which implies

that c2 − c1 ≥ A·,1
nτ11

. On the other hand, since |β∗1 | > 0, we have that c1,

c2 ∈ [−2
∑n

i=1
Ai1
nτ12

+2αn |β
∗
1 |, 2αn |β

∗
1 |], and thus |c2−c1| ≤ 2A·,1

nτ12
≤ 2A·,1

2nτ11
=

A·,1
nτ11

because we have assumed that τ12 > 2τ11, which is contrary to the fact that
c2 − c1 >

A·,1
nτ11

.
Second, we consider the situation of τ2 < |β∗1 | < τ11. In this situation, the

left derivative of s∗1(β1) at |β∗1 |, b, is
A·,1
nτ11

, and the left derivative of s∗2(β1) at

|β∗1 |, c1, belongs to [−2
A·,1
nτ12

+ 2αn |β
∗
1 |, 2αn |β

∗
1 |], which implies b + c1 > 0 and

is contrary to the the assumption of local minimum of |β∗1 |.
Third, we consider the situation of 0 < |β∗1 | ≤ τ2. We see that the left

derivative of s∗1(β1) at |β∗1 |, b, is
A·,1
nτ11

+ λ
τ2

, and the left derivative of s∗2(β1)

at |β∗1 |, c1, belongs to [−2
A·,1
nτ12

+ 2αn |β
∗
1 |, 2αn |β

∗
1 |], which implies b + c1 > 0

and is contrary to the the assumption of local minimum of |β∗1 |.
Finally, we consider the situation of |β∗1 | > τ2. Since

∂s∗1(β1)
∂β1

= 0 and
∂s∗2(β1)
∂β1

> 0 whenever |β∗1 | > τ12, we see that |β∗1 | is not a local minimizer of
s∗(β1), which is contrary to the assumption.

Other choices of the tuning parameters. This section focuses on situ-
ations involving different thresholding parameters for different approxima-
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tions of indicator functions in (2.3). Consider, for β ∈ [0,+∞)p,

S(β) =
1

n

p∑
j=1

min
( βj
τ11

, 1
)
A·,j −

2

n

n∑
i=1

min
(∑p

j=1Aijβj

τ12
, 1
)

+λ

p∑
j=1

min
(βj
τ2
, 1
)

+
α

n

p∑
j=1

β2
j ,(A.1)

where τ11 and τ12 may not be equal.
First, we examine the cases of τ12 > 2τ11 (τ2 < τ11, τ12).

Lemma 2. Let τ12 ≥ 2τ11 and τ2 < τ11, τ12. If there exists a local min-
imizer β∗ 6= 0 of S(β) in (A.1), then β∗j = 0 or τ11 < |β∗j | ≤ τ12 for each
j ∈ {1, · · · , p}.

Letting τ12 ≥ 2τ11, we have that in each iteration of Algorithm 1,

S(m)(β) = βT {diag(A·)I(β̂
(m−1) ≤ τ11)

nτ11
+ λ

I(β̂
(m−1) ≤ τ2)

τ2
− 2A·
nτ12
}

+
2

n

n∑
i=1

max(

∑p
j=1Aijβj

τ12
− 1, 0) +

α

n
βTβ, β ∈ [0,+∞)p.(A.2)

It follows from (A.2) that once we have that β̂
(m−1)

= 0 for some m,
S(m)(β) ≥ 0 for all β ∈ [0,+∞)p, which terminates the DC iteration pro-

cess, because β̂
(m)

= β̂
(m−1)

= 0. This indicates that if τ12 ≥ 2τ11, the DC

algorithm becomes sensitive to an initial value β̂
(0)

.
Next, we examine the case of 0 < τ12 < 2τ11 (τ2 < τ11, τ12), where the

DC algorithm is not sensitive as the first one. However, based on the results
of a few numerical examples (not shown), we found that in this situation,
even using one more parameter, the performance of finding the minimum
cost subset did not improve over the proposed method.

Finally, we consider the case of τ1 = τ11 = τ12 and τ2 ≥ τ1. In this case,
similar to Lemma 1, any local minimizer of S(β) belongs to [0, τ2]p, where
the truncated L1 penalty becomes a L1 penalty that does not restrict the
number of nonzero coordinates of a minimizer as an L0 penalty does. In
particular, in the situation with τ1 = τ2, S(β) becomes a strictly convex
function on [0, τ2]p, which indicates that for any β1 and β2 with S(β1) =

S(β2), S(β1+β2
2 ) < S(β1). As a result, if there exists two minimum cost

subsets B1 and B2 in the finite-sample situation, then by using τ1 = τ2, the
corresponding method is more likely to select B1

⋃
B2 as the minimum cost
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subset.
The subgradient descent algorithm. For MCSS, we denote β̂

(m,1)
=

(β̂
(m,1)
1 , · · · , β̂(m,1)

n )′ = β̂
(m−1)

, use the following subgradient of S(m)(β) at

β̂
(m,t−1)

:(
∇S(m)(β̂

(m,t−1)
)
)

=diag(A·)I(β̂
(m−1) ≤ τ1)/nτ1 + λI(β̂

(m−1) ≤ τ2)/nτ2 − (1 + ρ) ∗AT
· /τ1

+ (1 + ρ)AT I(Aβ̂(m,t−1)/τ1 > 1)/nτ1 + 2αβ̂(m,t−1)/n

and then update β̂
(m,t)

until convergence to obtain β̂
(m)

:

β̂
(m,t)

= β̂
(m,t−1) − 1

2
√
npt
∇S(m)(β̂

(m,t−1)
).(A.3)

For MCSS ME, we denote β̂
(m,1)

= (β̂
(m,1)
1 , · · · , β̂(m,1)

n )′ = β̂
(m−1)

, use

the following subgradient of S(m)(β) at β̂
(m,t−1)

:(
∇S(m)(β̂

(m,t−1)
)
)

=
(
diag(A·)I(β̂

(m−1) ≤ τ1)/nτ1 + λI(β̂
(m−1) ≤ τ2)/nτ2 − 2A·/nτ1

− 2γDβ̂
(m−1)

/τ2
1 − 2γdiag(I(β̂

(m−1)
> τ1))Dmax(β̂

(m−1)
/τ1 − 1, 0)/τ1

)
+ (1 + ρ)AT I(Aβ̂(m,t−1)/τ1 > 1)/nτ1 + 2αβ̂(m,t−1)/n

+ 2diag(C ·)β̂
(m,t−1)/nτ1 + 2Cmax(β̂(m,t−1)/τ1 − 1, 0)/n

+ 2diag(C ·)diag(I(β̂(m,t−1) > τ1)) max(β̂(m,t−1)/τ1− 1, 0)/nτ1

+ 2Cdiag(β̂(m,t−1))I(β̂(m,t−1) > τ1)/nτ1

and then update β̂
(m,t)

by equation (A.3) until convergence to obtain β̂
(m)

.
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