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Abstract. Identifying drug target genes in gene expression profiles is not 

straightforward. Because a drug targets not mRNAs but proteins, mRNA expres-

sion of drug target genes is not always altered. In addition, the interaction be-

tween a drug and protein can be context dependent; this means that simple drug 

incubation experiments on cell lines do not always reflect the real situation during 

active disease. In this paper, I apply tensor decomposition-based unsupervised 

feature extraction to the integrated analysis of gene expression between heart 

failure and the Drug Matrix dataset where comprehensive data on gene expres-

sion during various drug treatments of rats were reported. I found that this strat-

egy, in a fully unsupervised manner, enables us to identify a combined set of 

genes and compounds, for which various associations with heart failure were re-

ported. 

Keywords: Tensor decomposition‧Drug discovery‧Heart diseases 

1 Introduction 

In silico drug discovery is an important task because experimental identification/ver-

ification of therapeutic compounds is a time-consuming and expensive process. There 

are two major trends of in silico drug discovery: the ligand-based approach and struc-

ture-based approach. The former is very straightforward; new drug candidates are iden-

tified based upon the similarity with known drugs no matter how the similarity is eval-

uated. Although it is a powerful method, there are some drawbacks; if there are no 

known drugs for target proteins, then there is no way to find new drug candidates. Even 

if there are many known drugs for the target protein, it is hopeless to find compounds 

that are effective but without any similarity with known drugs. The second, structure-

based approach, can address these weaknesses. It can identify new therapeutic com-

pounds even without the information about known drugs. Of course, there are some 

drawbacks in this strategy, too. If the target protein structure is not known, it must be 

predicted prior to the drug discovery process. Even if the target protein’s structure is 

known, because we need to numerically verify the binding affinity between the ligand 
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compound and target protein, which also requires a large amount of computational re-

sources, structure-based in silico drug discovery is still far from easy to perform. In 

addition, prediction accuracy of protein structure and of ligand-binding structure is not 

very high at all. Thus, it would be helpful to have an additional/alternative strategy for 

in silico drug discovery.  

Recently, an alternative approach was proposed that is aimed at finding drug candi-

dates computationally using gene expression profiles of cell lines treated with com-

pounds. This third approach is not straightforward at all. First of all, because com-

pounds target not mRNAs but proteins, mRNA expression of drug target proteins is not 

always affected. Therefore, direct identification of a drug target protein in gene expres-

sion data cannot be done. Second, gene expression alteration caused by treatment with 

a compound may be context dependent; in other words, in a cell line, the gene expres-

sion difference caused by incubation with a compound may differ from that in diseases. 

To compensate these difficulties, the gene expression signature strategy was developed. 

In this approach, gene expression alteration profiles caused by treatment of a cell line 

with various drug candidates are compared with those of known drugs. If the profiles 

are similar, then new drug candidates are expected to function similarly to known drugs. 

Although this third strategy is a useful one, if there are no known drugs for the target 

disease, this approach cannot function at all as in the case of ligand-based approaches. 

In this paper, I propose a strategy that can infer drug candidates from drug treatment-

associated gene expression profiles without the information about known compounds 

for diseases. In this strategy, I employ the tensor decomposition (TD)-based unsuper-

vised feature extraction (FE) approach, which is an extension of the recently proposed 

principal component analysis (PCA)-based unsupervised FE; PCA-based unsupervised 

FE successfully solved various bioinformatic problems [1–19]. In this TD-based strat-

egy, tensors were generated using a mathematical product of a gene expression profile 

of drug-treated cell lines and of a gene expression profile of a disease. Then, pairs of 

compounds and genes are identified whose mRNA expression alteration is associated 

with drug-treated cell lines and is coincident with such alteration during disease pro-

gression. Biological evaluation of the identified genes and compounds based upon past 

studies turned out to be promising. 

2 Materials and Methods 

2.1 Mathematics of TD 

In this subsection, I briefly discuss what the TD is and how I apply TD to the present 

problem. Suppose an m-mode tensor 𝑥𝑗1…𝑗𝑚−1𝑖  represents gene expression of the ith 

gene under the jk (k=1,...,m-1, jk=1,…,Nk) conditions, examples of which are diseases, 

patients, tissues, and time points. Then, TD is defined as 

𝑥𝑗1…𝑗𝑚−1𝑖 = ∑ 𝐺(𝑙1 … 𝑙𝑚)𝑥𝑙𝑚𝑖 ∏ 𝑥𝑙𝑘𝑗𝑘

𝑚−1

𝑘=1

𝑁1…𝑁𝑚

𝑙1…𝑙𝑚

 (1) 

where 𝐺(𝑙1 … 𝑙𝑚) is a core tensor and 𝑥𝑙𝑚𝑖 and 𝑥𝑙𝑘𝑗𝑘
are singular value matrices that are 

supposed to be orthogonal to one another. Because 𝐺(𝑙1 … 𝑙𝑚) is assumed to be as large 
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as 𝑥𝑗1…𝑗𝑚−1𝑖, it is obviously an overcomplete problem; thus, there are no unique solu-

tions. To solve TD uniquely, I specifically employed the higher-order singular value 

decomposition [20] (HOSVD) algorithm that tries to attain TD such that smaller num-

ber of core tensors and singular value vectors can represent 𝑥𝑗1…𝑗𝑚−1𝑖 as much as pos-

sible.  

2.2 Tensor Generation for Integrated Analysis 

It is quite common when there is a set of gene expression profiles of human cell lines 

or model animals treated with various compounds at multiple dose densities. For ex-

ample, Drug Matrix1 and LINCS [21] are good examples, although the former com-

prises only temporal gene expression after drug treatments. Nonetheless, it is not easy 

to infer a drug’s action on diseases by means of only these gene expression profiles; 

some kind of integrated analysis with disease gene expression profiles is required, but 

it is not so straightforward. Candidate drugs should satisfy these conditions: 

• Gene expression in these profiles must significantly decrease or increase with the 

increasing dose density of compounds. 

• Gene expression alteration caused by drug treatment must be significantly coincident 

with that associated with disease progression. 

How these two independent significance values can be evaluated is unclear. For ex-

ample, we can have two sets of significant gene expression alterations of the ith gene, 
{∆𝑥𝑖}, caused by drug treatment and those of the i’th gene, {∆𝑥′𝑖′}, during disease 

progression, respectively. First, we need to test whether the two sets of genes are sig-

nificantly overlapping. Next, when there is a significant overlap, we have to determine 

whether these two gene expression alteration profiles correlate significantly. Further-

more, because the analysis is usually conducted among multiple compounds, all the 

significance evaluation must be corrected based upon a multiple comparison criterion. 

It is obviously a complicated and not a promising strategy.  

Nevertheless, if we can have gene expression profiles expressed via a tensor, 

𝑥𝑗1…𝑗𝑚−1𝑖, where jk (k=1,...,m-1) corresponds to drug candidates, dose density, and dis-

ease progression, we can easily evaluate a candidate drug using TD, eq. (1). If there are 

𝑥𝑙𝑘𝑗𝑘
 values that represent significant dependence upon dose densities and disease pro-

gression, genes’ and compounds’ singular value vectors that share core tensor G with 

larger absolute values with these 𝑥𝑙𝑘𝑗𝑘
s can be used for the selection of genes as well 

as compounds as follows. 

Suppose {𝑙𝑘} is a set of indices of genes’ or compounds’ singular value vectors that 

are associated with significant dose density dependence as well as disease progression 

dependence. Genes and compounds can be identified as being associated with signifi-

cant singular value vector components. For this purpose, P-values are attributed to each 

ith gene/𝑗𝑘th compound assuming a 𝜒2 distribution, 

                                                           
1  https://ntp.niehs.nih.gov/drugmatrix/index.html 
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 𝑃𝑖 = 𝑃𝜒2[>  ∑ (
𝑥𝑙𝑚𝑖

𝜎𝑙𝑚

)
2

{𝑙𝑚} ] or  𝑃𝑗𝑘
= 𝑃𝜒2[>  ∑ (

𝑥𝑙𝑘𝑗𝑘

𝜎𝑙𝑘

)
2

{𝑙𝑘} ]      (2) 

where 𝑃𝜒2[> 𝑥] is the cumulative probability that the argument is greater than x as-

suming the 𝜒2 distribution and 𝜎𝑙𝑚
 and 𝜎𝑙𝑘

 are standard deviations. After adjusting P-

values using the Benjamini–Hochberg (BH) criterion [22], genes and compounds that 

have significant P-values, e.g., less than 0.01, are selected as those contributing to the 

specified singular value vectors. Nevertheless, because such a tensor can be obtained 

only when drug treatment is performed on patients, this strategy is useless; if we can 

test drug efficiency directly on patients, then there is no need for in silico drug discov-

ery. To overcome this discrepancy, I replace 𝑥𝑗1…𝑗𝑚−1𝑖  with a product, 𝑥𝑗1…𝑗𝑚′𝑖 ∙

𝑥𝑗1…𝑗𝑚"𝑖, where 𝑥𝑗1…𝑗𝑚′−1𝑖 is gene expression for the drug treatment of cell lines/model 

animals, while 𝑥𝑗1…𝑗𝑚"−1𝑖 is gene expression for the patients (𝑚 − 1 = 𝑚′ + 𝑚"). Be-

cause these two can be obtained independently, we can test any kind of combinations 

of drug treatments and diseases even after all measurements were performed. 

2.3 Gene Expression Profiles 

Gene expression profiles for drug treatments of rats were retrieved from Drug Matrix 

under the gene expression omnibus (GEO) ID GSE59905, while heart failure human 

gene expression was taken from GEO ID 57345. For both datasets, expression files of 

genes, GSE57345-GPL11532_series_matrix.txt.gz, GSE59905-

GPL5426_series_matrix.txt.gz, and GSE59905-GPL5425_series_matrix.txt.gz were 

directly downloaded from the series matrix.  

2.4 Various Servers for Enrichment Analysis  

To Enrichr [23] and TargetMine [24], 274 gene symbols were uploaded. For Tar-

getMine, human was assumed as an organism under study, and the BH criterion was 

used for P-value correction.  

2.5 Statistical Analysis 

All the statistical analyses were performed within the R software. HOSVD was car-

ried out using the hosvd function in the rTensor package. 

3 Results 

3.1 TD-based Unsupervised FE Was Applied to a Combined Tensor 

From gene expression profiles of the rat left ventricle (LV) treated with 218 drugs, we 

selected four time points (1/4, 1, 3, and 5 days after treatment). Although these do not 

directly represent drug dose dependence, time course observations can be replaced with 

dose dependence, because drug dose density is expected to monotonically decrease with 

time. On the other hand, human heart gene expression profiles are composed of 82 
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idiopathic dilated cardiomyopathy patients, 95 ischemic patients, and 136 healthy con-

trols, respectively. Among them, 3937 genes sharing gene symbols between human and 

rat were considered. Then, the generated tensor is 

𝑥𝑗1𝑗2𝑗3𝑖 = 𝑥𝑗1𝑗2𝑖 ∙ 𝑥𝑗3𝑖   , 1 ≤ 𝑗1 ≤ 218, 1 ≤  𝑗2  ≤ 4, 1 ≤  𝑗3 ≤ 313, 1 ≤ i ≤ 3937   (3) 

 which represents the products of gene expression of the ith gene of LV treated with 

𝑗1compound at the 𝑗2th time point after the drug treatment and gene expression of 

the 𝑗3th human heart, respectively. HOSVD was applied to 𝑥𝑗1𝑗2𝑗3𝑖  and core tensor 

𝐺(𝑙1𝑙2𝑙3𝑙4), 1 ≤ 𝑙1 ≤ 218, 1 ≤  𝑙2  ≤ 4, 1 ≤  𝑙3 ≤ 313, 1 ≤ 𝑙4 ≤ 3937 , compound 

singular value matrix 𝑥𝑙1𝑗1
, time point singular value matrix, 𝑥𝑙2𝑗2

, human sample sin-

gular value matrix, 𝑥𝑙3𝑗3
, and gene singular value matrix, 𝑥𝑙4𝑖, were obtained. Prior to 

selection of genes and compounds, we need to know which time points singular value 

vector represents time dependence and which human sample singular value vector rep-

resents the distinction between patients and healthy controls (Fig. 1). As for time point 

singular value vectors, I decided to use the 2nd singular value vector because it has the 

strongest correlation with days. It also represents reasonable time development. After 

drug treatment, gene expression gradually increases because it takes awhile for a drug 

treatment to have an effect. Then, after it has a peak on day 1, a monotonic decrease 

follows. On the other hand, for human sample singular value vectors, the 2nd and 3rd 

ones were selected because they have a clear distinction between patients and healthy 

controls.  

Fig. 1. Left: Time points’ singular value vectors. Black circle: 1st, red triangle: 2nd, green cross: 

3rd, and blue cross: 4th singular value vectors, respectively. Pearson’s correlation coefficients to-

ward days are -0.72, -0.82, 0.51, and -0.09, respectively. Right: A box plot of human sample 

singular value vectors. From left to right, the 1st, 2nd, and 3rd singular value vectors are shown.  

Next, I tried to identify gene singular value vectors and compound singular value 

vectors associated with core tensor G(𝑙1𝑙2𝑙3𝑙4), 𝑙2 = 2, 2 ≤ 𝑙3 ≤ 3 that have larger ab-

solute values (Table 1). One can see that the 2nd singular value vector of compounds is 

always associated with top 20 core tensors. The selection of gene singular value vectors 
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is not so trivial. First of all, generally low-ranked gene singular value vectors are listed. 

This means that gene expression associated with disease progression is not a majority. 

This is a common situation because the disease usually affects only a limited number 

of genes. Then, tentatively, I decided to select top 10 gene singular value vectors, 21st, 

25th, 27th, 28th, 33rd, 36th, 37th, 38th, 41st, and 42nd singular value vectors of genes. Using 

these singular value vectors, P values were attributed to genes and compounds. The 

attributed P values were adjusted by the BH criterion. Then, 281 probes and 0 com-

pounds associated with adjusted P values less than 0.01 were selected. Because no com-

pounds pass our criteria, I sought another way to select compounds. Fig. 2 shows the 

histogram of the 2nd singular value vectors of compounds. There are obviously some 

outliers. Then, tentatively, I selected 43 compounds having the absolute 2nd singular 

value vector components larger than 0.1. 

3.2 Biological Evaluation of the Selected Compounds and Genes 

To see if we can successfully identify biologically relevant compounds and genes, we 

evaluated these selected genes and compounds. At first, a literature search was per-

formed on the 43 drugs. Then, some heart failure-related studies were identified for 

most of the 43 drugs (Table 2). This means that biologically relevant drugs were likely 

to be identified successfully. As for the genes identified, 274 genes associated with the 

identified 281 probes are shown in Table 3. 

  

Fig. 2. A histogram of 2nd singular value vec-

tors of compounds. 

Table 2. Literature search performed on 43 drugs identified by TD-based unsupervised FE. Num-

bers are Pubmed IDs (https://www.ncbi.nlm.nih.gov/pubmed/) that report the relation to heart 

failure. 

Amitriptyline 

[27994924] 

Atropine 

[24279866] 

Baclofen 

[27682809] 

Bezafibrate 

[26957517] 

Caffeine 

[25944789] 

𝑙1 𝑙3 𝑙4 𝐺 𝑙1 𝑙3 𝑙4 𝐺 

 2 2 27  66.2 2 3 40 -25.5 

2 3 38 -43.7 2 2 29 25.2 

2 2 33 40.6 2 2 31 -22.6 

2 2 28 -40.2 2 3 39 21.8 

2 3 41 38.2 2 2 32 20.7 

2 3 37 -31.6 2 3 33 -19.7 

2 2 21 28.5 2 2 26 -19.5 

2 3 36 -26.8 2 2 11 -18.2 

2 3 42 -26.2 2 2 18 -17.3 

2 2 25 -26.2 2 3 31 15.4 

Table 1. G(𝑙1𝑙2𝑙3𝑙4), 𝑙2 = 2, 2 ≤ 𝑙3 ≤ 3, in the 

order of larger absolute values of G 
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Calcitriol 

[27209698] 

Chlorambucil 

[8164221] 

Cimetidine 

[18656805] 

Citalopram 

[25326372] 

Clemastine 

[16288909] 

Clonazepam 

[15699937] 

Cyclophosphamide 

[24467219] 

D-Tubocurarine 

Chloride 

[14839919] 

Dexamethasone 

[25923220] 

Dexchlor-

pheniramine 

[---] 

Digitoxin 

[27082032] 

Diphenhydramine 

[22158278] 

Doxazosin 

[26515144] 

Ebastine 

[21410688] 

Fenofibrate 

[26497978] 

Fluphenazine 

[23395964] 

Gabapentin 

[19195912] 

Ifosfamide 

[14586140] 

Iproniazid 

[13688979] 

Lacidipine 

[23911888] 

Loratadine 

[21880544] 

Nevirapine 

[15526045] 

Nimodipine 

[17191657] 

Nitrendipine 

[22750214] 

Ofloxacin 

[21559378] 

Oxymetazoline 

[22855901] 

Paroxetine 

[26216863] 

Phenacemide 

[---] 

Phenytoin 

[24172819] 

Rosiglitazone 

[21666037] 

Sparteine [4408029] Stavudine [---] Valsartan 

[26992459] 

Vecuronium 

Bromide [---] 

Venlafaxine 

[23301719] 

Vinblastine 

[25537132] 

Vincristine [---] Zidovudine 

[25838291] 

  

 

Table 3. The 274 genes associated with 281 probes identified by TD-based unsupervised FE. 

Atp6v1h Smad4 Tfam Ramp2 Vdac2 Sfrp4 Accn3 Pdxk Ccnl1 Kcnk3 Pdk4Nfe2l2 Nexn Ccl2 Lphn3 

P2rx3 Odz2 Mpp3 Kcnt1 Gapdh Ncoa2 Pacsin2 Slpi Tnfaip6 Prelp Ppp2r2d Sharpin Slc38a2 Col5a1 

Steap3 Ppp1r14a Bves Nsf Sox18 Ndfip1 Yme1l1 Gosr1 Nf1 Fndc5 Pold4 Wbp4 Immt Sdhd Dlc1 Itga6 

Eif2s2 Bmpr1a Abcb10 Mknk2 Kpna1 Bag3 F8 Lrp1 Vezt Aqp4 Pdcl3 Schip1 Gbe1 Synj1 Map2k4 

Laptm4b Psmd12 Mtus1 Ddit4l Mlycd Ppm1b Mterf Ing4 Vsnl1 Rhoa Ltbp4 Dhrs1 Txndc12 Tnfrsf12a 

Itm2c Samm50 B4galt7 Fbl Chchd4 Pdrg1 Pycr2 Rplp1 Rps20 Bzw1 Fos Cybb Sccpdh Smpd1 Kcmf1 

Gna12 Nedd4l Bpgm Akap1 Actr1b Msn Dnajc5 Lcp1 Agpat1 Tarbp2 Git2 Usp14 Nfatc4 Rxrg Uqcrc2 

Actn1 Ndufs2 Rps18 Slc40a1 Chdh Rela Ciapin1 Fbxo22 mrpl9 Ppp1r14c Btbd9 Obscn Cmklr1 Fyttd1 

Sirt5 Flt1 Grwd1 Hrc Trpc4ap Dcps Idh3a Tmem30a Fut8 Pi4k2a Cdh23 Eif4a1 C1qa Gpx3 Slc25a4 

Fgf9 Psmc1 Rbm10 Nr0b2 Acsl1 A2m Alas1 Suclg1 Acads Atp5a1 Ccnd2 Csnk2b Psmb4 Canx Cd36 

Pggt1b Pde4b Npr3 Hspa5 Nr3c1 Apob Got2 Actg2 Nr3c2 Egfr Ldha Adcy3 Cryab Man2c1 Il6r Slc6a1 

Adra1b Ednra Tnfrsf1a Atf3 Mapk6 Agrn Rab15 Ywhae Arf4 Pdia4 Ppara Il6st Adrb2 Egr1 Got1 Myc 

Myl2 Mme Spin2b Stat3 Slc2a4 Apod Dpp4 Mapk10 Azgp1 Ephx1 Htr4 Mgp Spp1 Adora3 Eef2k 

Hmgb1 Nes Ptgds Slc5a1 Ywhah Cd74 Aoc3 Atp1b1 Itpr3 Ak3 Lcat Pccb Ppm1a Ppp2ca Sod1 Glul Ghr 

Kcnj8 Areg Cd63 Ctf1 Tnni3 Rps6 Serpinh1 Uchl1 Btg2 Mapk9 Tpm1 Vtn Hapln1 Mgat3 Ca3 Tpsab1 

Anxa2 Ccr1 Junb Gnb3 Stx7 Gnb2l1 Il1rl1 Fstl1 Gatm Pdk2 Ces1 Fabp5 Csda Txnip Lss Acvr1c Scn2b 

Mfn2 Mxd3 Ptger2 Mvd Gucy1a3 Ppif Mapk14 Gnb1 Ttn Acta1 Gstp1 Hmbs C3 Vim Cebpg Amhr2 

Idh3g Csrp3 Acox3 Cyb5b Cast  

To evaluate biological reliability of these 274 genes, they were uploaded to various 

enrichment servers. When they were uploaded to TargetMine, top five tissue enrich-

ment results were related to the heart (Table 4). Top four significant disease enrichment 

results represent heart failure (Table 5). When they were uploaded to Enrichr, top three 

OMIM disease enrichment results were related to heart failure (Table 6). Two out of 

top three MGI Mammalian Phenotype Level 3 enrichment results were also related to 

heart failure (Table 7). Thus, our identification of genes was also successful. 
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Table 4. Top five significant tissue enrichment results of TargetMine. 

Tissue p-Value Matches 

left ventricular apex samples 1.880e-37 101 

heart atrium 1.357e-36 155 

heart 8.637e-36 153 

ventricular myocardium 4.306e-35 95 

atrial myocardium 1.716e-34 98 

 

Table 5. Top four disease enrichment results of TargetMine. 

Disease p-Value Matches 

Myocardial Ischemia 1.546e-7 22 

Infarction, Middle Cerebral Artery 6.072e-6 9 

Reperfusion Injury 9.567e-5 13 

Cardiomyopathies 1.448e-4 13 

 

Table 6. Top three significant OMIM Disease enrichment results of Enrichr. 

Name Overlap P-value Adjusted p-value 

cardiomyopathy, hypertrophic 5/17 2.516E-05 9.814E-05 

cardiomyopathy 5/42 2.615E-04 5.099E-03 

cardiomyopathy, dilated 4/33 1.031E-03 1.341E-02 

 

Table 7. Top three significant MGI Mammalian Phenotype Level 3 enrichment results of Enri-

chr. 

Term Overlap P-value Adjusted P-value 

MP0001544_abnormal_cardio

vascular_system_physiology 
54/1130 5.133E-016 3.233E-014 

MP0002106_abnormal_muscl

e_physiology 
35/671 1.171E-011 1.844E-010 

MP0002127_abnormal_cardio

vascular_system_morphology 
50/1223 2.818E-012 5.919E-011 

 

Enrichr also outputted many epigenetic feature enrichment results. Top most significant 

ENCODE TF-ChiP-seq 2015 is POLR2A_heart_mm9; POLR2A is a transcription fac-

tor (TF) reported to be a stable reference gene for gene expression alteration in gene 

expression studies on rodent and human heart failure [25]. This finding suggested that 

POLR2A is constantly expressive in heart failure, which is coincident with our analysis. 

Top most significant TF-LOF Expression result from GEO is yy1_227711985_skele-

tal_muscle_lof_mouse_gpl8321_gse39009_up. YY1 is a TF reported to play critical 

roles in cardiac morphogenesis [26]. The top most significant ENCODE Histone Mod-

ifications 2015 result is H3K36me3_myocyte_mm9; H3K36me3 was reported to play 
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a crucial role in cardiomyocyte differentiation [27]. These TFs as well as histone mod-

ifications identified by our strategy can be possible drug targets.  

4 Conclusions 

In this paper, I introduced a new strategy that integrates disease (heart failure) gene 

expression profiles with drug treatment-related tissue gene expression profiles. The 

identified genes as well as compounds have been widely reported to be related to heart 

failure. Thus, this strategy turned out to be useful for in silico drug discovery. 
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