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Abstract 

Polycomb repressive complexes (PRCs) are important histone modifiers, which 

silence gene expression, yet there exists a subset of PRC-bound genes actively 

transcribed by RNA polymerase II (RNAPII). It is likely that the role of PRC is to 

dampen expression of these PRC-active genes. However, it is unclear how this 

flipping between chromatin states alters the kinetics of transcriptional burst size and 

frequency relative to genes with exclusively activating marks. To investigate this, we 

integrate histone modifications and RNAPII states derived from bulk ChIP-seq data 

with single-cell RNA-sequencing data. We find that PRC-active genes have a greater 

cell-to-cell variation in expression than active genes with the same mean expression 

levels, and validate these results by knockout experiments. We also show that PRC-

active genes are clustered on chromosomes in both two and three dimensions, and 

interactions with active enhancers promote a stabilization of gene expression noise. 

These findings provide new insights into how chromatin regulation modulates 

stochastic gene expression and transcriptional bursting, with implications for 

regulation of pluripotency and development. 
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Introduction 

Embryonic stem cells (ESCs) are capable of self-renewing and differentiating into 

all somatic cell types1,2, and their homeostasis is maintained by epigenetic regulators3. 

In this context, polycomb repressive complexes (PRCs) are important histone 

modifiers, which play a fundamental role in maintaining the pluripotent state of ESCs 

by silencing important developmental regulators4. There are two major polycomb 

repressive complexes: PRC1, which monoubiquitinylates histone 2A lysine 119 

(H2Aub1) via the ubiquitin ligase Ring1A/B; and PRC2, which catalyzes 

dimethylation and trimethylation of H3K27 (H3K27me2/3) via the histone 

methyltransferase Ezh1/2. 

Recently, we discovered that a group of important signaling genes co-exists in 

active and Polycomb repressed states in mESCs5. During the transcription cycle, 

recruitment of histone modifiers or RNA processing factors is achieved through 

changing patterns of post-translational modifications of the carboxy-terminal domain 

(CTD) of RNAPII6. Phosphorylation of S5 residues (S5p) correlates with initiation, 

capping, and H3K4 histone methyltransferase (HMT) recruitment. S2 

phosphorylation (S2p) correlates with elongation, splicing, polyadenylation, and 

H3K36 HMT recruitment. Phosphorylation of RNAPII on S5 but not on S2 is 

associated with Polycomb repression and poised transcription factories, while active 

factories are associated with phosphorylation on both residues5,7,8. S7 phosphorylation 

(S7p) marks the transition between S5p and S2p9, but its mechanistic role is unclear 

presently. 

Our genome-wide analyses of RNAPII and Polycomb occupancy in mouse ESCs 

(mESCs) identified two major groups of PRC-targets: (1) repressed genes associated 

with PRCs and unproductive RNAPII (phosphorylated at S5 but lacking S2 
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phosphorylation; PRC-repressed) and (2) expressed genes bound by PRCs and active 

RNAPII (both S5p and S2p; PRC-active)5. Both types of genes are marked by 

H3K4me3 and H3K27me3, a state termed bivalency1,10. H3K4me3 correlates tightly 

with RNAPII-S5p5, a mark that does not distinguish PRC-Active and Polycomb-

represssed states.  

The role of PRCs in modulating the expression of PRC-active genes was shown 

by PRC1 conditional knockout. Sequential ChIP and single-cell imaging showed 

mutual exclusion of S2p and PRCs at PRC-active genes5, although PRCs were found 

to co-associate with S5p. This indicates that PRC-active genes acquire separate active 

and PRC-repressed chromatin states. It remains unclear whether these two states 

occur in different cells within a cell population, or within different alleles in the same 

cell5. This pattern of two distinct chromatin states could imply a digital switch 

between actively transcribing and repressed promoters within a population of cells, 

thereby introducing more cell-to-cell variation in gene expression compared to genes 

with both alleles in active chromatin states.  

Motivated by this hypothesis, here, we integrate states of histone and RNAPII 

modification from a published classification of ChIP-Seq data5 with single-cell RNA-

sequencing data generated for this analysis. The matched chromatin and scRNA-seq 

data sets allow us to decipher, on a genome-wide scale, how differences in chromatin 

state can affect transcriptional kinetics. A schematic overview of our analysis strategy 

is shown in Figure 1. We focus on active PRC-target genes that are marked by PRCs 

(H3K27me3 modification or both H3K27me3 and H2Aub1) and active RNAPII 

(S5pS7pS2p), and compare these with “active” genes (marked by S5p, S7p, S2p 

without H3K27me3 and H2Aub1 marks). We quantify variation in gene expression 

and transcriptional kinetics statistically and by mathematical modeling (Figure 1). In 
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addition, we map the functions of PRC-active genes in the context of pluripotency 

signaling and homeostasis networks. Further, we analyze the linear ordering and three 

dimensional contacts of PRC-active genes on the mouse chromosomes. Finally, we 

investigate the effect of Polycomb on regulating transcriptional heterogeneity by 

deletion of Ring1A/B followed by single-cell profiling.  

 
Results 
 
Single cell RNA-sequencing and data processing 

To investigate how Polycomb repression relates to stochasticity in gene 

expression, we profiled single cell transcriptomes of mouse OS25 ESCs cultured in 

serum/LIF, previously used to map RNAPII phosphorylation and H2Aub15. Single 

cell RNA-sequencing was performed using the Fluidigm C1 system, applying the 

SMARTer kit to obtain cDNA and the Nextera XT kit for Illumina library 

preparation. Libraries from 96 cells were pooled and sequenced on four lanes of an 

Illumina HiSeq2000 (Figure 1; please refer to Methods for details). 

Next, we performed quality control analysis for each individual cell dataset and 

removed poor quality data based on two criteria (as described before in11). Cells were 

removed if: (1) the total number of reads mapping to exons for the cell was lower than 

half a million, (2) the percentage of reads mapping to mitochondrial-encoded RNAs 

was higher than 10%. We also compared normalized read counts of genes between 

cells and found many genes abnormally amplified for three cells. Therefore, we 

removed these cells, resulting in 90 cells that could be used for further analysis. For 

these 90 cells, over 80% of reads were mapped to the Mus musculus genome 

(GRCm38) and over 60% to exons (Supplementary Fig. 1A-C).  

OS25 ES cells are grown under Oct4 selection and do not express early 

differentiation markers such as Gata4 and Gata65, having the expected features of 
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pluripotency. They are ideal for studying Polycomb repression and its impact on 

transcriptional cell-to-cell variation as compared to other culture conditions such as 2i 

(serum free). ESCs grown in 2i show decreased Polycomb repression and RNAPII 

poising at well characterized early developmental genes12, therefore making 2i 

conditions the least ideal conditions to study mechanisms of Polycomb regulation in 

the pluripotent state. As previously shown5, we do not observe distinct subpopulations 

of cells based on key pluripotency factors and differentiation markers in our OS25 

single cell datasets (Supplementary Fig. 1D).  

Additionally, we compared single cell expression profiles of the OS25 ESCs 

grown under Oct4 with recently published scRNAseq datasets from mESCs cultured 

in serum+LIF and 2i11, Principal component analysis using pluripotency genes and 

differentiation markers shows that OS25 cells are more similar to the subpopulation 

of pluripotent serum cells, rather than the subpopulation of serum cells that are either 

“primed for differentiation” or “on the differentiation path”. (Supplementary Fig. 

1E).  

 

Defining chromatin state and gene expression noise for each gene 

We integrated our new single-cell RNA-seq data with a previous classification of 

gene promoters according to the presence of histone and RNAPII modifications5 

(Figure 1). Comparison of our average single-cell expression profiles with the bulk 

gene expression (mRNA-seq) profiles from Brookes et al.5 yields a high correlation 

(Spearman’s rho = 0.87, Supplementary Fig. 1F), suggesting that the chromatin and 

RNAPII data reflect cells in the same biological state as the single cell RNA-seq data. 

Next, we analyzed gene expression variation within the single-cell data. First, we 

quantified cell-to-cell variation at each mean expression level using the coefficient of 
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variation (Supplementary Fig. 2A). Cell-to-cell variation can arise either due to 

stochastic gene expression itself, or technical noise or confounding expression 

heterogeneity due to biological processes such as the cell cycle.  

To isolate pure stochastic gene expression from cell cycle variation in gene 

expression, we applied a latent variable model13. This is a two-step approach, which 

reconstructs cell cycle state before using this information to obtain “corrected” gene 

expression levels. The method reveals that the cell cycle contribution to variation is 

1.2% on average (Supplementary Fig. 2B). While this effect is small, when 

clustering all cells based on G2/M stage markers, we found that cells separate into 

two groups: one with high expression of G2 and M genes and the other with low 

expression of these genes (Supplementary Fig. 2C). Applying the cell cycle 

correction removes this effect, leading to a more homogeneous expression distribution 

of these genes across the cells (Supplementary Fig. 2D).  

To account for the technical noise present in single cell RNA-seq data, we 

removed lowly expressed genes that are most likely to display high technical 

variability14,15. Here, a gene is considered as lowly expressed if the average 

normalized read count is less than 10. This results in a set of 11,861 genes with 

moderate to high mRNA abundance. Subsequently, we use the DM (distance to 

median) to quantify gene expression variation in mRNA expression11, since it 

accounts for confounding effects of expression level and gene length on variation 

(described in detail in the Methods; Figure 1).  

Among the 11,861 expressed genes, 7,175 have categorized ChIP-seq profiles as 

defined by Brookes et al.5; genes excluded have TSS regions that overlap with other 

genes, and therefore cannot be unequivocally classified. We defined two major sets of 

genes based on their PRC marks and RNAPII states: (1) “Active” genes (n=4,483) 
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without PRC marks (H3K27me3 or H2Aub1) but with active RNAPII (S5pS7pS2p), 

(2) “PRC-active” genes (labeled as “PRCa”; n=945) with PRC marks (H3K27me3 or 

H3K27me3 plus H2Aub1) and active RNAPII.  

To explore the transcriptional kinetics of these genes and describe stochastic gene 

expression in OS25 ES cells, we estimated their kinetic transcription parameters using 

a Poisson-beta model described previously16 (see also in the Methods). 

 

PRCa genes have distinct transcriptional kinetics and noise profiles 

Using the DM measure to quantify gene expression variation in single cells, we 

observe that histone modifications mediated by PRCs (H3K27me3 or 

H3K27me3&H2Aub1) correlate with high levels of variability compared to Active 

genes (those without PRC marks; P < 2.2x10-16 by the two-tailed Wilcoxon rank sum 

test, Figure 2A). Furthermore, the inferred kinetic parameters provide insight into the 

expression behavior of genes, showing that active genes have significantly higher 

burst frequencies than PRCa genes (Figure 2A and Supplementary Fig. 3A). This 

suggests that PRCa genes are more frequently in the “off” state, i.e. more alleles are 

in the off state at any given point in time, potentially due to the PRC repression of a 

subset of alleles.   

To ensure that differences between the kinetic parameters are not driven by 

changes in gene expression levels between the active and PRCa groups, we extracted 

expression-matched genes of Active and PRCa groups (please refer to Methods). 

These analyses confirmed that PRCa genes have lower burst frequency and higher 

noise levels than Active genes (Supplementary Fig. 3B and Supplementary Fig. 

3C). Consequently, the greater cell-to-cell variability for PRCa compared to Active 
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genes is not driven by difference in mean expression level, but potentially linked to 

the presence of PRC marks themselves.  

To explore whether H3K9me3 could contribute to the transcriptional 

heterogeneity identified at PRCa genes, we analysed H3K9me3 ChIP-Seq data of 

Mikkelsen et al.17, and found that only a few expressed PRCa genes (n=5) are marked 

by H3K9me3 at their promoter region (2kb centered on the TSS), making further 

analysis statistically impossible.  

Although the literature shows that the DNA of mouse ESCs is hypomethylated, 

and genes that are marked by Polycomb are usually devoid of DNA methylation18,19, 

we checked the extent of DNA methylation at the PRCa gene list considered. We 

extracted the DNA methylation patterns at proximal promoter regions in mESCs 

reported in Fouse et al.19. Only a small proportion of genes (n=110) has DNA 

methylation according to this definition. Due to the small sample size, a statistical 

assessment will be weak, but comparison of gene expression variation profiles of 

these genes with the same number of PRCa genes (and same expression levels) that 

are unmethylated showed that the differences are not significant (Wilcoxon rank sum 

test P =0.1). This suggests no detectable effect of DNA methylation on transcriptional 

heterogeneity of PRCa genes (Supplementary Fig. 3D). 

A decrease in the frequency of transcriptional bursting can manifest itself as a 

more bimodal pattern of gene expression across a cell population. Indeed, we observe 

that PRCa genes have significantly more bimodal expression profiles compared to 

active genes (see Methods for bimodality index calculation) (Supplementary Fig. 3E 

and Figure 2B). Assuming that the distribution of a gene with bimodal expression 

can be expressed as a mixture of two log-normal distributions20 (lowly expressed (LE) 

and highly expressed (HE) states), we observe that PRCa genes have mixed cell states 
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(on average 49% of cells in HE and 51% in LE). In contrast, Active genes are mostly 

in the active state as expected (on average 70% in HE and 30% in LE). PRC-

repressed genes with unproductive RNAPII and PRC marks, labeled as “PRCr”) are 

24% in HE and 76% in LE (Figure 2B). Therefore, expression patterns of PRCa are 

in between Active and PRCr, suggesting a composite of these two states. 

We should note that in our kinetic models, decay rates are set to 1 to normalize 

kinetic parameters so that they are independent of time16. To investigate whether 

decay rates have profound effects on kinetic parameters, we integrated published 

mRNA decay rates in mESCs21 into our kinetic model. The subtle differences in 

decay rates across genes did not result in major changes in the inferred kinetic 

parameters, leaving all major trends unaffected (Supplementary Fig. 3F).  

 

PRCa genes are important regulators in signaling pathways 

To investigate potential functions of the cell-to-cell variation in gene expression in 

PRCa genes, we carried out KEGG pathway enrichment analysis for PRCa genes in 

our OS25 mESCs (see also Brookes et al.5). While active genes are enriched in 

pathways related to housekeeping functions, such as RNA transport, consistent with 

their uniform and stable expression across cells, PRCa genes are enriched in signaling 

pathways such as PI(3)K-Akt, Ras signaling and TGF-beta signaling 

(Supplementary Table 1). These signaling pathways show high levels of cell-to-cell 

variation compared to pathways related to housekeeping functions (Supplementary 

Fig. 3G). This may be due to transcriptomic fluctuations introduced by cytokine 

leukaemia inhibitory factor (LIF) signalling via two signaling pathways: Jak-Stat3 

and PI(3)K-Akt (22 and Figure 3).  
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The Jak-Stat3 pathway activates Klf4, and the PI(3)K-Akt pathway stimulates the 

transcription of Tbx322. The expression levels of Klf4 and Tbx3, which are PRCa 

genes, are noisier than the pluripotency factors Nanog, Sox2 and Oct4. This pattern of 

noise propagation from the signaling pathways through the downstream 

transcriptional regulatory network is interesting, as it might indicate the role of PRCs 

in modulating transcriptomic fluctuations. 

 

Chromosomal position effects and stochastic gene expression 

It is known that neighbouring genes on chromosomes exhibit significant 

correlations in gene expression abundance and regulation, partly due to two-

dimensional chromatin domains23-26. Is there a similar effect of clustering by 

chromatin marks and noise in gene expression? 

To address this, we investigated the positional effects of noise in mRNA 

expression using the DM values (Methods). If genes cluster together based upon their 

transcriptional noise, we would expect that the DM values of genes adjacent to noisy 

genes would be higher than those of genes adjacent to stable genes. Indeed, the noise 

levels of genes in the neighbourhood of noisy genes are significantly higher than 

those of genes that flank stable genes (P = 1.3×10-4 by the one-tailed Wilcoxon rank 

sum test, ±50kb of TSS, Supplementary Fig. 4A). This suggests that the genomic 

neighbourhood might influence the frequency of transcriptional bursting. 

In Figure 4A, we show the association between chromosomal position and gene 

expression noise. The difference between the mean expression levels of flanking 

genes between noisy and stable genes is not significant (P = 0.7311 by the two-tailed 

Wilcoxon rank sum test, ±50kb of TSS), suggesting that the clusters of genes are not 

driven by their expression levels. The association between chromosomal position and 
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gene expression noise was most significant at the window size of 50 kb, but weaker at 

a neighbourhood size of 0.5 Mb (Figure 4A). (Please refer to Methods for P-value 

calculation.) Thus, genes tend to be clustered into neighbourhood domains by their 

noise levels, ranging in size up to 0.5Mb.  

To identify the clusters of noisy or stable genes, we performed a sliding-window 

analysis on the mouse genome (Methods). We found 129 noisy clusters ranging in 

size from 4 to 11 genes, spanning a total number of 669 genes. Similarly, 112 stable 

clusters (between 4 and 13 genes) with a total number of 556 genes were found 

(Figure 4A). The noise levels of genes in noisy clusters are significantly higher than 

that of genes in stable clusters (P < 2.2×10-16, Supplementary Fig. 4B) independent 

of mean expression levels and gene lengths (Supplementary Fig. 4C-D).  

Additionally, we found that DM levels correlate with bimodal expression patterns 

within the noisy clusters. One example is visualized in Figure 4A; one of the noisy 

clusters on chromosome 1 consists of three PRCa and two active genes. Lefty1 and 

Lefty2 PRCa genes, which are important in controlling the balance between self-

renewal and pluripotent differentiation in mESCs, are highly variable, and also highly 

correlated in their gene expression. An active gene, Pycr2; Pyrroline-5-carboxylate 

reductase 2, is in close proximity to both Lefty1 and Lefty2, and is more variable than 

the Sde2 gene that lies in proximity of Lefty2 only (density profiles are shown in 

Supplementary Fig. 4E). Indeed, within the clusters, gene expression variation levels 

of active genes increase with the increasing number of flanking variable genes 

(Supplementary Fig. 4F). Another PRCa gene is Tmem63a, which is a 

transmembrane protein implicated in maintenance of pluripotency and lies near 

Lefty1, has high cell-to-cell variation in gene expression.  
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Interestingly, PRCs characterize the noisy clusters, i.e. PRC marks are enriched in 

noisy clusters rather than in stable ones. In particular, genes with H3K27me3 are 

enriched at noisy clusters (P = 1.1×10-2 by the two-tailed Fisher’s exact test), but 

depleted at stable clusters (P = 5.9×10-2, Figure 4B). Since PRCs are tightly 

associated with RNAPII states, we examined differences between the RNAPII state of 

genes between noisy and stable clusters. We found that genes marked by active 

elongating RNAPII (S5pS7pS2p) are depleted at noisy clusters (P = 1.3×10-3 by the 

two-tailed Fisher’s exact test, Figure 4B), supporting the view that elongating 

RNAPII modifications promote stable gene expression. Together, noisy clusters are 

characterized by the presence of PRC marks and the absence of active elongating 

RNAPII, while stable clusters are characterized by the absence of PRCs. 

 

Gene and enhancer clustering in 2D and 3D 

Next, we analyzed whether PRCa genes are proximal to fully repressed Polycomb 

genes, which could eventually increase their sensitivity to Polycomb repression. 

Linear spatial proximity between PRCa genes and PRCr genes is significantly closer 

than the median distance between randomly chosen genes and PRCr genes (P = 2×10-

2, Figure 5A) (Methods). Interestingly, PRCa genes are also in close proximity to 

Active genes (P < 0.0001, Supplementary Fig. 4G), while Active genes are distal 

from PRCr genes (P = 5x10-3, Supplementary Fig. 4H), suggesting a 2D spatial 

arrangement of these genes as Active-PRCa-PRCr (as visualized in Figure 5A).  

We next asked whether the linear genomic position effects of PRCs are reflected 

in the 3D genome organization in ESCs. Recently, Schoenfelder et al.27 found that 

PRC1 acts as a major regulator of ESC genome architecture by organizing genes into 

three-dimensional interaction networks. They generated mouse ESC Promoter 
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Capture Hi-C (CHi-C) data28, and analysed it using the GOTHiC (Genome 

Organization Through Hi-C) Bioconductor package. This yielded a strong enrichment 

for long-range contacts between promoters bound by PRCs.  

We applied the same approach to this dataset using our gene list. We found that 

there is a strong enrichment for long-range promoter-promoter contacts for both PRCa 

and PRCr genes (Figure 5B). Interestingly, PRCr genes have significantly stronger 

contact enrichment than PRCa genes in mESCs (one-tailed t-test P = 6.3x10-6). PRCa 

genes are in between PRCr and Active genes; they have stronger contact enrichment 

than Active genes (one-tailed t-test P = 1x10-4) (Figure 5B).  

In Figure 5B, the promoter contacts of the aforementioned noisy cluster PRCa 

gene Lefty2 is visualized. It is in contact with the other PRCa genes Lefty1 and 

Tmem63a, and it has strong connectivity with the active Pycr2 genes. These contacts 

may affect Pycr2’s frequency of transcriptional bursting, and thereby tune expression 

noise. 

In terms of the promoter preferences of gene sets, it is interesting to note that 

PRCa promoters interact equally with promoters of PRCr, PRCa and Active genes 

(Supplementary Fig. 4F). However, PRCr promoters have a distinct preference for 

other PRCr promoters (two-tailed Fisher’s exact test P < 2.2x10-16).  

We next investigated contacts between PRC promoter classes with putative 

regulatory (non-promoter) elements; enhancers that are described as in Schoenfelder 

et al. 27; active (H3K4me1 and H3K27ac), intermediate (H3K4me1) or poised 

(H3K4me1 and H3K27me3) enhancers. We found that PRCa genes have significantly 

more interactions with active enhancers compared to PRCr genes (P < 2.2x10-16) 

(Figure 5C). In contrast, interactions with poised enhancers are mainly observed for 

PRCr genes rather than PRCa (P < 2.2x10-16).  
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Further, we asked whether interactions with enhancers affect transcriptional 

profiles of PRCa genes at the single cell level. Interestingly, we found that 

interactions with active enhancers decrease noise in gene expression of PRCa genes. 

Sorting the PRCa genes based on the number of active enhancer interactions shows 

that more interactions lead to less noise in gene expression (two-sided Wilcoxon test 

P = 4x10-4). This stabilization of expression through active enhancers is independent 

of mean expression levels (Figure 5D).  

In summary, these findings show that 3D genome architecture correlates with 

chromatin state, and may influence noise in gene expression. This holds both in terms 

of promoter-promoter and enhancer-promoter interactions.  

 

Ring1A/B double knockout affects transcriptional profiles of PRC-bound genes 

To test whether noise in gene expression can be linked to Polycomb regulation 

mechanistically, we utilized conditional Ring1B double knockout (in Ring1A-/- 

background) mES cells. These cells lack Ring1A, and have a tamoxifen-inducible 

conditional Ring1B deletion (Supplementary Fig. 5A and Methods). We confirmed 

Ring1B deletion 48 hours post-tamoxifen induction, and generated single cell RNA-

sequencing data for both untreated (Ring1A single KO) and tamoxifen-treated double 

KO (Ring1A and Ring1B dKO) mES cells (see Methods). In these conditions, 

Ring1B protein is lost ~48h, and H2Aub1 modification is no longer detected on 

chromatin and Polycomb repressed genes are derepressed without loss of pluripotency 

factors Nanog, Oct4 and Rex15,8,29. 

We compared the changes in mean expression at PRCr, PRCa and active genes. 

We found that PRCr show substantial derepression after Ring1A/B dKO (Figure 6), 

as expected from bulk mRNA-seq/microarray data5,29. The mean expression change at 
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PRCa genes is lower than at PRCr (P = 4.1x10-9 by the two-tailed Wilcoxon rank sum 

test) (Figure 6) more likely due to the fact that they are already expressed to some 

extent in untreated cells. Nevertheless, changes in mean expression at PRCa genes are 

higher than at active genes (P = 2x10-7) (Figure 6 and Supplementary Fig. 5B). 

Increased expression of PRCa genes upon Ring1A/B dKO recapitulates previous 

findings using bulk transcriptomic analyses5,8. 

Importantly, comparison of noise levels shows that there is a more pronounced 

decrease in noise levels at PRCa genes compared to active genes upon Ring1A/B 

dKO (P = 4x10-3) (Supplementary Fig. 5C). This supports our findings that Polycomb 

tunes gene expression noise. Additionally, there is a more pronounced decrease in 

bimodality at PRCa genes (Supplementary Fig. 5D), while burst frequency levels 

decrease more significantly at active genes (Supplementary Fig. 5E). 

Among PRCa genes, key pluripotency transcription factors Klf4 and Tbx3 and 

other transcriptional regulators (such as Hmga2 and Hdac2) important for ESC 

biology become upregulated and show less noisy profiles after Ring1A/B dKO (gene 

expression profiles are shown in Figure 6). Additionally, key differentiation markers 

such as Gata4, Gata6, which are PRCr genes, are upregulated upon dKO (Figure 6), 

implying that a Polycomb KO could make cells more prone to differentiation (as 

expected from5,29). The same pattern of differential gene expression is also observed 

in the bulk RNA-sequencing data. Taken together, these findings indicate the key role 

of Polycomb in regulating transcriptional profiles of PRC-bound genes. 

We observe that non-PRC targets (i.e. active genes) show subtle trends in change 

in gene expression; expression levels of active pluripotency factors such as Oct4 and 

Sox2 show minor changes in gene expression. In contrast, Nanog and Esrrb are 

upregulated (Figure 6), suggesting that Polycomb may indirectly control the 
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expression of genes specifically associated with pluripotency. Expression patterns of 

all these genes can be found at http://www.ebi.ac.uk/teichmann-srv/espresso/.  

 

Discussion 

It is well understood how post-translational modifications of histones, including 

acetylation, methylation, phosphorylation and ubiquitination, modulate chromatin 

structure, thereby affecting the regulation of gene expression levels30. It is much less 

well understood how chromatin status is related to the kinetics of transcription in 

terms of transcriptional bursting. Differences in stochastic gene expression lead to 

different degrees of cell-to-cell variation in expression levels, even for genes with the 

same mean expression across an ensemble of cells. Recent molecular studies have 

shown that individual cells can show substantial differences in both gene expression 

and phenotypic output31,32. Genetically identical cells may still behave differently 

under identical conditions33. This non-genetic variability is mainly due to cell-to-cell 

variation in gene expression34,35, which relates to each gene’s chromatin status 36. 

Noisy or stochastic gene expression profiles may play an important role in the 

regulation of ES cells37.  

In this work, we focus on histone modifications that are mediated by Polycomb 

repressive complexes and investigate their relationship with stochastic gene 

expression in mES cells. Earlier work indicated that expression of Polycomb target 

genes negatively correlates with levels of H3K27me3, and suggested that dynamic 

fluctuations in chromatin state are associated with expression of certain Polycomb 

targets in pluripotent stem cells38. Although PRCs are known to exert a repressive 

effect, interestingly, the cohort of PRC-bound genes contains not only silent genes, 

but also genes with intermediate and high expression5. A large range of expression 
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levels at PRC-target genes is observed in published mRNA data sets5,39 and 

substantial expression has been previously observed at PRC2-target genes40,41. The 

moderate to high expression levels at some PRC-bound genes allow us to reliably 

quantify gene expression variation (which is not possible if expression is too low). 

Here, benefiting from the power of single cell RNA-seq analysis, we show that 

PRCa genes have greater cell-to-cell variation in expression than their non-PRC 

counterparts, suggesting that they switch between on and off states in a more dramatic 

way. Along the same lines, their expression patterns are more likely to be bimodal, 

suggesting a composite of active and PRC-repressed states at the single cell level. 

These findings indicate the role of Polycomb in modulating frequency of 

transcriptional bursting and thereby tuning gene expression noise. 

Transcriptional bursts that arise from random fluctuations between open and 

closed chromatin states of a gene are one of the major sources of gene expression 

noise in eukaryotes 42. Since these fluctuations are modulated by transcription factors, 

nucleosomes and chromatin remodelling enzymes, we can speculate that gene 

expression noise may be linked to chromosomal position through shared chromatin 

domains with specific characteristics such as histone modifications. Consistent with 

this notion, several studies using a reporter transgene integrated in multiple loci have 

shown that gene expression noise varies with chromosomal position in yeast and 

mammalian cells43-48.  

However, large-scale studies measuring noise in protein expression of endogenous 

genes could not find a strong association between chromosomal position and gene 

expression noise in yeast34,49. This discrepancy might be due to gene-specific 

confounding factors and different statistics to examine the association. For example, 

essential genes with low noise derived from the same datasets of the large-scale 
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proteomic studies are clustered into neighbourhood domains with low nucleosome 

occupancy23. More importantly, noise in protein expression is not a good measure for 

examining the effect of chromatin regulation on transcriptional bursting since slowly 

degrading proteins can buffer transcriptional noise at the protein levels46. Given the 

lack of high-throughput measurements of noise in mRNA expression of endogenous 

genes in eukaryotes, it is not clear if genes are distributed across the genome by their 

noise levels and which chromatin features modulate the chromosomal position effects. 

Analysis of the chromosomal position effects of noise reveals that genes are 

significantly clustered according to their noise levels, which are mainly modulated by 

PRCs. Interestingly, across the chromosomes, we found that PRCa genes are in close 

proximity to fully repressed PRC-targets. This could increase their sensitivity to PRC-

repression, and explain their ability to switch between active and repressed states in a 

more dramatic way than other genes.  

In addition to 2D spatial proximity of genes, long-range regulatory interactions 

have a key role in gene expression control50. Recently, analyzing mouse ESC 

Promoter Capture Hi-C (CHi-C) data28, Schoenfelder et al. showed that PRC1 acts as 

a major regulator of ESC 3D genome architecture27. Applying the same methodology, 

we show that there is a strong enrichment for long-range promoter-promoter contacts 

for both PRCa and PRCr genes. Interestingly, interactions with active enhancers 

decrease gene expression noise (but not mean expression levels) of PRCa genes, 

suggesting that 3D genome architecture has a key role in controlling gene expression 

noise. 

To further decipher the role of PRCs in regulating gene expression and noise, we 

performed single cell RNA-Sequencing for both PRC-expression (Ring1A-KO, 

untreated) and PRC-deleted (Ring1A/B-dKO, tamoxifen-treated) mESCs. We observe 
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substantial derepression of PRC-bound genes after Ring1A/B-dKO as expected. Mean 

expression changes at PRCa genes are significantly lower than at PRCr genes, 

supporting the fact that they are already expressed in untreated ES cells. Moreover, in 

terms of noise profiles, we observe a significant decrease in noise levels of PRCa 

genes compared to Active genes. This genetic validation supports our findings that 

polycomb plays a key role in modulating the kinetics of stochastic gene expression. 

 
Methods 
Single-cell RNA-sequencing of mouse OS25 ES cells 

Mouse ES-OS25 cells were cultured as described before5. For single cell 

sequencing libraries were prepared according to Fluidigm manual “Using the C1 

Single-Cell Auto Prep System to Generate mRNA from Single Cells and Libraries for 

Sequencing“. OS25 cell suspension was loaded on 10-17 micron C1 Single-Cell Auto 

Prep IFC, Fluidigm, cDNA was synthesized in the chip using Clontech SMARTer kit 

and Illumina sequencing libraries were prepared with Nextera XT kit and Nextera 

Index Kit (Illumina). Libraries from 96 cells were pooled and sequenced on 4 lanes on 

Illumina HiSeq2000 using 100bp paired-end protocol. 

 

Mapping reads 

For each cell, paired-end reads were mapped to the Mus musculus genome 

(GRCm38) using GSNAP with default parameters51. Next, uniquely mapped reads to 

the genome were counted using htseq-count (http://www-

huber.embl.de/users/anders/HTSeq/) and normalized with size factors using DESeq52. 

 

Classification of genes based on ChIP-Seq profiles 

To integrate ChIP-Seq data with single-cell RNA-Seq, we mapped 18,860 UCSC 

known gene IDs from Brookes et al.5 to Ensembl IDs using BioMart53. Then, we 
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categorized the genes based on Brookes et al. classification: (1) “Active” genes 

(n=4,732) are defined as those without PRC marks (H3K27me3 or H2Aub1) but with 

active RNAPII (S5pS7pS2p), (2) “PRCa” (n=1,263) genes are marked by PRCs 

(H3K27me3 or H3K27me3 plus H2Aub1) and active RNAPII, (3) “PRCr” genes 

(n=954) have both PRC marks (H3K27me3 and H2Aub1), unproductive RNAPII 

(S5p only and not recognized by antibody 8WG16) and not expressed in Brookes et 

al.’s bulk mRNA data (bulk mRNA FPKM<1). We should note that vast majority of 

PRCa and PRCr genes are H3K4me3 positive (1248/1263 PRCa, and 938/954 PRCr) 

(see Brookes et al.5) 

We focus on Active and PRCa genes with moderate to high mRNA abundance 

and therefore we remove genes that have mean normalized counts lower than 10. 

Thus, in the final gene set, there are 4,483 Active genes and 945 PRCa genes. 

For H3K9me3, reads from Mikkelsen et al.17 were mapped to mouse genome 

(mm9, July 2007) using Bowtie2 v2.0.554, with default parameters. Enriched regions 

were identified with BCP v1.155 in Histone Mark mode, using as control H3 from 

Mikkelsen et al., processed in the same way. Genes were defined as positive for 

H3K9me3 at their promoter or gene body when an enriched region was overlapping 

with a 2kb window around the TSS or between the TSS and TES, respectively. 

 

Inference of transcriptional kinetic parameters via modeling single-cell RNA-seq 

data  

To explore kinetics of stochastic gene expression, we fitted a Poisson-beta model 

as described previously16. Poisson-beta model is an efficient way to describe the long-

tailed behavior of mRNA distribution resulting from occasional transcriptional bursts 

as well as to explain expression bimodality of genes with low burst frequency. 
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Transcriptional kinetic parameters are characterized by two parameters, burst size is 

described as the average number of synthesized mRNA molecules while a gene 

remains in an active state and burst frequency is the frequency at which bursts occur 

per unit time. To ensure that the parameters are statistically identifiable, a goodness-

of-fit statistic is applied as described in16. Out of 5,428 genes (active and PRCa), 

4,526 genes (83%) have identifiable estimates of kinetic parameters. We focus 

henceforth on these genes in analysis of burst size and frequency. 

We should note that our kinetic analyses do not account for technical noise as our 

data do not contain external spike-in molecules (the only way to incorporate technical 

noise in our kinetic model). Therefore, we addressed this point by focusing on 

moderately or highly expressed genes with an expression cutoff of 10. The 

assumption is that technical noise for these genes is small enough to estimate kinetic 

parameters accurately. We should also note that our results are robust to changes in 

selection of expression cutoff (Supplementary Fig. 3A). 

 

Controlling for expression levels in kinetic models 

To control for expression levels for PRCa and Active gene sets, we extracted 

expression-matched sets of active and PRCa genes using “matching” function in R 

“arm” package with default settings. In this way, an active gene is matched to a PRCa 

gene that has the closest mean expression level. 

 

Calculation of DM as a measure of gene expression variability 

Widely used measures for quantifying gene expression variation in mRNA 

expression such as the CV and Fano factor are not suitable for assessing differences in 

gene expression variation between genes because they depend strongly on gene 
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expression levels and gene length. To properly account for the confounding effects of 

expression level and gene length on variation, we first computed a mean corrected 

residual of variation by calculating the difference between the observed squared CV 

(log10 transformed) of a gene and its expected squared CV. As a second step to 

correct for the effect of gene length on the mean corrected residual of variation, we 

calculated the difference between the mean corrected residual of the gene and its 

expected residual, which is referred to as DM11. The expected squared CV or the 

expected residual was approximated by using a running median.  

 

Calculation of bimodality index 

Bimodality index was calculated as described previously by Wang et al.20. The 

distribution of a gene with bimodal expression is assumed to be described as a 

mixture of two normal distributions with equal standard deviation. Proportions of 

observations in two components were estimated using R package ‘mclust’. 

 

Identifying noisy and stable genes across mouse chromosomes using DM values 

To investigate the position effects of noise in mRNA expression using DM values, 

we first sorted all expressed genes (n=11,861) in descending order according to their 

DM values and chose the top 20% as “noisy” genes and the bottom 20% as “stable” 

genes. For each gene, we counted the number of noisy (or stable) genes (excluding 

the focal gene) in the neighbourhood of the gene (±0.5kb ~ 500bp of the transcription 

start site (TSS) of the focal gene).  

While investigating the association between chromosomal position and gene 

expression noise, as a control, we constructed 100 randomized genomes in which the 

positions of genes were fixed but the DM value of each gene was assigned randomly 
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without replacement, and the same analysis was performed on each randomized 

genome. The P values observed in the real genome are less than the median of P 

values found in the randomized genomes at all neighbourhood sizes and even less 

than the 2.5% quantile of random P values at the neighbourhood sizes between 20kb 

and 0.2Mb (Figure 4A). 

 

Identifying clusters of genes by a sliding-window approach 

To identify the clusters of noisy or stable genes in the mouse genome, we used a 

sliding-window approach56 with a window size of four genes. Given a set of genes 

having valid DM values, a window starts from the first gene of each chromosome and 

keeps shifting right by one gene until it reaches the end of the chromosome. We 

ignored windows having a distance between TSSs of the first and fourth gene of the 

windows larger than (window size – 1) × 0.5Mb. We measured the overall noise of 

each window by summing rolling means of the DM values of two consecutive genes 

within the window.  We then calculated this noise score of randomly chosen four 

genes, and repeated this process 100,000 times, yielding a null distribution of the 

overall noise score of a window. We called a window to be significantly noisy (or 

stable) if its noise score is above 97.5% of randomized windows (or below 2.5% of 

randomized windows). Finally, we merged all overlapped noisy (or stable) windows 

to construct a set of noisy (or stable) clusters.  

The total number of genes in noisy clusters found in the mouse genome is not 

significantly higher than that of 1,000 randomized genomes (empirical P = 0.3996). In 

contrast, the total number of genes in stable clusters is significantly lower than 

expected by chance (empirical P = 1.0×10-3), suggesting that the stable clusters are 

relatively rare.  
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Testing the spatial proximity between PRCa and PRCr genes.  

To test whether PRCa genes are in the neighbourhood of PRCr genes, we 

calculated the distance for each gene in the PRCa group (1,263 genes) to its nearest 

neighbour in the PRCr group (954 genes) using TSSs. The observed mean and median 

distance were tested against a null model assuming no positional preference of PRCa 

genes in the neighbourhood of PRCr genes. We observed that a majority of genes not 

expressed in mESCs are distal from Active/PRCa/PRCr genes. To correct for the 

effect of these inactive genes, we defined a background set of genes as ones belonging 

to Active, PRCa, or PRCr genes. We randomly sampled 1,263 genes from the 

background set by excluding genes that are in the PRCr group or in the chromosomes 

on which the 954 PRCr genes are not located, and calculated the mean and median 

distance between the randomly chosen genes and PRCr genes. We repeated this 

process 10,000 times and computed the empirical P-values of the observed mean and 

median distance based on a null distribution of simulated distances.  

 

Promoter-promoter contacts and contact enrichment analysis 

Significant promoter-promoter and promoter-genome interactions in WT ESC 

were obtained from Schoenfelder et al.27. Short range intra-chromosomal contacts 

were excluded by filtering contacts separated by <10 Mb. To measure the enrichment 

of contacts within a set of promoters, 100 random promoter sets were generated with 

comparable pair-wise distance distributions to the experimental set. Contact 

enrichment was derived by dividing the number of contacts in the experimental set by 

the average number of contacts in the control sets. For each experimental set, we 

calculated the contact enrichment using three independent control sets and showed the 
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mean contact enrichment and the standard deviation. Contact enrichment differences 

were evaluated using one-tailed t-tests. 

 

Gene Ontology and KEGG pathway analyses 

Annotation of KEGG pathways57 and their associated genes were retrieved using  

Bioconductor Package KEGGREST. Enrichment of KEGG pathways was assessed by 

Fisher’s exact test in R Stats package and P-values were adjusted for multiple testing 

by calculating false discovery rates. 

 

Ring1A/B double knockout cells and mRNA sequencing 

Ring1A/B double knockout cells29 (kind gift from Neil Brockdorff, which have 

been authenticated before) with constitutive Ring1A knockout and tamoxifen-

inducible conditional Ring1B knockout were cultured on mitomycin-inactivated 

feeders in DMEM (lacking pyruvate; Gibco), supplemented with 10% batch-tested 

FCS (Labtech), 50mM ß-mercaptoethanol, L-glutamine (Gibco), Sodium Pyruvate 

(Gibco), Non-essential amino acids (Gibco), Penicillin/Streptomycin (Gibco) 

supplemented with 1000U/ml LIF (Milipore)29. These cell lines have been tested and 

were found to have no mycoplasma contamination. Feeders in Ring1AB dKO mES 

cells (untreated and tamoxifen-treated) are depleted using Feeder removal 

MicroBeads (Miltenyi Biotec). To induce Ring1b knockout, cells are cultured in 

media containing 800nM 4-hydroxytamoxifen (Sigma) for 48 hours and confirmed 

using genomic DNA isolation and PCR across Cre-excised region8,29. Primer 

information29 is listed below.  

Ring1b-s3  AAGCCAAAATTTAAAAGCACTGT 

Ring1b-4681 ATGGTCAAGCAAACATGAAGGT  
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Ring1b-as4 TGAAAAGGAAATGCAATGGTAT 

All cells are processed on C1 Single Cell Auto Prep System (Fluidigm; 100-7000 

and 100-6209) using medium sized C1 mRNA-Seq chips (10-17 μm; 100-5670) with 

ERCC spike-ins (Ambion; AM1780) following the manufacturers protocol (100-5950 

B1) requiring SMARTer kit for Illumina Sequencing (Clonetech; 634936). Single cell 

libraries were made using Illumina Nextera XT DNA sample preparation kit 

(Illumina; FC-131-1096) after cleanup and pooling using AMPure XP beads 

(Agencourt Biosciences; A63880). Each library is sequenced on single HiSeq2000 

lane (Illumina) using 100bp paired-end sequencing. 

We also generated standard bulk RNA-sequencing for each condition. Bulk RNA-

sequencing libraries were prepared and sequenced using the Wellcome Trust Sanger 

Institute sample preparation pipeline with Illumina’s TruSeq RNA Sample 

Preparation v2 Kit as described before11. We observed that average single cell 

expression levels recapitulated the bulk gene expression levels with a Spearman rank 

correlation coefficient of 0.89 and 0.88 for untreated and dKO conditions 

respectively. 

 

URLs 

GOTHiC Bioconductor package, 

http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html.  
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FIGURE LEGENDS 

Figure 1. Summary of methodology. OS25 mESCs were cultured and characterized 

by single cell RNA-sequencing using the Fluidigm C1 system, applying the 

SMARTer kit to obtain cDNA and the Nextera XT kit for Illumina library 

preparation. OS25 cells are grown in conditions that select for undifferentiated cells 

(high Oct4-expressing). Libraries from 96 cells were pooled and sequenced on four 

lanes of a HiSeq. After quality control analysis of cells, 90 cells out of 96 remained 

for further analysis. We first unraveled contributions of components of gene 

expression variation using the scLVM method13. Removing cell cycle variation and 

technical noise allowed us to focus on stochastic gene expression. Gene expression 

variation can be quantified by squared coefficient of variation (CV2) or “distance to 

median” (DM), which is a measure of noise independent of gene expression levels 

and gene length. To explore the transcriptional kinetics of OS25 ES cells, poisson-

beta model16 was fitted to single-cell gene expression data leading to estimates of 

burst frequency and size. Next, histone and RNAPII promoter modifications were 

obtained from Brookes et al.5 and integrated with single-cell RNA-seq to investigate 

relationship between stochastic gene expression and epigenetics. Active genes with no 

PRC marks are usually in the ‘on’ state with high burst frequencies (kon), PRCr genes 

are mostly ‘off’ and PRC-active genes switch between ‘on’ and ‘off’ states very 

frequently. Considering the allele-level possibilities, at active genes, both alleles 

would be in an actively transcribing state.  For PRCa genes, both alleles would be in 

an actively transcribing state, or both alleles would be in a silent PRC-marked state, 

or only one allele is in PRC-marked state, which, subsequently, would result in 
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noisier gene expression. For PRC-repressed genes, both alleles are expected to be in a 

silent PRC-marked state. 

 

Figure 2. Stochastic gene expression of PRCa and active genes. (A) Comparison of 

PRCa and active genes reveals that PRCa genes are more variable with lower burst 

frequency levels than active genes (p<2.2x10-16 by the two-tailed Wilcoxon rank sum 

test). Gene expression variation is represented by DM values. (B) Expression profiles 

of PRCa genes show bimodal patterns. The distribution of a gene with bimodal 

expression is assumed to be expressed as a mixture of two normal distributions (lowly 

expressed (LE) and highly expressed (HE) states) (upper panel). PRCa genes have 

mixed cell states (on average 49% in HE and 51% in LE) indicating they are either in 

active state (i.e. active RNAPII and no PRC marks) or in repressed state 

(unproductive RNAPII and with PRC marks) consistent with cellular heterogeneity, 

suggested in Brookes et al.5. Error bars represent standard error of the mean (s.e.m).  

 

Figure 3. Signaling pathways that are key regulators of pluripotency in mESCs. In 

OS25 cells there is a selection for undifferentiated cells (high Oct4-expressing). LIF 

integrates signals into the core regulatory circuitry of pluripotency (Sox2, Oct4 and 

Nanog) via two signaling pathways; Jak-Stat and PI3K-Akt 22. Jak-Stat pathway 

activates Klf4, and PI3K-Akt pathway stimulates the transcription of Tbx3, which are 

both PRCa genes. The MAPK pathway antagonizes the nuclear localization of Tbx3. 

PRCa genes are enriched in Jak-Stat and PI3K-Akt pathways, which show high cell-

to-cell variation, suggesting crucial role of PRCs in modulating fluctuations in 

signaling pathways that integrate LIF signals into core transcription factor network 

(Figure adapted from22). 
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Figure 4. Chromosomal position effects and stochastic gene expression. (A) Maps of 

genes belonging to noisy and stable clusters. Chromosomal positions of genes marked 

by PRCs/RNAPII in the noisiest clusters. One of the noisy clusters is visualized, DM 

levels correlate with bimodal expression patterns. In lower panel, association between 

chromosomal position and gene expression noise is shown; the noise levels of genes 

in the neighbourhood of noisy genes are significantly higher than that of flanking 

genes of stable genes. As a control, we constructed 100 randomized genomes in 

which the positions of genes were fixed but the DM value of each gene was assigned 

randomly without replacement, and the same analysis was performed on each 

randomized genome to obtain random P-values. 2.5% quantile of random P-values, 

and 97.5% quantile of random P-values are shaded in gray. All data is shown on a –

log(p) scale. (B) Enrichments of PRC marks/RNAPII states in noisy and stable 

clusters, two-tailed Fisher’s exact test; *P <0.1, **P < 0.05  

 

Figure 5. Effects of 2D and 3D neighborhood on transcriptional kinetics (A) 

Histogram of simulated median distances under a null model assuming no positional 

preference in the neighbourhood of PRCr genes. The observed median distance of 

PRCa genes to their nearest neighbor in the PRCr group, depicted by vertical dashed 

red line, are significantly less than expected by chance (P = 2x10-2). (B) Analyzing 

mESC Promoter Capture Hi-C data reveals that PRCa genes have a strong enrichment 

for long-range contacts between promoters with levels in between PRCr and active 

genes. Error bars represent s.e.m. (C) PRCa genes have significantly more 

interactions with active enhancers compared to PRCr genes (P < 2.2x10-16). In 

contrast, interactions with poised enhancers are mainly observed for PRCr genes 
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rather than PRCa (P < 2.2x10-16). (D) Occurrence of interactions with active 

enhancers decrease noise of PRCa genes independent of mean expression levels. 

 

Figure 6. Single cell profiling of Ring1A/B double knockout mES cells. PRCr show 

substantial derepression after Ring1A/B dKO. The mean expression change at PRCa 

genes is lower than at PRCr, in contrast, is higher than at active genes. Comparison of 

noise levels show that there is a more pronounced decrease in noise levels at PRCa 

genes compared to active genes. Gene expression profiles of some important genes 

for ESC biology are shown. Key pluripotency transcription factors Klf4 and Tbx3 are 

more expressed and less noisy in Ring1A/B dKO cells. Other transcriptional 

regulators such as Hmga2 and Hdac2 become upregulated after dKO. Consistently, 

key differentiation markers such as Gata4, Gata6 are upregulated. Among active 

pluripotency factors, Oct4 and Sox2 show minor changes in expression (mean 

expression levels are not significantly different), and Nanog and Esrrb are 

upregulated. 

 

SUPPLEMENTARY FIGURE LEGENDS 

Figure S1. (A,B) Single-cell data statistics: over 80% of reads were mapped to the 

Mus musculus genome (GRCm38) and over 60% to exons. (C) Quality control 

analysis for single cells. (D) Heatmap showing expression profiles of key 

pluripotency factors and differentiation markers in OS25 cells. There is 

homogenously high expression of pluripotency genes, and all differentiation markers 

are consistently “off”. This indicates that OS25 cells are all in a pluripotent state. (E) 

OS25 cells are shown together with other mESCs cultured in serum+lif and 2i from 

Kolodziejczyk et al. 2015. OS25 cells are more similar to the subpopulation of 
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pluripotent serum cells, rather than the subpopulation of serum cells that are either 

“primed for differentiation” or “on the differentiation path”. (F) Average single-cell 

expression is highly correlated with bulk RNA-Seq (data from Brookes et al.5), 

Spearman’s correlation coefficient is 0.87.  

 

Figure S2. (A) Squared coefficient of variation (CV2) vs. average normalized read 

count of genes are shown (x and y-axes log10-scale). As gene expression levels 

increase, genes are more likely to show lower levels of variation. Variable genes are 

in red color and cell cycle genes (from Gene Ontology and Cycle base database) are 

in green color. (B) Gene expression variation components are unraveled by applying a 

recent method 13, which uses Gaussian Process Latent variable models in single-cells 

(scLVM). It is a two-step approach that first reconstructs cell cycle state and then uses 

this information to obtain “corrected” gene expression levels. Cell cycle contribution 

to variation is around 1% on average. In the lower panel, gene expression profiles for 

Aurka, a cell cycle gene and Klf4, a pluripotency transcription factor, are shown. 

After cell cycle regression, profile of Aurka becomes more homogeneous, whereas 

Klf4 remains uncorrected. (C) Clustering of 90 cells based on cell cycle G2/M stage 

markers: there are two groups: one with high expression of G2 and M genes and the 

other with low expression of these genes. (D) Clustering after cell cycle correction: 

cell cycle effect is removed leading to more homogeneous expression distribution of 

these genes across the cells. 

 

Figure S3. (A) Distribution of DM and burst frequency levels across different cutoffs 

of gene expression. Two-sided Wilcoxon rank-sum test P-values for differences of 

DM between Active and PRCa genes are: P<2.2x10-16, P<2.2x10-16, P<2.2x10-16, 

P=6.7x10-15, P=2.3x10-13, P=1.8x10-13, P=8.1x10-12, P=1.7x10-13, P=2.2x10-12 and 
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P=5.6x10-11 for gene expression cutoffs 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100, 

respectively. For burst frequency levels, all P-values are P<2.2x10-16. (B) Expression 

matched sets of Active and PRCa genes show that differences in DM and burst 

frequency levels are independent of gene expression levels. (C) –log10 P-values are 

shown for differences between DM levels and BF levels of expression-matched 

Active and PRCa groups across different expression cutoffs. The number of PRCa 

genes (that are expression-matched to same number of Active genes) are 666, 603, 

540, 479, 427, 374, 341, 304, 280 and 262 for expression cutoffs of 10, 20, 30, 40, 50, 

60, 70, 80, 90 and 100, respectively. (D) Comparison of gene expression variation 

profiles of methylated and unmethylated PRCa genes suggests that DNA methylation 

has no pronounced effect on transcriptional heterogeneity in mESCs. (E) PRCa genes 

are more bimodal than active genes. (F) Taking into account mESC degradation 

rates21 and including them into our kinetic models does not result in major changes in 

kinetic parameters, thereby yields similar findings. (G) Median DM of KEGG 

signaling pathways PI(3)K-Akt, Ras signaling and TGF-beta signaling (shown in 

purple color) are significantly higher compared to median DM levels of pathways 

related to housekeeping functions, such as RNA transport and Ribosome (shown in 

green). 

 

Figure S4. (A) Noise levels of genes in the neighborhood of noisy genes are 

significantly higher than those of genes that flank stable genes. (B) The difference of 

DM between noisy and stable genes is significant (P < 2.2x10−16). (C) The difference 

of gene length between noisy and stable genes is not significant (P = 0.1563). (D) The 

difference of mean expression levels between noisy and stable genes is not significant 

(P = 0.8485 by the two-tailed Wilcoxon rank sum test). (E) Gene expression profiles 

and DM levels of active genes; Sde2 and Pycr2 in one of the noisy clusters are shown. 

(F) Noise levels of active genes flanked by zero, one and two variable genes: genes 

flanked by two variable genes show highest levels of variation, while genes flanked 

by zero variable genes are more stable than other groups. (G) The observed median 

distance of Active genes to their nearest neighbor in the PRCa group, depicted by 
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vertical dashed red line, are significantly less than expected by chance (P < 0.0001). 

(H) The observed median distance of Active genes to their nearest neighbor in the 

PRCr group, depicted by vertical dashed red line, are significantly higher than 

expected by chance (P = 5x10-3).  (I) Promoter preferences of gene sets: PRCr 

promoter preferences are different; PRCr genes are more likely to interact with PRCr 

promoters than PRCa genes (two-tailed Fisher’s exact test P < 2.2x10-16). Similarly, 

PRCa are more likely to interact with PRCr promoters than Active genes (two-tailed 

Fisher’s exact test P = 1x10-3) 

 

Figure S5. (A) Schematic layout of Ring1B locus (UCSC mm10 reference assembly) 

and PCR primers to confirm Ring1b knockout. PCR amplification of genomic DNA 

from untreated (Ring1AKO) and tamoxifen-treated (Ring1ABdKO) to confirm 

Ring1B knockout are shown. Expected fragment size in untreated and Tamoxifen 

treated samples listed on right. (B) PRCa genes have a more pronounced change in 

mean gene expression and (C) noise levels (D) bimodality patterns than active genes. 

(E) Decrease in burst frequencies are more pronounced at active genes. 

 

TABLES 

Table S1. KEGG pathway enrichment of PRCa genes 
 
Pathways FDR 
path:mmu04014 Ras signaling pathway  0.0002 
path:mmu04060 Cytokine-cytokine receptor interaction 0.0010 
path:mmu04151 PI3K-Akt signaling pathway  0.0023 
path:mmu05206 MicroRNAs in cancer  0.0023 
path:mmu05200 Pathways in cancer  0.0036 
path:mmu04015 Rap1 signaling pathway  0.0043 
path:mmu00604 Glycosphingolipid biosynthesis - ganglio series  0.0152 
path:mmu05202 Transcriptional misregulation in cancer  0.0185 
path:mmu04066 HIF-1 signaling pathway  0.0282 
path:mmu04080 Neuroactive ligand-receptor interaction 0.0282 
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path:mmu04350 TGF-beta signaling pathway 0.0282 
path:mmu04917 Prolactin signaling pathway  0.0422 
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