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Abstract

Background: Cyanobacteria are photoautotrophic organisms with environmental, evolutionary, and industrial
importance. Knowledge of its regulatory interactions are important to predict, optimise, and engineer their char-
acteristics. However, at present, very few of their regulatory interactions are known. The regulatory interactions
are known only for a few model organisms such as Escherichia coli due to technical and economical constraints,
which are unlikely to change soon. Thus, mapping of regulatory interactions from well-studied organisms to less-
studied organisms by using computational techniques is widely used. Reverse Best Hit (RBH), with appropriate
algorithm parameters, is a simple and efficient method for detecting functional homologs.

Description: We predict the regulatory interactions in 30 strains of cyanobacteria using the known regulatory
interactions from the best-studied organism, E. coli. RBH method with appropriate parameters is used to identify
the functional homologs. An interaction is mapped to a cyanobacterial strain if functional homologs exist for a
known transcription factor and its target gene. The confidence of the detected homologs and interactions are
also provided. Since RBH is a conservative method, homolog-grouping is performed to recover lost putative
interactions. A database of the predicted interactions from all the 30 strains of cyanobacteria is constructed.

Conclusion: RegcyanoDB contains 20,280 interactions with confidence levels for 30 cyanobacterial strains.
The predicted regulatory interactions exhibit a scale free network topology as observed in model organisms. The
interacting genes in E. coli and cyanobacteria are mostly found to have the same gene annotation. This database
can be used for posing novel hypotheses and validation studies in wet-lab and computational domains.

The database is available at http://www.che.iitb.ac.in/grn/RegCyanoDB/

Keywords
Cyanobacteria, Escherichia coli, gene regulatory network, transcriptional regulation, transcription factors,
regulatory interactions, regulatory interaction mapping, Bioinformatics.
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1 Introduction
Cyanobacteria, or the blue-green bacteria, are photoautotrophic organisms credited with changing the
Earth’s atmosphere to oxygen rich condition. It is believed that the photosynthetic machinery in plants
and algae, the chloroplast, has evolved from cyanobacteria by endosymbiosis. Cyanobacteria are the model
organism for studying photosynthesis, as well as nitrogen and carbon assimilation. They are believed to
play an important role in marine nitrogen-fixing cycle [1, 2]. Presently, there is enormous interest in us-
ing cyanobacteria for biofuel and hydrogen production [3–5]. The algal species and cyanobacteria have the
highest biofuel production per unit area [3] and have higher growth and photosynthetic rates [5]. N2-fixing
cyanobacterial strains have simple growth conditions and have the simplicity of prokaryotic genome compared
to eukaryotic algae [5]. Thus, they are a promising sustainable alternative to our energy requirements.

For biofuel applications, understanding the metabolic and genetic factors involved in maximising the pro-
ductivity in an organism are of great interest [3,6]. Organisms respond to varying environmental conditions
by regulating the cellular protein production. In prokaryotes, the regulation of the proteins is largely carried
out by the transcriptional networks. Thus, understanding the transcriptional regulatory network is crucial
in optimising the culture conditions and for metabolic or genetic manipulation.

Although around 2000 completely sequenced genomes are reported in GOLD database [7], their functional
characterization and regulatory interactions are lagging behind. Even for the model organism Escherichia
coli K-12, whose regulatory network is best understood of all the living organisms [8], only about one-third
of the genes have experimentally validated interactions (RegulonDB database, June 2012). The main reason
for this limited information is that there are many technical and organizational issues associated with find-
ing regulatory interactions experimentally [9]. Further, compared to metabolic networks, using comparative
genomics in regulatory networks is more challenging as they are less conserved, very plastic, and the transcrip-
tion factors evolve fast [10–13]. As a result, our current knowledge of the regulatory networks in prokaryotes
is limited to only a few model organisms. These are available in public databases such as RegulonDB [8] and
EcoCyc [14] for E. coli ; DBTBS [15] for Bacillus subtilis; MtbRegList [16] and MycoRegNet [17] for My-
cobacterium tuberculosis; and CoryneRegNet [18] for corynebacteria. RegTransBase [19] contains manually-
curated, experimentally-verified interactions for 128 microbes, while PRODORIC [20] contains the regulatory
information of many prokaryotes but mainly E. coli, B. subtilis, and Pseudomonas aeruginosa. Due to dif-
ficulties involved in obtaining regulatory interactions experimentally, mapping regulatory interactions from
model organisms to others using computational techniques is widely used [9,10,16–18,21–23]. While generic
databases like RegTransBase [19] and PRODORIC [20] contain interactions for cyanobacteria, these interac-
tions are very few. Hence, it has become imperative to develop a database which contains computationally
predicted regulatory interactions for this organism.

RegCyanoDB is thus, the first database of regulatory interactions in cyanobacteria. The regulatory
interactions are mapped using E. coli as the reference organism. This database also provides the confidence
level of the predicted interactions based on the quality of the sequence alignment.

2 Computational methods for regulatory interaction mapping
Several studies have characterized the two main assumptions in computational transfer of regulatory interac-
tions: (i) the function of a new protein can be predicted using its sequence similarity to a known protein; and
(ii) for a known transcription factor(TF) and its target gene(TG) in the ‘source’ organism, the interaction is
conserved in the ‘target’ organism if there exist functional homologs for both the TF and its corresponding
TG. The concept of “interologs”, the orthologous pair of interacting proteins, was reported [24] for transfer-
ring protein-protein interactions between organisms. This concept was extended to a large scale study [23]
that introduced the concept of “regulog”, the conserved protein-DNA interactions in different organisms. It
was shown that if a TF has a homolog in another organism with 30-60% or better sequence identity, the
binding site of the homolog is conserved and for identities above 80%, all the protein-protein interactions
are conserved. The sequence identity values reported in [23] also matched observations in [25], which noted
that the pairwise alignment of two sequences correlated the structural alignment when the sequence identity
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is above 25-30%.
Benchmark studies [26–28] and reviews [29, 30] have analysed the various ortholog detection methods.

Recent benchmark studies have shown that reverse best hit (RBH) is as good or even superior to other
methods [26, 27]. Note that RBH is also referred to as reciprocal best hit, or bidirectional best hit (BBH),
or symmetrical best hit (SymBeT). RBH is a pairwise sequence alignment method that uses the concept of
orthologous genes which is operationally defined as the gene pair having the best sequence similarity between
all the genes in two genomes [13,31]. Thus, if a protein P1x in the first organism picks protein P2y as its best
hit in a sequence similarity search against all the proteins in the second organism, and if P2y picks P1x as its
best hit among all the proteins in the first organism, then P1x and P2y are called the RBH of each other. It
is important to note that the sequence similarity between the two proteins should have sufficient statistical
significance [31]. Among the different methods for ortholog detection, sequence similarity based methods
like RBH are strong predictors of functional relatedness [26] and appropriate choice of algorithm parameters
yield good results [29,32,33]. Orthologs are generally accepted to be functionally equivalent [13,30,31].

Difficulties for functional prediction using RBH arise when there is domain shuffling, presence or absence
of domains, gene duplication, gene loss, and horizontal gene transfer [25, 30]. The possible error due to
changes in protein domains are addressed by considering the coverage of the pairwise alignment. Different
implementations have used different coverage criteria, such as, 80% coverage [23,34], or 70% coverage along
with protein domain information [12], or 60% coverage with 60% identity in the alignment region [10], or
50% coverage with relevant e-value cut-off [33].

Many-to-one or one-to-many relations caused by gene deletions and duplications cannot be considered
in RBH method and low sequence similarity of alignment will require additional methods like conserved
gene neighbourhood analysis [29, 30, 35]. Since RBH considers only the best hit in both the directions, it is
considered as a conservative method. Therefore, clustering or grouping of homologous proteins is used to
recover the false negatives [10,35]. Additional constraints, like minimum sequence identity and coverage are
considered to minimize false positives [10,12,23,25,33].

BLAST [36, 37] is by far the most popular method for sequence similarity searches. Ortholog detection
using BLAST with different parameter cut-offs such as e-value, raw-score, bit-score, and identity give different
but essentially overlapping results [29]. The cut-off for sequence similarity should be statistically significant
but not too stringent [31]. Smith-Waterman implementation with e-value cut-off was found to be a good
measure of structural similarity between the proteins [32] and Smith-Waterman alignment with soft-filtering
in BLAST was reported to give best results for RBH [33].

These results form the basis for parameter selection for the algorithms and for predicting the confidence
of regulatory interactions in this work.

3 Construction and content
The regulatory interactions in 30 strains of cyanobacteria were mapped from the known regulatory network
in E. coli K-12. The database construction procedure for a single cyanobacterial strain is shown in figure 1.
The experimentally characterised regulatory interactions in E. coli were obtained from RegulonDB [8] which
had 3920 interactions, 183 TFs, and 1563 unique mRNA genes (as on June 2012). Interactions with other
gene products like tRNA, rRNA, and ncRNA were ignored. The genes reported in the interactions were
identified mainly using RSAT [38, 39] and the rest from NCBI RefSeq [40] and UniProtKB [41]. Protein
sequences of E. coli were obtained mainly from NCBI RefSeq and the rest from UniProtKB. Complete
protein sequences of the 30 cyanobacterial strains were obtained from NCBI RefSeq. The list of strains in
Table 1, include all the major orders such as Chroococcales (21 strains), Nostocales (4 strains), Prochlorales
(2 strains), Gloeobacteria (1 strain), and Oscillatoriales (1 strain).

RBH was implemented in standalone BLAST (version 2.2.26+) from NCBI with the following parameters.
The e-value cut-off 1e-04 was decided by the database size [32] of ∼6000 protein sequences for a single BLAST
run. Smith-Waterman alignment and soft-filtering were enabled for optimal alignment results [32,33].

After obtaining the protein sequences, BLAST of E. coli proteins against proteins of a selected strain

3

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/117127doi: bioRxiv preprint 

https://doi.org/10.1101/117127
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1: Procedure for obtaining regulatory interactions for a cyanobacterial strain

of cyanobacteria and the reverse BLAST of the cyanobacterial proteins against the E. coli proteins were
performed. The RBH proteins were selected from the BLAST results and graded for functional homolog
confidence. The classification of confidence level is shown in Table 2. For a pairwise sequence alignment, if
the identity was at least 80% and alignment length covered at least 80% of the two proteins, the homolog
confidence was reported ‘high’. As discussed earlier, at this sequence identity level the protein-protein inter-
actions and protein-DNA interactions are expected to be conserved [23]. If the identity is between 60− 80%
and coverage is at least 80%, the homolog confidence was assigned ‘good’, as protein-DNA interactions
are expected to be conserved and many protein-protein interactions are also conserved [23]. Similar cut-
off had been reported to give optimal results for regulatory interaction mapping [10]. Homolog confidence
was reported as ‘moderate’ for identity between 25 − 60% and coverage greater than 60%. At this iden-
tity levels, protein-DNA interactions could be conserved [23] and sequence alignment correlates structural
alignment [25]. All other RBH cases were reported as ‘low’ confidence homologs as the confidence in their
function cannot be decided by quality of sequence alignment alone.

For the proteins in E. coli which did not have a RBH, ‘homolog-groups’ were created. In this procedure,
homolog confidence was computed for all the hits of an E. coli protein PEx against the selected cyanobac-
teria. All the homolog proteins in the hit having confidence of ‘moderate’ or better were listed together
in ‘Clusterx’as the putative functional homologs of PEx. The confidence level of the homolog-group was
assigned as the highest homolog confidence shown by any member in the group. This procedure is similar
in concept to the reported clustering methods [10, 35] and is described as follows. RBH cannot extract
the functional homologs in the presence of gene deletions and duplications. However, proteins with suffi-
cient identities and coverage in sequence alignment can be functionally equivalent. So, when RBH is not
present, all the homolog proteins that show sufficient identity and coverage in pairwise sequence alignment
are reported as putative functional homologs. Thus, false negatives from the conservative RBH method
can be recovered. However, since there are chances of false positives also being present, the results with
homolog-group procedure are reported separately.

After identifying the functional homologs using RBH and homolog-grouping, the TF-TG interactions
were obtained using the interactions reported in RegulonDB database. For a TF-TG interaction reported in
RegulonDB, corresponding interaction is considered as conserved in the selected cyanobacteria, if a homolog
or a homolog-group can be identified for both the TF and TG in the cyanobacteria. The confidence of
the interaction is assigned as the lowest of the homolog confidence level between the homolog TF and
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Table 1: The 30 strains of cyanobacteria used in the study
Order Strain
Chroococcales

Cyanothece sp. ATCC 51142
Cyanothece sp. PCC 7424
Cyanothece sp. PCC 7425
Cyanothece sp. PCC 7822
Cyanothece sp. PCC 8801
Cyanothece sp. PCC 8802
Microcystis aeruginosa NIES-843
Synechococcus elongatus PCC 6301
Synechococcus sp. CC9311
Synechococcus sp. CC9605
Synechococcus sp. CC9902
Synechococcus sp. JA-3-3Ab
Synechococcus sp. PCC 7002
Synechococcus sp. RCC307
Synechococcus sp. WH 7803
Synechococcus sp. WH8102
Synechocystis sp. PCC 6803 substr. PCC-N
Synechocystis sp. PCC 6803 substr. PCC-P
Synechocystis sp. PCC 6803 substr. GT-I
Thermosynechococcus elongatus BP-1
Cyanobacterium UCYN-A

Gloeobacteria
Gloeobacter violaceus PCC 7421

Nostocales
Anabaena sp. PCC 7120/Nostoc sp. PCC7120
Anabaena variabilis ATCC 29413
Nostoc azollae 0708
Nostoc punctiforme ATCC 29133

Oscillatoriales
Trichodesmium erythraeum IMS101

Prochlorales
Prochlorococcus marinus str. MIT 9215
Prochlorococcus marinus SS120

the TG. For example, if the TF homolog confidence was ‘moderate’ and the TG homolog confidence was
‘high’, the interaction confidence is taken as ‘moderate’. Wherever possible, the homolog proteins identified
in cyanobacteria were also verified by their annotations to their E. coli protein annotations. The results
obtained from RBH and obtained by both RBH and homolog-grouping are reported separately in database.
This procedure was repeated for all the other strains of cyanobacteria to create complete database.

For illustration, the predicted regulatory interactions of Cyanothece sp. ATCC 51142 and Acaryochloris
marina MBIC11017, visualized using Cytoscape [42], are shown in figures 2 and 3. It can be seen that the
network approximates a scale-free topology in which a small number of TFs regulate a large number of TGs,
forming network hubs, and a large number of TFs control only a small number of TGs. Further, a large
number of TGs are regulated by only a small number of TFs and a small number of TGs are controlled by
many TFs. Other cyanobacterial strains also showed similar network topology. This is similar to the gene
regulatory network topology reported for other well studied organisms [43,44].
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Figure 2: Regulatory network of Cyanothece sp. ATCC 51142. The red-nodes represent transcription factors
in which the node-size is proportional to the out-degree. The blue-nodes represent target genes and edges
represent the interactions. The network topology shows a scale free structure.

Figure 3: Regulatory network of A. marina MBIC11017. The red-nodes represent transcription factors whose
node-size is proportional to the out-degree. The blue-nodes represent target genes and edges represent the
interactions. The network topology shows a scale free structure.
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Table 2: Confidence levels for a functional homolog using RBH. The intervals are based on the pairwise
alignment parameters of sequence identity (SI)% and the coverage of the alignment or the alignment length
(AL) in % for both proteins from an RBH.

Confidence level Parameters
SI > 80%

High
AL > 80%

SI > 60%
Good

AL > 80%

SI > 25%
Moderate

AL > 60%

Low Other RBH

Gene regulatory interactions in different strains of cyanobacteria predicted using RBH method and a
combination of RBH and homolog-grouping method are shown in figure 4. The absolute number of interac-
tions predicted for the cyanobacterial strains are shown in figure 4(A). The relative number of interactions
predicted for the different strains are shown in figure 4(B) which can be used for comparison of the conser-
vation of interactions among the different strains. It is the ratio of the number of interactions predicted in a
strain to the average number of interactions obtained for all the strains, in each method. It can be observed
that the strains of Prochlorales and Cyanobacterium UCYN-A, which have the smallest genomes among all
strains, have the lowest number of the detected interactions. Nostoc azollae 0708, which is a symbiont to
fern Azolla, has the lowest number of interactions among the Nostocales strains. This probably represents
the gene loss during symbiosis [45]. Interactions are relatively fewer in Synechococcus strains.

4 Utility and Discussion
4.1 RegCyanoDB user interface
The regulatory interactions in different cyanobacterial strains are available for download from the database
website. Selecting ‘Downloads’ from the main page, and then choosing a specific strain (such as Cyanothece
sp. ATCC 51142), display links to text files containing regulatory interactions. These files are formatted to
aid manual or computational analysis. The ‘Downloads’ page for Cyanothece sp. ATCC 51142 is shown in
figure 5.

The ‘Transcription factor - Target gene interactions’ section gives the RBH interactions alone, with no
information from the homolog-grouping procedure. This is expected to contain only conservative number
of interactions. ‘TF-TG’ section reports just the reference number of TFs and TGs and their interaction
confidence. The ‘Detailed information’ section gives the protein name, the E. coli protein, and the BLAST
results.

The interactions detected using the homolog-grouping procedure along with the RBH method is in second
row. This section again contains two files, one concise and other detailed, as describe previously.

The details of the proteins present in the homolog-groups and their ‘Cluster numbers’ are given in the
‘Protein homolog-groups’ section.

4.2 RegCyanoDB significance
To the best of our knowledge, RegCyanoDB is the first dedicated regulatory interaction database for
cyanobacteria. While there are other databases for cyanobacteria that give information about the tran-
scription factor families [22], protein-protein interactions in specific strains [46], operons [47], and genome
details [48], none of these provide regulatory interaction information. Currently, only a few hundred regula-
tory interactions for cyanobacteria are available in the public databases like PRODORIC and RegTransBase.
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Figure 4: Regulatory interactions predicted in all cyanobacterial strains. All the 30 strains of cyanobacteria
are shown in horizontal-axis. Red bars represent the interactions for RBH method and blue bars show total
results for both RBH and homolog-grouping methods. (A) The absolute number of interactions predicted for
all the 30 strains, using both the methods, are shown. (B) The relative number of interactions predicted in
the different strains; vertical-axis is the ratio of interactions in a strain to the average number of interactions
obtained for all the strains in each method.
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Figure 5: ‘Downloads’ section for Cyanothece sp. ATCC 51142 which shows the regulatory interaction
information for cyanobacterial strain Cyanothece sp. ATCC 51142 available at the website.

This database predicts 20, 280 interactions for the 30 strains of cyanobacteria along with confidence levels
in the predicted homologs and interactions.

The regulatory interactions of E. coli in RegulonDB database had been used for upto 100 different
applications [49], both experimental and computational. Since the cyanobacteria database reported here
is computationally predicted, it can serve as the first step for targeted wet-lab experiments studying the
regulatory interactions in this organism. Since the microbes predominantly use transcriptional regulation
to adapt itself, the information in the website can also be used to generate new hypothesis about the
characteristics and phenotype of cyanobacteria [50].

The information from the database will also be useful to understand and analyse the microarray gene ex-
pression data, predict upstream binding locations of different TFs, detect the TFBS motifs, analyse protein
expression, and study regulatory interactions in different strains of cyanobacteria. Other important investi-
gations in bioinformatic applications such as assigning protein function, uncovering novel interactions, and
studying operons [47, 51, 52], will be aided by this database. The structure of the gene regulatory network
in cyanobacteria at different levels, e.g. individual interactions, network motifs, and also at the global level
can be studied. Current gene regulatory network modelling techniques which are limited due to ‘curse of
dimensionality’, i.e. too many variables and too few genes, will also be benefited as these known interactions
and the transcription factors can be used as a-priori knowledge in the modelling process.

5 Conclusions
RegCyanoDB provides the computationally predicted regulatory interactions in cyanobacteria, mapped from
the most well-studied organism, E. coli. A total of 20, 280 interactions with confidence levels, have been
reported for the 30 strains of cyanobacteria. These confidence levels will give a better idea for using the
interactions in experimental or computational applications. Further, we observe that the regulatory inter-
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actions obtained in the cyanobacterial strains approximate a global scale-free network topology as reported
for other model organisms.
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