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ABSTRACT 

Recent technological breakthroughs have made it possible to measure RNA expression at the 

single-cell level, thus paving the way for exploring expression heterogeneity among individual 

cells. Current single-cell RNA sequencing (scRNA-seq) protocols are complex and introduce 

technical biases that vary across cells, which can bias downstream analysis without proper 

adjustment. To account for cell-to-cell technical differences, we propose a statistical framework, 

TASC (Toolkit for Analysis of Single Cell RNA-seq), an empirical Bayes approach to reliably 

model the cell-specific dropout rates and amplification bias by use of external RNA spike-ins. 

TASC incorporates the technical parameters, which reflect cell-to-cell batch effects, into a 

hierarchical mixture model to estimate the biological variance of a gene and detect differentially 

expressed genes. More importantly, TASC is able to adjust for covariates to further eliminate 

confounding that may originate from cell size and cell cycle differences. In simulation and real 

scRNA-seq data, TASC achieves accurate Type I error control and displays competitive 

sensitivity and improved robustness to batch effects in differential expression analysis, 

compared to existing methods. TASC is programmed to be computationally efficient, taking 

advantage of multi-threaded parallelization. We believe that TASC will provide a robust platform 

for researchers to leverage the power of scRNA-seq.   
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INTRODUCTION 

Recent technological breakthroughs have made it possible to measure RNA expression at the 

single-cell level, thus paving the way for exploring gene expression heterogeneity among 

individual cells (1-4). The collection of abundances of all RNA species in a cell forms its 

“molecular fingerprint”, enabling the investigation of many fundamental biological questions 

beyond those possible by traditional bulk RNA sequencing experiments (5). With scRNA-seq 

data, one can better characterize the phenotypic state of a cell and more accurately describe its 

lineage and type.  

Current scRNA-seq protocols are complex, often introducing technical biases that vary across 

cells (http://biorxiv.org/content/early/2015/08/25/025528), which, if not properly removed, can 

lead to severe type I error inflation in differential expression analysis.  Compared to bulk RNA 

sequencing, in scRNA-seq the reverse transcription and preamplification steps lead to dropout 

events and amplification bias, the former describing the scenario in which a transcript expressed 

in the cell is lost during library preparation and is thus undetectable at any sequencing depth. In 

particular, due to the high prevalence of dropout events in scRNA-seq, it is crucial to account for 

them in data analysis, especially if conclusions involving low to moderately expressed genes are 

being drawn (7). In handling dropout events, existing studies take varying approaches: some 

ignore dropouts by focusing only on highly expressed genes (8,9), some model dropouts in a 

cell-specific manner (10-13), while others use a global zero-inflation parameter to account for 

dropouts (7).  

Since each cell is processed individually within its own compartment during the key initial steps 

of library preparation, technical parameters that describe amplification bias and dropout rates 

should be cell-specific in order to adjust for the possible presence of systematic differences 

across cells. For example, a recent article by Leng et al. found significantly increased gene 

expression in cells captured from sites with small or large plate output IDs for data generated by 

the Fluidigm C1 platform (14).  One way to quantify these biases, adopted by existing noise 

models (10-13), is to make use of spike-in molecules that comprise a set of external RNA 

sequences such as the commonly used external RNA Controls Consortium (ERCC) spike-ins 

(15), which are added to the cell lysis buffer at known concentrations (4,16).  However, a 

challenge that cannot be ignored in the single-cell setting is that the wide range of 

concentrations of ERCC spike-ins makes it difficult to measure spike-ins with low 

concentrations, leading to the lack of reliable spike-in data for estimation of the dropout rates.  
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For this reason, existing methods that model cell-specific dropout rates using spike-ins do not 

produce reliable estimates.  

We propose here a new statistical framework that allows a more robust utilization of spike-ins to 

account for cell-specific technical noise.  To obtain reliable estimates of cell-specific dropout 

parameters, we develop an empirical Bayes procedure that borrows information across cells.  

This is motivated by the observation that, although each cell has its own set of parameters for 

characterizing its technical noise, these parameters share a common distribution across cells 

which can be used to make the cell-specific estimates more stable.  We demonstrate an 

application of this general framework by a likelihood-based test for differential expression.  An 

advantage of the proposed framework over the existing approaches is that it can flexibly and 

efficiently adjust for cell-specific covariates, such as cell cycle stage or cell size, which may 

confound differential expression analysis.  

 

MATERIALS AND METHODS 

Data sets and pre-processing 

Zeisel et al. data: scRNA-seq data from murine brain cells are acquired from Zeisel et al. (5). 

This data set, which employs UMIs,  contains counts of 19,972 endogenous genes and 57 

ERCC spike-ins of 3,005 cells from various regions of mouse brain. The cells are categorized 

into nine level-1 classes and 48 level-2 classes, with the level-2 classes considered relatively 

homogenous. In this paper, we focus our analyses on two level-2 classes, CA1Pyr1 and 

CA1Pyr2, which respectively contain 447 and 380 cells. The counts are preprocessed by 

selecting the top 25% of genes in total read account across the 827 cells, resulting in 6,405 

genes in real data two-group comparison analysis. For studies involving class CA1Pyr2 only, 

selection of the top 25% of genes in the 447 cells yield 5,018 genes in the data set. 

SCAP-T data: scRNA-seq data from murine brain cells are acquired from the SCAP-T study 

(dbGaP Study Accession phs000835.v4.p1). This data set, which does not have UMIs, contains 

counts of 46,422 endogenous genes and 87 ERCC spike-ins of 198 neurons and 26 astrocytes 

from mouse brain. The counts are preprocessed by two filtering procedures: Filter 1 keeps the 

top 25% of genes in total read account across all the cells. Filter 2 keeps all the genes with non-

zero counts in 5 cells or more.  Since neurons and astrocytes are processed on different days, 

this allows us to evaluate whether our model is able to capture and control batch effect. 
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Modeling of technical variation 

In scRNA-seq data, we have observed that the relationship between the mapped read count for 

a gene and its true expression level in a cell can be characterized using two functions, shown in 

Figure 1.  For gene � in cell �, let ��� be the indicator that dropout does not occur, i.e., that the 

gene is captured in the library. The probability of ��� � 1 depends on the gene’s true absolute 

molecule count in the cell, denoted by ���. We use a logistic model to capture this relationship 

                                        ���	
 ���� � 1����� � �� � �� log ��� .                                            (1)       

For genes retained in the library (i.e. ��� � 1), the observed read count, denoted by ���, has 

expected value ��� that increases linearly with ��� on the log-log scale,  

                    log ��� �  ��������true expression � ���� � �� � �������� .                            (2) 

Figure 1 shows examples of the relationships depicted in (1) and (2) in the Zeisel et al. data (5); 

these relationships have also been seen in other studies (10,12).  Note that the intercept �� is 

negative, indicating incomplete capture efficiency of reverse transcription, and that the slope, ��, 

when deviating from 1, reflects what is often called amplification bias. In experiments that use 

unique molecular identifiers (UMIs) (17), ��� is the molecule count, and �� should be 

approximately 1. Together, functions (1) and (2) characterize the technical noise specific to 

each cell. 

Modeling of biological variation 

The above observations have motivated the model shown in Figure 2, where the true but 

unobserved absolute expression level  ��� follows distribution ��, the specification of which 

depends on the analysis objective. For example, for the common task of detecting differentially 

expressed (DE) genes between groups, we assume �� follows a log-Normal distribution with 

mean ��� and variance ���� , where   is the group identifier. The log-Normal distribution has been 

demonstrated previously to be a useful model for single cell gene expression (18), and lends 

computational simplicity to the estimation procedure. The technical noise in the cell is captured 

by the intermediate variables ���, characterized by (1), and ���, characterized by (2). Given ��� 

and ���,  the distribution of ��� is 

��� ! "��	##�$����,   ��� � 1;
0,                           ��� � 0.( 
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The Poisson distribution has been shown to be a reasonable approximation to the process of 

sampling reads from a fixed library, after removal of biological variation and technical biases 

(19). 

Estimation of cell-specific parameters describing technical variation 

The cell-specific technical parameters )�� , �� , �� , ��* are estimated using ERCC spike-ins.  Due 

to the lack of reliable spike-ins at low concentrations, we estimate )�� , ��* by empirical Bayes 

shrinkage. The cell-specific technical parameters, �� and ��, are estimated using simple linear 

regression with log��� as the response variable and the log of true amount of spiked-in 

molecules as the predictor variable, using only spike-ins that are detected in cell �. The dropout 

rate parameters, �� and �� are estimated using an empirical Bayes approach that can be 

summarized briefly into the following steps.  

• Step 1:  �� and ��, are estimated using logistic regression, logit +Pr .��� / 0|��12 � �� �
��log��, where �� is the true expression level of spike-in g and it is assumed to be the 

same across all cells. 

• Step 2: A bivariate normal distribution is fit to the estimated �� and ��  across all cells to 

obtain the hyper-parameters, i.e., the mean and covariance matrix of �� and ��.  
• Step 3: The estimated hyper-parameters are used to compute the posterior mean of �� 

and ��, E3��|4�5 � � ��Pr��� ,	�,
��d��d	�
�Pr��� ,	� ,
��d��d	�

  and E3��|4�5 � �	�Pr��� ,	�,
��d��d	�
�Pr��� ,	� ,
��d��d	�

, which will be 

used as the empirical Bayes estimates of  �� and ��. 
Refer to Supplementary Data for details on the computation of these estimates and the 

comparisons between empirical Bayes estimates and those derived from alternative 

approaches. 

Figure 3 shows the distribution of estimated )�� , ��* and  )�� , ��* across cells for the Zeisel data 

(5).  The mean function, determined by )�� , ��*, and the non-dropout rate function, determined 

by )�� , ��* , are shown for four cells chosen to represent the middle and extremes of these 

distributions. The estimates of )�� , ��* have very small standard errors (Figure S3), while 

empirical Bayes shrinkage greatly reduces the variance in the estimates of )�� , ��* (Figure S4).  

The presence of substantial variation in the magnitude of technical noise across cells 

underscores the need to account for such variation in downstream analyses. 
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Differential gene expression analysis 

Previous studies have shown that cells vary in size, with larger cells having more RNA 

molecules to attain similar concentration levels to smaller cells (20). This indicates that to detect 

DE genes, it is more appropriate to test for concentration difference between groups. To allow 

this, we include cell size, which can be estimated by the ratio of reads from endogenous RNA to 

reads from spike-in sequences, as a covariate. Other potential covariates, such as cell cycle 

stage, can also be included in the model to avoid spurious association. For cell cycle, we add as 

covariate the expression of a curated set of marker genes, such as the set from Tirosh et al. 

(21), or a latent factor representing cell cycle, as in Buettner et al. (22). A likelihood-ratio test is 

developed to detect DE genes. Let 6� be the group indicator for cell �, taking value 0 for group 1 

and 1 for group 2, and let 7� be the optional vector of covariates corresponding to cell �. The 

true expression of a given gene � in cell � is assumed to have a log-Normal distribution with 

mean ������ � ��� � 8�� � 8�6� � 9��7�, where 8�, the between-group difference in log mean, 

is the parameter of interest. To determine whether gene � is differentially expressed, we test 

:�: 8� � 0 vs :: 8� < 0. Let =>�� and =>�  be the maximized likelihoods achieved under the null 

and alternative hypotheses, respectively. The likelihood ratio test statistic for gene � is ?@� �
2.=>� B =>��1. Under the null hypothesis, this test statistic approximately follows a chi-squared 

distribution with one degree of freedom. The parameters in this model, including the variance ��� 

of the log-Normal distribution, can be estimated by numerical optimization or by a scalable 

Expectation-Maximization (EM) algorithm if the number of covariates is large. Please refer to the 

Supplementary Data for details. 

 

RESULTS 

In this section, we evaluate the performance of TASC on both simulated and two real scRNA-

seq data sets and compare it with four existing methods, including SCDE (10), MAST (11), and 

DESeq2 (23), and SCRAN (24). As SCRAN only provides normalized read counts, we perform 

differential expression analysis using DESeq2 with SCRAN normalized read counts. We include 

two versions of SCRAN in our evaluation, the original SCRAN, and SCRAN.SP that utilizes 

ERCC spike-ins in normalization. These methods are rated in terms of type I error rate and 

power in detecting DE genes, and their results on a real data set with genuine gene expression 

difference. 
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Type I error rates in the absence of batch effects 

To assess the accuracy of type I error control of TASC and other existing methods, 447 cells 

from the level-2 class “CA1Pyr2” from the Zeisel et al. data, which is the largest level-2 class, 

are randomly split into two groups of roughly equal size. Differential expression analyses are 

performed with TASC, SCDE, MAST, DESeq2, SCRAN and SCRAN.SP. Raw p-values are 

extracted from each method, and the performance of each method is assessed by histograms 

and quantile-quantile plots of the corresponding p-values, shown in Figure 4. Our results show 

that TASC, DESeq2, SCRAN and SCRAN.SP have p-values that are uniformly distributed as 

expected under the null, whereas SCDE is overly conservative with enrichment of p-values near 

one, and MAST is severely anti-conservative with enrichment of p-values near zero. 

Type I error rates in the presence of batch effects 

Batch effects are common in scRNA-seq data 

(http://biorxiv.org/content/early/2015/08/25/025528). To evaluate effectiveness in type I error 

control in the presence of batch effects, we have generated a data set that contains batch 

effects as characterized by systematic differences in the technical parameters (�� , �� , �� , ��* 

between groups. To introduce batch differences between the two groups under comparison, 

cell-specific technical parameters )�� , ��* and )�� , ��* are estimated from the cells in “CA1Pyr2” 

class and a bivariate normal distribution is fit separately to C)�� , ��*D and to C)�� , ��*D. One group 

in the simulated data draws its cell-specific technical parameters from these empirical 

distributions, and the other group draws its technical parameters from distributions where the 

mean(s) of combinations of technical parameters are shifted by amounts shown on the axes of 

the heatmaps in Figure 5. The magnitude of the shift represents the severity of batch effect 

difference between the two groups. The rest of the parameters controlling the expression of 

genes are the same for the two groups and are derived from estimates from the “CA1Pyr2” 

class.  Simulations are performed to generate the counts of 5,018 genes in 100 cells (50 in each 

group). Differential expression analyses are performed and the raw p-values are used to 

estimate the false positive rate (FPR). The deviation of the estimated FPR from the expected 

value is plotted on heatmaps to reflect the type I error rates under varying severity of batch 

effects. Figure 5 shows that TASC has well controlled type I error rates across a wide range of 

batch effect severity, whereas SCDE appears to be conservative overall, and MAST, DESeq2, 

SCRAN and SCRAN.SP are anti-conservative and susceptible to batch effects. 

To compare the methods with regards to their type I error rate under a real data scenario, we 

analyzed the SCAP-T data, which includes astrocytes and neurons that were processed on 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 17, 2017. ; https://doi.org/10.1101/116939doi: bioRxiv preprint 

https://doi.org/10.1101/116939


9 

 

different days. This data set provides a perfect example to illustrate the impact of batch effect. 

As shown in Supplementary Figure S23 the technical parameters, as characterized by 

)�� , �� , �� , ��*, can clearly capture the batch effect. To assess whether type I error is controlled 

under the null scenario, it is necessary to compare two groups of cells that are of the same type.  

To perform this assessment, we divide the 198 neurons into two groups in which group 1 

includes the 26 neurons that have similar )�� , �� , �� , ��* values as the astrocytes and group 2 

includes the remaining 172 neurons.  The methods TASC, SCDE, MAST, DESeq2, SCRAN, 

and SCRAN.SP are then applied to these two groups, and the proportion of genes reported to 

be DE is reported in Table 1.  We see that TASC has well controlled type I error rates at all 

assessed significance levels, whereas all other methods (SCDE, MAST, DESeq2, SCRAN, and 

SCRAN.SP) have severely inflated type I error rates, especially when the p-value threshold is 

reduced to 0.001 and 0.0001.  For example, consider DESeq2, which, according to our 

simulations, has well-controlled type I error when there are no batch effects.  At significance 

level of 0.001, DESeq2 has false positive rate of 1.7%, a 17-fold inflation, and at significance 

level of 0.0001, DESeq2 has false positive rate of 0.76%, corresponding to a 76-fold inflation.  

Even SCDE, which tends to be conservative when there are no batch effects, suffer from type I 

inflation in this real data scenario that contains a possible batch effect.  The patterns are similar 

when we consider all genes in the evaluations. 

Evaluation of power 

To investigate the power of the methods under realistic scenarios, we continue to utilize the 

5,018 genes from the “CA1Pyr2” class in Zeisel et al. data set. Among them, 4,018 genes are 

designated as “true non-DE”, whose counts are directly extracted from the Zeisel et al. data set 

after group membership randomization. The remaining 1,000 are designated as “true DE”, 

whose counts are simulated from parameters estimated with real data, with an induced 

between-group fold change that is randomly sampled from a distribution that generates more 

genes with weak to moderate expression difference than strong difference (details are given in 

Section 2.3 of Supplementary Data). DE analyses are performed with all methods, and raw p-

values are used to estimate the power of each method at various significance levels. The 

average power curves in Figure 6A are obtained by smoothing the estimated power across 

genes with similar fold change. Our results demonstrate that TASC has the highest power, 

followed by SCRAN.SP, SCRAN, DESeq2, MAST, and SCDE. Figure 6B shows that the higher 

sensitivity of TASC is more pronounced when fold change is moderate; for example, when fold 

change is 1.75, at the 0.0001 significance level, the average power of TASC is 8%, 20%, 25%, 

37%, and 428% higher than SCRAN.SP, SCRAN, DESeq2, MAST, and SCDE, respectively. 
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The analysis also indicates the importance of sample size in DE analysis in scRNA-seq 

(Supplementary Figures S21-22). 

Differential Expression analysis on real data 

We continue to use the Zeisel et al. data set to evaluate methods performance when true 

differential expression is present. All five methods are applied to detect DE genes between the 

two level-2 classes “CA1Pyr2” ($ � 380  randomly chosen from 447 cells) and “CA1Pyr1” 

($ � 380). Since these two level-2 classes represent different cell type groups, we expect 

genuine gene expression differences between them. To evaluate the impact of sample size, the 

two groups are subsampled to 


�
, 
�

, 
�

, 

�
, 

��
 of their original size, and differential expression 

analyses are performed on each subsampled data set. The raw p-values are used to detect DE 

genes at the 0.0001 significance level, and the number of detected DE genes is plotted against 

the sample size for each method. The numbers of detected DE genes are shown in Figure 7. 

Consistent with our simulations, SCDE finds the least number of DE genes, followed by MAST, 

whereas SCRAN.SP detects the most number of DE genes when $ is greater than 100. TASC, 

SCRAN, and DESeq2 detect similar number of DE genes across most sample sizes.  

We further evaluate the overlap of DE genes detected by different methods. Since we do not 

know what genes are truly differentially expressed, for each method, we calculate the 

percentage of DE genes that are unique to that method. This is based on the rationale that 

genes detected by two or more methods are more likely to be true DE. Subsequently, a better 

performing method shall have a larger number of detected genes but a smaller percentage of 

genes uniquely detectable by itself. In the full data set, only 0.8% and 1.12% of the DE genes 

detected by SCRAN and TASC are unique to themselves. In contrast, the corresponding 

percentage increases to 1.9% for DESeq2, 20.94% for SCRAN.SP, 1.74% for MAST, and 2.3% 

for SCDE. The higher percentages for these three methods indicate possible false positive 

results. Similar patterns have been observed for comparisons with smaller sample size. 

 

DISCUSSION  

The advent of scRNA-seq has made it possible to explore cellular heterogeneity with 

unprecedented resolution. For the first time, we are able to measure the cell-to-cell variation of 

RNA expression of all genes in the genome across hundreds to thousands of cells. However, 

due to the limitations of current technology, scRNA-seq data are often noisy. Failure to account 
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for technical noise can lead to biased downstream analyses and misleading results. To take full 

advantage of scRNA-seq, it is crucial to account for technical noise so as to better quantify 

biological variation. Here we have described a statistical framework, TASC, that accurately 

estimates cell-specific technical biases, adjusts for them in differential expression analysis, and 

consequently produces results that are more robust to batch effects that exhibit as systematic 

differences between cells.  

TASC utilizes information in spike-ins to account for technical noise in a cell-specific manner. 

Compared to the traditional bulk RNA sequencing, in scRNA-seq the reverse transcription and 

preamplification steps can lead to pervasive dropout events and amplification bias. While 

amplification bias can be alleviated by the use of UMIs, dropout events are harder to control. To 

reliably estimate cell-specific dropout parameters under the paucity of reliable spike-ins at low 

concentrations, we have developed an empirical Bayes procedure that borrows information 

across cells. The accuracy of this empirical Bayes procedure has been examined in simulations 

based on real scRNA-seq data.  

Our evaluations show that TASC is always slightly conservative. However, we are willing to 

accept this slight conservativeness, since the data used in our evaluations are generated under 

an ideal null distribution, and we believe it is more meaningful to examine each method’s 

performance in noisier data where strong deviations from the null can be observed.  This is the 

motivation for our analysis of the data set from SCAP-T involving the comparisons of two groups 

of neurons with batch effects. Our results show that TASC achieves accurate type I error control 

under this noisy setting, whereas other methods have substantially inflated type I errors.   

Since the performance of TASC relies on spike-ins, it is important to determine if the spike-in 

data are reliable so that the algorithm can give reasonable results.  Before applying TASC, we 

would always recommend a visual examination of the spike-in data using plots similar to Figure 

1. One should see the sigmoidal curve for the probability of dropout, and a line for the log mean 

observed versus log mean actual counts.  These curves, which are computed across cells, give 

a sanity check that the spike-ins are diluted to an appropriate concentration.  For each cell, one 

could also plot the log actual count versus the log observed count of the spike-in molecules, and 

compute the G� of the linear fit (Supplementary Figures S24 and S25).  If this G� is too low, 

the spike-in data for that cell may give poor estimates of technical parameters.  One could throw 

away cells with G� values below a threshold, on the basis of unreliable spike-ins, but we believe 

that is not necessary due to the shrinkage imposed by our empirical Bayes model. For those 

cells where the observed spike-in counts are too noisy, estimates of the technical parameters 
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are shrunk more aggressively to the cross-cell means, and thus for these less-than-ideal cases 

one could still have usable technical parameters for normalization.  

In scRNA-seq data analysis, it is critical to filter out cells with low quality. A commonly used 

strategy for filtering is to remove cells in which more than 20% reads come from ERCC spike-

ins, on the basis that these cells may have been compromised during the experiment.  We are 

not against this filtering strategy, however, we believe that this pre-filtering is not strictly 

necessary if the adjustment is made for technical dropout and cell size in downstream analyses.  

Since the cells with >20% ERCC reads would have small estimated size, and since most genes 

in a small cell would have zero count or small count prone to dropout, the zeros in such a cell 

would no longer be outliers in a differential expression analysis.  Hence, by careful modeling of 

technical bias and by allowing for cell size as a covariate, TASC reduces the contribution of 

these low quality cells to the analysis and avoids the use of an arbitrary cutoff in eliminating 

cells. 

An important feature of TASC is the ability to adjust for covariates such as cell size and cell 

cycle. Supplementary Figures S26 and S27 show the cell size histogram for the two data sets 

we analyzed.  For the Zeisel et al. data, since the two groups being compared are both 

pyramidal neurons, cell sizes are comparable.  But for the SCAP-T data, astrocytes and 

neurons differ substantially in cell size.  If the goal is to compare astrocytes and neurons, then 

adjustment of cell size might be necessary.  In practice, when should cell size adjustment be 

made?  This depends on the biological question:  If the goal is to find genes that differ in 

concentration between two cell types, then one should adjust for cell size.  If one doesn’t adjust 

for cell size, then most genes would be significant, since the expression of most genes scale 

with cell size, and thus, the genes that are markers for real pathway differences between cell-

types would be hard to detect.  Ultimately, whether to adjust for cell size is a decision for the 

user, and our goal through TASC is to provide the flexibility.  For cell cycle, we rely on a curated 

set of marker genes, such as the set from Tirosh et al. (21), or a latent factor representing cell 

cycle, as from Buettner et al. (22).  The two data sets that we analyze involve non-cycling cells, 

and thus adjustment for cell cycle is not necessary.   

The hierarchical mixture model underlying TASC allows for flexible modeling of the true 

biological variation of gene expression across cells, and thus can be adapted to tackle many 

interesting biological questions. For example, ranking the estimated values of ��� allows us to 

identify biologically variable genes. The posterior expectation of ��� also gives us the inferred 

true expression value given the observed read counts. To illustrate the importance of accurate 
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adjustment for cell-specific technical noise, in this paper we benchmark TASC against existing 

methods for differential expression analysis. TASC currently makes the assumption that true 

expression levels follow log-Normal distributions, however it can be readily extended to assume 

other forms for ��, for example, the Poisson-Beta distribution if the modeling of transcriptional 

bursting is of interest (25). 

TASC incorporates the estimated technical parameters, which reflect cell-to-cell differences that 

may lead to batch effects, into a hierarchical mixture model to estimate the biological variance of 

a gene and to detect DE genes. The EM algorithm implemented in TASC offers a flexible and 

efficient approach to adjust for additional covariates to further eliminate confounding originated 

from cell size and cell cycle differences. In our evaluations, TASC appears to be robust in the 

detection of DE genes when batch effects are present. 

The current implementation of TASC assumes that the true expression levels of a gene follow a 

logNormal distribution in cells. We recognize that logNormal does not entirely reflect the true 

distribution as transcriptional bursting could lead to zeros in the expression. A more realistic 

distribution is zero-inflated logNormal, which accounts for true zeros in gene expression. We 

choose to use logNormal because it is simple and fast to fit. To examine the impact of 

misspecification of distribution, we have conducted additional simulations and found that the use 

of the simplified logNormal distribution does not lead to noticeable drop in power when the goal 

is to detect mean expression difference between two groups. However, a zero-inflated 

distribution for true expression distribution allows the detection of subtler signals beyond change 

in mean, an analysis goal that was emphasized in Vallejos et al. (26).  Examples of such subtle 

but important signals include change in the probability of a gene having nonzero expression, 

and change in variance of the nonzero mixture component. We are currently extending TASC to 

account for this possibility. 

TASC is implemented in an open-source program (https://github.com/scrna-seq/TASC), with 

multithreading acceleration by openMP. For example, a data set of 104 cells and 6,405 genes 

takes 45MB of memory and 18.6 minutes using 20 cores (Intel(R) Xeon(R) CPU E5-2660 v3 @ 

2.60GHz) with Laplacian approximation using the binary we provided. Better performance can 

be achieved when using binaries compiled on the user’s hardware. We believe that TASC will 

provide a robust platform for researchers to leverage the power of scRNA-seq.  

 

SUPPLEMENATARY DATA 
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Supplementary Data are available at NAR Online. 
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FIGURE LEGENDS 

Figure 1:  Proportion of cells with non-zero read count (in a) and mean across cells of log read 

count (in b) versus log true molecule count for ERCC spike-ins in Zeisel et al. data.  Included in 

the plot are the best logistic curve fit (in a) and the best linear fit (in b).   

Figure 2: Schematic of TASC model for a single gene � across $ cells, with ��� being true 

absolute expression, ��� being observed read count, and ��� , ��� being intermediate variables 

that model dropout and amplification, capture, and sequencing biases.   

Figure 3: Distributions of empirically estimated values of )�H� , �>�* and )�̂� , �̂�* across all cells in 

Zeisel data.  Four cells are selected from each plot to represent the distribution, and the line (in 

a) and logistic curve (in b) corresponding to the technical parameters estimated for these cells 

are shown in matching colors. 

Figure 4: Distribution of achieved p-values (in a) and the corresponding quantile-quantile plots 

(in b)  for four methods applied to CA1Pyr2 cells from Zeisel et al. data, split randomly into two 

groups, thus emulating a case where all p-values should be uniformly sampled from [0,1]. 

Figure 5:  Accuracy of false positive rate control under mild to severe batch effects for TASC, 

SCDE, MAST, and DESeq2. The batch effect severity takes the form of between-group 

difference in the expected values of the technical parameters, denoted by Δ�3�5 and Δ�3�5 (in a), 

and Δ�3�5 and Δ�3�5 (in b) in the axes of the heatmaps.  The color scale of the heatmaps 

reflects deviation of achieved false positive rate from the target value of 0.05 used in the tests.   

Figure 6: a) Achieved power of TASC, SCDE, MAST, DESeq2, SCRAN, and SCRAN.SP for 

detecting varying fold changes in mean in the simulated data set within 100 cells in each group. 

Results both with (SCRAN.SP) and without (SCRAN) the use of ERCC are included for SCRAN. 

b) Power differences between TASC and the other methods in the simulated data set.  Details 

of data simulation, and power comparisons under more comprehensive settings, are in 

Supplementary Data.   

Figure 7: Number of DE genes identified by each method between two level-2 classes in Zeisel 

et al. data at the 0.0001 significance level, under varying sample sizes. 
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Filter Filter 1 Filter 2 

Significance 
Level 

0.05 1e-2 1e-3 1e-4 1e-5 0.05 1e-2 1e-3 1e-4 1e-5 

TASC 2.15e-2 2.33e-3 0 0 0 3.09e-2 5.78e-3 5.36e-4 8.93e-5 2.98e-5 

SCDE 4.28e-2 1.65e-2 4.74e-3 1.46e-3 3.45e-4 9.42e-2 3.46e-2 8.72e-3 1.79e-3 1.79e-4 

MAST 4.89e-2 1.12e-2 1.81e-3 7.75e-4 2.58e-4 7.42e-2 2.62e-2 1.21e-2 8.45e-3 6.25e-3 

DESeq2 1.70e-1 8.44e-2 3.52e-2 1.69e-2 8.27e-3 1.25e-1 5.91e-2 2.32e-2 1.01e-2 4.79e-3 

SCRAN.SP 2.50e-1 1.39e-1 6.63e-2 3.67e-2 2.11e-2 1.69e-1 9.13e-2 4.19e-2 2.21e-2 1.21e-2 

 

Table 1: Proportion of DE genes identified by each method in SCAP-T data at varying 

significance levels. Filter 1 keeps the top 25% of genes in total read account across all 

the cells. Filter 2 keeps all the genes with non-zero counts in 5 cells or more. Naïve 

SCRAN without the use of spike-ins is not included in this comparison, for the package 

fails to run due to there being “not enough cells in each cluster for specified ‘sizes’”. 
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