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 2

Abstract 36 

• Across the global flora, photosynthetic and metabolic rates depend more strongly on 37 

leaf area than leaf mass. In contrast, intraspecific variation in these rates is strongly 38 

mass-dependent. These contrasting patterns suggest that the causes of variation in leaf 39 

mass per area (LMA) may be fundamentally different within vs. among species. 40 

• We used statistical methods to decompose LMA into two conceptual components – 41 

‘photosynthetic’ LMAp (which determines photosynthetic capacity and metabolic 42 

rates, and also affects optimal leaf lifespan) and ‘structural’ LMAs (which determines 43 

leaf toughness and potential leaf lifespan) using leaf trait data from tropical forest 44 

sites in Panama and a global leaf-trait database. 45 

• Statistically decomposing LMA into LMAp and LMAs provides improved predictions 46 

of trait variation (photosynthesis, respiration, and lifespan) across the global flora, and 47 

within and among tropical plant species in Panama. Our analysis shows that most 48 

interspecific LMA variation is due to LMAs (which explains why photosynthetic and 49 

metabolic traits are area-dependent across species) and that intraspecific LMA 50 

variation is due to changes in both LMAp and LMAs (which explains why 51 

photosynthetic and metabolic traits are mass-dependent within species).  52 

• Our results suggest that leaf trait variation is multi-dimensional and is not well-53 

represented by the one-dimensional leaf economics spectrum. 54 

 55 

Keywords: Bayesian inference, functional diversity, global vegetation models, interspecific 56 

variation, intraspecific variability, latent variables, null models, optimal leaf lifespan 57 

  58 

Introduction 59 

Over the past two decades, the ‘leaf economics spectrum’ (LES) (Reich et al., 1997; 60 

Wright et al., 2004; Reich, 2014) has become a cornerstone of plant ecology. The LES 61 

captures tight relationships among leaf mass per area (LMA), leaf lifespan (LL), and mass-62 

normalized leaf traits related to carbon fixation and nutrient use, suggesting the presence of a 63 

single dominant axis of leaf functional variation, ranging from short-lived leaves with high 64 

photosynthetic potential and fast returns on investment to long-lived leaves with low 65 

photosynthetic potential and slow returns (Wright et al., 2004; Westoby & Wright, 2006; 66 

Reich, 2014). Because the mass-based LES constrains variation in green leaf traits to a single 67 

axis, it has been proposed as a simple framework for incorporating more realistic levels of 68 
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leaf trait diversity in global carbon-climate models (Bonan et al., 2002; Wright et al., 2004). 69 

However, recent analyses suggest that the one-dimensional LES is largely the result of high 70 

interspecific variation in LMA combined with mass-normalization of area-dependent traits 71 

(Osnas et al., 2013; Lloyd et al., 2013). 72 

The essence of the problem follows (see Osnas et al. 2013 and Notes S1 for details). 73 

Let X represent the whole-leaf value of a purely area-dependent trait; i.e., X is proportional to 74 

leaf area, where X could be the photosynthetic capacity of the entire leaf (units = moles CO2 75 

fixed per-unit time), the amount of nitrogen in the entire leaf (units = grams of nitrogen), etc. 76 

The mass-normalized trait value would then be X/Mass, which (assuming X is proportional to 77 

leaf area) is proportional to Area/Mass = LMA–1. This simplistic example shows that if traits 78 

are actually area-dependent, mass normalization can introduce spurious correlations; i.e., in 79 

this example, X/Mass is proportional to LMA–1, even though X is assumed to depend only on 80 

leaf area. Thus, the strong correlations observed among LMA and mass-normalized traits 81 

(Reich et al. 1997; Wright et al. 2004) should not be taken as evidence for a single dominant 82 

axis of leaf functional variation (Osnas et al., 2013; Lloyd et al., 2013). 83 

An important observation suggesting the presence of multiple axes of leaf functional 84 

variation is that trait relationships across species are sometimes inconsistent with those 85 

observed within species. For example, across species in the global flora, LMA has a strong, 86 

positive relationship with LL but a weak relationship with net photosynthetic capacity per-87 

unit leaf area (Aarea) (Wright et al., 2004). In contrast, intraspecific variation in these traits 88 

across vertical canopy (light) gradients shows the opposite pattern: within species, LMA has 89 

a weak and/or negative relationship with LL (Osada et al., 2001; Lusk et al., 2008; Russo & 90 

Kitajima, 2016) but a strong, positive relationship with Aarea (Ellsworth & Reich, 1993; 91 

Kenzo et al., 2006; Niinemets et al., 2014). These contrasting patterns suggest that the causes 92 

of LMA variation may be fundamentally different within vs. among species. Furthermore, 93 

variation in four traits related to photosynthesis and metabolism – net photosynthetic 94 

capacity, dark respiration rate, and concentrations of nitrogen and phosphorus – are primarily 95 

mass-dependent among species within some plant functional groups, and primarily area-96 

dependent within others (Osnas et al., in review). Thus, leaf trait relationships diverge in a 97 

number of intra- and interspecific comparisons, suggesting the presence of multiple axes of 98 

functional variation that can combine in different ways to create a variety of patterns.  99 

A conceptual model that might explain these divergent patterns is to view LMA as 100 

being comprised of two primary components – ‘photosynthetic’ leaf mass (LMAp, which 101 

determines photosynthetic capacity and associated metabolic activity, such as phloem-102 
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loading) and structural leaf mass (LMAs, which determines toughness and thus potential LL) 103 

(Osnas et al., in review). This conceptual model can potentially explain the above divergent 104 

trait patterns, because variation in LMAp leads to mass-dependence of photosynthetic and 105 

metabolic traits, whereas variation in LMAs leads to area-dependence of these same traits 106 

(Notes S2). Thus, the degree of area- vs. mass-dependence in a given leaf assemblage should, 107 

according to this conceptual model, depend on the relative contributions of LMAp and LMAs 108 

to total LMA variation in the assemblage. 109 

A challenge to implementing the above conceptual model is the absence of direct 110 

measurements of LMAp and LMAs. Although some leaf mass components are clearly 111 

associated with certain functions (e.g., chloroplasts perform photosynthesis), it is difficult to 112 

neatly partition some leaf mass components to specific functions. For example, thick cell 113 

walls provide structural toughness and allow for long LL (Kitajima et al., 2012), but a leaf 114 

without any cell wall mass would lack the biomechanical support needed to intercept light 115 

and perform photosynthesis. Thus, it is difficult to determine how much of the cell wall mass 116 

present in a leaf was constructed for photosynthesis and associated metabolic functions, vs. 117 

how much additional cell wall mass was constructed for the purpose of prolonging LL. 118 

Despite this challenge, it should be possible to use multivariate trait datasets to statistically 119 

partition LMA into LMAp and LMAs, because statistical relationships among net 120 

photosynthetic capacity (Amax), dark respiration rate (Rdark), LMA, and LL should hold clues 121 

regarding the allocation of leaf mass to photosynthetic vs. structural functions. 122 

In this paper, we explore the above conceptual model using leaf trait data from two 123 

tropical forest sites (sun and shade leaves from wet and dry sites in Panama) and the 124 

GLOPNET global leaf traits database (Wright et al. 2004). For simplicity, our analysis 125 

assume that LMA is equal to the sum of separate additive components, LMAp and LMAs. 126 

The goal of our analysis is to evaluate if the conceptual model described above can explain 127 

divergent patterns in leaf trait data, and if so, to use the model to elucidate the causes of these 128 

divergent patterns. First, we describe a statistical modeling framework to estimate LMAp and 129 

LMAs, and we use simulations to show that the model yields robust results that are not prone 130 

to statistical artifacts. Then, we ask the following questions: (1) Does decomposing LMA into 131 

photosynthetic and structural components lead to improved predictions of Amax, Rdark, and 132 

LL? (2) What is the relative importance of LMAp vs. LMAs in explaining variation in LMA 133 

within and among species? (3) Do LMAp and LMAs differ between evergreen and deciduous 134 

species, and between sun and shade leaves? and (4) How are measurable leaf photosynthetic 135 
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and structural traits (e.g., concentrations of nitrogen and cellulose) related to LMAp and 136 

LMAs?  137 

Our model is conceptually similar to that of Shipley et al. (2006), which explained the 138 

LES in terms of a tradeoff between the volume of a leaf allocated to cell wall vs. protoplasm. 139 

An important difference between our analysis and that of Shipley et al. (2006) is that our goal 140 

is to understand divergent trait patterns within vs. among species, whereas Shipley et al. 141 

(2006) focused only on interspecific variation. Because we treat LMA as the sum of LMAp 142 

and LMAs without considering how these mass components are packaged within a leaf, our 143 

model ignores the effects of leaf anatomy. For example, a given cell wall mass per leaf area 144 

may be packaged into a large surface area with thin walls (high mesophyll conductance and 145 

Amax, but low structural toughness) or a small surface area with thick walls (low mesophyll 146 

conductance and Amax, but high structural toughness) (Onoda et al., 2017). Despite its lack of 147 

anatomical detail, our model explains much of the inter- and intraspecific variation in Amax, 148 

Rdark, and LL (see Results) and provides novel insights into the causes of divergent patterns of 149 

trait variation within vs. among species (see Discussion).  150 

 151 

Material and Methods 152 

Model overview 153 

We developed a statistical modeling framework to partition LMA into additive LMAs and 154 

LMAp components (see below and Notes S3). For sample i (where ‘sample’ refers to a 155 

species, or a species × canopy position combination; see Datasets below), we partition LMAi 156 

into LMApi = fi × LMAi and LMAsi = (1 – fi) × LMAi by estimating a latent variable fi. The 157 

latent variables fi are not directly observed, but they can be constrained by available data 158 

using Bayesian methods (Bishop, 2006; Gelman & Hill, 2006). For example, posterior 159 

distributions for LMApi should tend to converge on high values for leaves with high Aarea, 160 

and posterior distributions for LMAsi should tend to converge on high values for leaves with 161 

high LL. Given the large number of free parameters (i.e., one latent variable per leaf sample), 162 

it is possible for the model to over-fit the data, which could lead to spurious inferences. 163 

Therefore, we performed tests with randomized data (see below) and with simulated data to 164 

evaluate model performance under a range of conditions (Notes S4). Tests with simulated 165 

data suggest that our modeling approach is robust and not prone to producing artefactual 166 

results. 167 

 168 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2017. ; https://doi.org/10.1101/116855doi: bioRxiv preprint 

https://doi.org/10.1101/116855
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6

Modeling leaf lifespan, photosynthetic capacity, and dark respiration in relation to 169 

photosynthetic and structural leaf mass components 170 

We assume that the sum of photosynthetic leaf mass per area (LMAp) and structural leaf 171 

mass per area (LMAs) is equal to total observed LMA for leaf sample i (where a ‘sample’ is a 172 

species in the GLOPNET dataset, or a species × canopy position combination in the Panama 173 

dataset): 174 LMA�  �  LMAp�  �  LMAs�  (1) 175 LMAp�  �  	�LMA�  (2) 176 LMAs�  � 
1 �  	�
LMA�  (3) 177 

where, fi is the fraction of LMAi that is comprised of LMApi. The fi terms are not directly 178 

observed but can be estimated as latent variables in a Bayesian modeling framework (see 179 

details below). In our model, gross photosynthetic capacity (approximated here as the sum of 180 

Aarea and Rarea) is determined by LMAp, LL is determined by LMAs, and total leaf dark 181 

respiration is the sum of respiration components due to photosynthetic and structural tissues: 182 E�gross photosynthesis� �  E������ � � ����� �� � �LMAp� � �	�LMA�   (4) 183 E�LL�� � ��LMAs� � ��
1 � 	�
LMA�   (5, Potential LL Model) 184 E������ ��  �  ��LMAp� �  ��LMAs�  �  ��	�LMA�  � ��
1 � 	�
 LMA�   (6) 185 

where, E[·] is the expected value of the variable in brackets, Aarea i, Rarea i, and LLi, are, 186 

respectively, the net photosynthetic rate (Amax) per unit area, dark respiration rate (Rdark) per 187 

unit area, and leaf life span of leaf i; α is net photosynthetic rate per unit photosynthetic 188 

mass; β1 is leaf lifespan per unit structural mass; and rp and rs, are, respiration rates per unit 189 

photosynthetic and structural leaf mass, respectively. Eq. 5 is labeled “Potential LL Model”, 190 

because this model assumes that LL is affected only by structural toughness (which we 191 

assume is proportional to LMAs), in contrast to an alternative model based on optimal LL 192 

theory (see Eqs. 12-14 below). The logarithms of gross photosynthesis, LL, and Rarea are 193 

assumed to have a multivariate normal distribution (MVN): 194 

�ln ������ � � ����� ��ln �LL�� ln ������ �� ! ~MVN %&��&	�&
�

, () (7) 195 

&�� � ln � � ln 	� � ln LMA� � ��
�

	
 (8) 196 

&	� � ln �� � ln
1 � 	�
 � ln LMA� � ��
�

	
  (9) 197 

&
� � ln���	�LMA� � ��
1 � 	�
LMA�� � ��
�

	
  (10) 198 
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( � � *�
	 +�	*�*	 +�
*�*
+�	*�*	 *	

	 +	
*	*
+�
*�*
 +	
*	*
 *

	

! (11) 199 

where μ1-3 are, respectively, the expected values of ln[Aarea i + Rarea i], ln[LLi], and ln[Rarea i] 200 

(from Eqs. 4-6); Σ is the covariance matrix; σ1, σ2, and σ3 are standard deviations of μ1-3; and 201 

ρ12, ρ13, and ρ23 are correlation coefficients among μ1-3 (e.g., we expect positive covariance 202 

between μ1 and μ3 because both include Rarea i). 203 

In addition to Eq. 5 (Potential LL Model), we considered an alternative assumption 204 

for the relationship between LL and other traits based on optimal LL theory (Kikuzawa, 205 

1991; Kikuzawa et al., 2004; 2013). According to this theory, the optimal leaf lifespan 206 

(LLopt) maximizes a leaf’s lifetime carbon gain per-unit time, which is determined by 207 

potential LL, net photosynthetic rate, and construction cost per unit leaf area: 208 

LL�
� �  ,2.//
1 � 2
 (12) 209 

where a is the realized (i.e., light-dependent) gross photosynthetic rate per unit leaf area, m is 210 

the realized daily respiration rate per unit leaf area, b is the rate of decline in photosynthetic 211 

capacity with leaf age (which determines potential LL in the Kikuzawa model), and C is the 212 

construction cost per unit leaf area. To implement this Optimal LL Model, we assumed that 213 

(i) potential LL is proportional to LMAs; and (ii) leaf construction cost per unit area (g 214 

glucose per unit leaf area) is proportional to LMA. Assumption (ii) is justified because leaf 215 

construction cost per unit mass (g glucose per unit leaf mass) is strongly conserved (Williams 216 

et al., 1989; Villar & Merino, 2001). Thus, Eq. 12 can be written in terms of the traits 217 

considered in our analysis as: 218 

E�LL�� � �	,LMAs�LMA�/
3������ � � ����� �
 

            � �	4
1 � 	�
LMA�
	/
3������ � � ����� �
  (13, Optimal LL Model) 219 

where β2 is a constant, and θL (0 < θL < 1) is a scaling parameter that accounts for the effects 220 

of light availability on the realized photosynthetic rate (Kikuzawa et al., 2004) (see Notes 221 

S3). The expected value of the logarithm of LL (&	�  in Eq. 7) for the Optimal LL Model is: 222 

&5	� � ln �	 � ln LMA� � �

	
�ln
1 � 	�
 � ln
3������ � � ����� �
� � ��

�

�

	
. (14) 223 

We fit the Optimal LL Model to the Panama data (see Methods/Datasets in main text), 224 

which includes both sun and shade leaves for 26 out of 106 total species. We set θL = 1 for 225 

sun leaves, and we fit θL as a single free parameter assigned to all shade leaves. We 226 

considered versions of the Optimal LL Model both with and without an additional parameter 227 
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to account for differences in LL between the dry and wet sites due to mechanisms not 228 

included in the model (Notes S3). 229 

 230 

Datasets 231 

To fit the models described above, we used LMA (g m-2), net photosynthetic capacity per unit 232 

leaf area (Aarea; μmol s-1 m-2), dark respiration rate per unit leaf area (Rarea; μmol s-1 m-2) and 233 

LL (months) from the GLOPNET global leaf traits database (Wright et al., 2004) and from 234 

two tropical forest sites in Pana 235 

ma: Monumental Natural Metropolitano (MNM, “dry site”) and Bosque Protector San 236 

Lorenzo (SL, “wet site”). The Panama data include leaves sampled at two canopy positions 237 

(“sun”: full sun at the top of the canopy; and “shade”: well shaded, sampled within 2 m of the 238 

forest floor) from trees within reach of a canopy crane at each site. The dry MNM site is a 239 

semi-deciduous coastal Pacific forest with a 5-month dry season from December-April and 240 

1740 mm of annual rainfall (Wright et al., 2003). The MNM crane is 40 m tall with a 51 m 241 

long boom. The wet SL site is an evergreen Caribbean coastal forest with 3100 mm of annual 242 

rainfall (Wright et al. 2003). The SL crane is 52 m tall with a 54 m long boom. 243 

After deleting leaf samples (i.e., database records, which typically average over 244 

multiple individual leaves) that lacked one of the four traits (LMA, Aarea, Rarea, or LL), 198 245 

samples for 198 unique species were available for GLOPNET, and 132 samples for 106 246 

unique species were available for Panama (dry and wet sites combined; 26 species sampled in 247 

both sun and shade; no species with all four traits available at both sites). Both datasets 248 

include additional traits that we used to interpret model results, but which were not used to fit 249 

models. These traits include nitrogen and phosphorus content per leaf unit area (Narea and 250 

Parea; g m-2) in both datasets, leaf habit in GLOPNET (deciduous or evergreen), and cellulose 251 

content per unit area (CLarea; g m-2) in Panama. 252 

We fit the Potential LL Model (Eq. 5) to both GLOPNET and Panama data. We fit the 253 

Optimal LL Model (Eq. 13; Notes S3) only to the Panama data because GLOPNET primarily 254 

represents interspecific variation among sun leaves, whereas the Optimal LL Model was 255 

motivated by the negative intraspecific LL-LMA relationship observed in Panama (Osnas et 256 

al. in review) and elsewhere (Lusk et al., 2008).  257 

  258 

Parameter estimation 259 
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We used independent and non-informative prior distributions for all parameters, including 260 

latent variables fi for each leaf sample. All priors were non-informative. The covariance 261 

matrix in Eq.11 in main text was decomposed as Σ = diag(σ) Ω diag(σ) = diag(σ) LL′ 262 

diag(σ) using a Cholesky decomposition, where σ is a vector of σ1, σ2 and σ3; Ω is a 263 

correlation matrix of ρ12, ρ13, and ρ23; and L is a lower triangular matrix. Instead of assigning 264 

prior distributions on Σ directly, priors were assigned on σ and L to avoid a strong 265 

dependence between σ and Ω (Lewandowski et al., 2009; Alvarez et al., 2016). A prior for L 266 

was specified as a so-called LKJ distribution with shape parameter 1 (Lewandowski et al., 267 

2009), which is identical to a uniform distribution on the space of correlation matrices. Priors 268 

for σ were specified as uniform distributions with range (0, 10,000). Priors for α, β1, β2, rp 269 

and rs in Eqs. 4-6, 8-10, and 13-14 were specified as normal distributions with mean 0 and 270 

variance 10,000. Priors for fi in Eqs. (2, 3, 8-10, 14), and θL in Eqs. (13-14) were specified as 271 

uniform distributions with range (0, 1).  272 

Alternative priors for fi were considered, but none were presented as main results, 273 

because the alternative priors produced statistical artifacts (Notes S4). In order to constrain 274 

the latent variables in our model, a natural choice is to implement hyper-parameters to 275 

describe prior means of the latent variables (e.g., different prior means of fi for deciduous vs 276 

evergreen leaves). However, analyses of simulated data suggest that using hyper-parameters 277 

in our model results in biased inference for fi as well as regression parameters (Notes S4). 278 

Models were fit using the Hamiltonian Monte Carlo algorithm (HMC) implemented 279 

in Stan (Carpenter et al., 2016). Posterior estimates were obtained from three independent 280 

chains of 20,000 iterations after a burn-in of 10,000 iterations, thinning at intervals of 20. The 281 

Stan code use to fit models are available from Github at: 282 

https://github.com/mattocci27/LMApLMAs. Convergence of the posterior distribution was 283 

assessed with the Gelman-Rubin statistic with a convergence threshold of 1.1 for all 284 

diagnostics (Gelman et al., 2014a).  285 

 286 

Model selection 287 

Alternative LL models (Eqs. 5 and 13; see also Notes S3) fit to Panama data were compared 288 

using the WAIC (Watanabe-Akaike information criterion) (Watanabe, 2010; Gelman et al., 289 

2014b). WAIC is a predictive information criterion for Bayesian models, with lower values 290 

indicating a more parsimonious model (Gelman et al., 2014b). Compared to AIC (Akaike, 291 

1973) and DIC (Spiegelhalter et al., 2002), WAIC has the desirable property of averaging 292 
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over the posterior distribution rather than conditioning on a point estimate (Gelman et al., 293 

2014b).  294 

 295 

Variance partitioning 296 

We used the following identity to estimate the relative contributions of LMAp and LMAs to 297 

LMA variance, where again LMA = LMAp + LMAs: 298 Var 
7 � 81 � 81
 � Cov
7, 81 � 82
 � Cov
7, 81
 � Cov
7, 82
  (15) 299 

Thus, the fractions of total LMA variance due to variance in LMAp and LMAs were 300 

determined by the covariances Cov(LMA, LMAp) and Cov(LMA, LMAs), respectively, 301 

taken as proportions of the total variance Var(LMA). Tests with simulated data confirm that 302 

our modeling approach can effectively partition LMA variance into LMAp and LMAs 303 

components (Notes S4). 304 

 305 

Randomized LMA datasets 306 

Because our statistical approach includes one latent variable fi to partition LMA into LMAp 307 

and LMAs for each leaf sample, one might expect a good match between predictions and 308 

observations simply due to the large number of free parameters, whether or not the model 309 

captured important biological mechanisms. To evaluate model performance while controlling 310 

for the number of free parameters, we compared the fit of our model to observed and 311 

randomized datasets. Specifically, we generated randomized datasets by randomizing LMA 312 

values across species, while maintaining the original (non-randomized) data for Aarea, Rarea 313 

and LL. Thus, the randomized LMA datasets had zero expected covariance between LMA 314 

and other traits, but maintained the observed covariances among Aarea, Rarea and LL. If the fit 315 

between model and data depended primarily on the number of parameters or other model 316 

assumptions, then we would expect similar fits for the original (non-randomized) and 317 

randomized LMA datasets. For the Panama dataset, which includes two sites (wet and dry) 318 

and two canopy strata (sun and shade), we also considered constrained randomizations in 319 

which LMA was randomized across canopy strata within each site. We generated 10 320 

randomized datasets for each analysis. Analyzing a larger number of randomized datasets 321 

(e.g., 1000) was impractical given our computationally intensive Bayesian modeling 322 

approach. 323 

To compare model results obtained from the observed (non-randomized) dataset to 324 

those obtained from the randomized datasets, we calculated the standardized effect size (SES) 325 

for correlations of interest (e.g., between LMAp and Aarea, or between LMAs and LL) as SES 326 
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= (robs – rrand)/SDrand, where robs is the Pearson correlation coefficient of interest for the 327 

observed dataset, and rrand and SDrand are the mean and standard deviation, respectively, of the 328 

corresponding correlation coefficients for the randomized datasets. Under the null hypothesis 329 

of equal correlations for the observed and randomized data, the distribution of SES is 330 

approximately standard normal (Gotelli & Rohde, 2002), which we assumed when 331 

calculating P-values. A significant difference (P < 0.05) indicates that the correlation inferred 332 

from the observed dataset is different from what would be expected to emerge from model 333 

assumptions and free parameters.  334 

 335 

Results 336 

1. Photosynthetic and structural LMA components (LMAp and LMAs, respectively) 337 

can be accurately estimated.  338 

Tests with simulated data show that our modeling approach can accurately partition LMA 339 

into LMAp and LMAs, except in cases where the assumed relationships (e.g., between 340 

LMAp and Aarea, and between LMAs and LL) are weak (Notes S4). However, tests with 341 

simulated data also show that the LMA-randomization test we implemented can effectively 342 

diagnose these weak-correlation cases (Notes S4). Therefore, in all cases presented below 343 

where results based on observed data are significantly different (P < 0.05) than results based 344 

on randomized data, we assume that estimates of LMAp and LMAs (Eqs. 1-3) are accurate 345 

and that the results reflect meaningful patterns in the data. 346 

 347 

2. Nearly all leaf dark respiration is associated with photosynthetic leaf mass. 348 

Photosynthetic mass (LMAp) accounted for nearly all leaf dark respiration; i.e., estimated 349 

dark respiration rate per-unit structural mass (rs) was close to zero in analyses of both 350 

GLOPNET and Panama data (Table S1). Thus, although building costs are likely similar for 351 

different leaf chemical components and tissues (Williams et al., 1989; Villar & Merino, 352 

2001), our results suggest that leaf mass associated with photosynthetic function accounts for 353 

nearly all leaf maintenance respiration. 354 

 355 

3. Decomposing LMA into photosynthetic and structural components leads to improved 356 

predictions of Aarea, Rarea and LL.  357 

For the GLOPNET global dataset, Aarea had a strong positive correlation with LMAp, a weak 358 

negative correlation with LMAs, and a non-significant correlation with total LMA (Figs. 1a-359 

c; Table S2). Aarea was also positively correlated with LMAp in the randomized datasets (in 360 
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which LMA was randomized among leaves in GLOPNET; see gray symbols in Fig. 1), but 361 

these correlations were weaker than those obtained from the observed data (P < 0.001 for the 362 

null hypothesis of equal correlation in observed and randomized datasets). Rarea in GLOPNET 363 

also had a strong positive correlation with LMAp, which was stronger than the correlation 364 

between Rarea and LMAp in the randomized datasets (P < 0.001), or between Rarea and either 365 

LMA or LMAs (Figs. 1d-f). Finally, LL in GLOPNET had a strong positive correlation with 366 

LMAs, which was stronger than the correlation between LL and LMAs from the randomized 367 

datasets (P < 0.001) or between LL and either LMA or LMAp (Figs. 1g-i). 368 

For the Panama dataset, we evaluated multiple models due to the availability of both 369 

sun and shade leaves. The Optimal LL Model (Eq. 13) fit the data better than the Potential LL 370 

Model (Eq. 5) according to the Watanabe-Akaike information criterion (WAIC; Table S1). 371 

Including site effects in the Optimal LL Model further improved the WAIC but led to similar 372 

parameter estimates and inferences (Table S1-3). All Panama results we report are for the 373 

Optimal LL Model with site effects unless stated otherwise. Aarea and Rarea had stronger and 374 

more positive correlations with LMAp than with LMA or LMAs (Figs. 2a-f and Table S3). 375 

LL was not significantly correlated with LMA when all leaves were combined, but was 376 

strongly correlated with LMA for shade leaves at the dry site (Fig. 2g). The correlation 377 

between LL and LMAp was similar for observed and randomized datasets (Fig. 2h; Table 378 

S3), implying a lack of meaningful correlation between LL and LMAp in the Panama data. 379 

The correlation between LL and LMAs was weaker in observed than in randomized data 380 

(Fig. 2i) because the LL vs. LMAs relationship ignores important factors in the Optimal LL 381 

Model (e.g., effects of light on realized photosynthetic rates and thus optimal LL). The 382 

correlation between predicted and observed LL was higher in the Optimal LL Model (r = 383 

0.81) than for randomized datasets (P < 0.001), and also stronger than for the Potential LL 384 

Model (r = 0.38) (Fig. 3; Table S4).  385 

  386 

4. Most interspecific LMA variation is due to variation in structural leaf mass, not 387 

photosynthetic leaf mass.  388 

LMAs accounted for the majority of interspecific variation in LMA among all leaves in 389 

GLOPNET (74.7%), among sun leaves in Panama (57.8%), and among shade leaves in 390 

Panama (86.0%) (Fig. 4).  391 

 392 

5. Evergreen leaves have greater LMAs than deciduous leaves, and sun leaves have both 393 

greater LMAp and LMAs than shade leaves.  394 
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In the GLOPNET dataset, evergreen leaves had significantly higher LMAs than deciduous 395 

leaves, but the two groups had similar LMAp (Fig. 5). Thus, the higher total LMA in 396 

evergreen leaves in GLOPNET was primarily due to differences in LMAs (which comprised 397 

a greater fraction of LMA in evergreen than in deciduous leaves; Fig. S1a). Similar results 398 

were obtained for the Panama dataset (evergreen leaves have higher LMAs but similar LMAp 399 

compared to deciduous leaves; Fig. S1b). In the Panama dataset, both LMAp and LMAs were 400 

significantly higher in sun leaves than in shade leaves (Fig. 5). Thus, in contrast to 401 

interspecific variation in LMA (which is primarily driven by variation in LMAs; Fig. 4), 402 

intraspecific variation in LMA reflects changes in both LMAs and LMAp. 403 

 404 

6. Nitrogen and phosphorus per-unit leaf area are strongly correlated with LMAp, and 405 

cellulose per-unit leaf area is strongly correlated with LMAs. In the GLOPNET dataset, 406 

Narea and Parea had strong positive correlations with LMAp, but only weak correlations with 407 

LMAs (Fig. S3). Similarly, in the Panama dataset, Narea and Parea had strong positive 408 

correlations with LMAp, but were not correlated with LMAs (Fig. 6). In contrast, cellulose 409 

per-unit leaf area (CLarea), which was available for the Panama dataset but not for GLOPNET, 410 

had a strong positive correlation with LMAs, and a weak positive correlation with LMAp 411 

(Fig. 6). CLarea was more strongly correlated with LMA than with LMAp or LMAs, but sun 412 

and shade leaves aligned along a common CLarea-LMAs relationship, as opposed to being 413 

offset for LMA and LMAp (Figs. 6g-i). The above correlations (Narea and Parea with LMAp, 414 

and CLarea with LMAs) were stronger than those based on randomized datasets (P < 0.001 in 415 

all cases, Fig. 6 and Fig. S3). 416 

 417 

Discussion  418 

Our analyses demonstrate that decomposing LMA variation into separate photosynthetic and 419 

structural components (LMAp and LMAs, respectively) leads to improved predictions of 420 

photosynthetic capacity (Amax), dark respiration rate (Rdark), and leaf lifespan (LL), as well as 421 

clear relationships with traits used for independent model evaluation (nitrogen, phosphorus, 422 

and cellulose concentrations). Tests with simulated data suggest that our results are robust 423 

and reflect meaningful, previously unreported patterns in leaf trait data. Below, we elaborate 424 

on the insights gained from our analysis and the implications of our results for the 425 

representation of leaf functional diversity in global ecosystem models. 426 

 Decomposing LMA into LMAp and LMAs provides insights into why interspecific 427 

variation in leaf traits related to photosynthesis and metabolism are primarily area-dependent 428 
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(i.e., primarily independent of LMA when expressed per-unit area) rather than mass-429 

dependent (see Notes S1-2 and Osnas et al. 2013 for explanation of trait mass- vs. area-430 

dependence). Specifically, our results suggest that most interspecific LMA variation across 431 

the global flora and across tropical tree species in Panama is due to variation in leaf mass 432 

components that contribute to LL but not to Amax (Fig. 4). An illustrative case is the 433 

comparison of evergreen and deciduous leaves in the global flora: according to our model 434 

results, evergreen leaves have greater LMAs (and thus greater LL) but similar LMAp (and 435 

thus similar Aarea) compared to deciduous leaves (Figs. 1 and 5). This comparison illustrates 436 

why interspecific LMA variation is largely unrelated to area-based Amax, which in turn 437 

explains trait area-dependence (Notes S1-2). Consistent with this explanation, the assemblage 438 

we examined where LMAs accounted for the highest fraction of total LMA variation (86% 439 

for Panama shade leaves; Fig. 4) is also the assemblage with the highest degree of trait area-440 

dependence (Osnas et al. in review).  441 

 Decomposing LMA also provides insights as to why intraspecific patterns of trait 442 

variation differ from those observed across species. In contrast to interspecific LMA 443 

variation, our analysis suggests that LMAp contributes half or more of the intraspecific 444 

increase in LMA from shade to sun (Figs. 5 and S1). The increase in LMAp from shade to 445 

sun – which likely reflects an increase in the size and number of palisade mesophyll cells 446 

with increasing light availability (Onoda et al., 2008; Terashima et al., 2011) – is also 447 

associated with an increase in LMAs from shade to sun (Fig. 5). This positive covariance 448 

between LMAp and LMAs within species means that per-area values of LMAp-dependent 449 

traits (e.g., Aarea) have a strong, positive relationship with total LMA, which implies trait 450 

mass-dependence (Notes S1-2). In contrast, because interspecific variation in LMA is due 451 

primarily to variation in LMAs rather than LMAp, LMAp-dependent traits (when expressed 452 

per-unit area) are largely independent of LMA across species, which implies trait area-453 

dependence (Notes S1-2). 454 

 Finally, decomposing LMA provides insights into the intraspecific LL ‘counter-455 

gradient’ (Osada et al. 2001; Lusk et al. 2008; Russo & Kitajima 2016), whereby LL 456 

decreases as LMA increases from shade to sun within species, which contrasts with positive 457 

interspecific LL-LMA relationships within a single light environment. Decomposing LMA 458 

into LMAp and LMAs suggests that the decline in photosynthetic rate from sun to shade 459 

(which increases optimal LL from a carbon-gain perspective; Kikuzawa 1991) is sufficient to 460 

produce an intraspecific counter-gradient, because a counter-gradient occurs at the dry 461 

Panama site (6 vs. 8 months for sun vs. shade LL means) despite no change in the structural 462 
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leaf mass fraction (LMAs/LMA) from sun to shade (see LMAp/LMA values in Fig. S1c, with 463 

LMAs/LMA = 1 – LMAp/LMA). However, the counter-gradient is stronger at the wet 464 

Panama site (11 vs. 31 months for sun vs. shade LL means), where LMAs/LMA is 465 

significantly higher for shade leaves than for sun leaves (see LMAp/LMA in Fig. S1c). Thus, 466 

at the wet Panama site, changes in LMAs/LMA from sun to shade appear to strengthen the 467 

counter-gradient. The potential for LMAs/LMA to enhance the counter-gradient is 468 

corroborated by data on cellulose percent mass, which is similar in shade and sun at the 469 

Panama dry site (Fig. S4b; as observed by Lusk et al. 2010), but higher in shade than sun at 470 

the wet site (Fig. S4b; as observed by Kitajima et al., 2016). In summary, the decrease in 471 

optimal LL with increasing light (Kikuzawa 1991) appears sufficient by itself to create a LL 472 

counter-gradient, but the counter-gradient appears to be enhanced in some assemblages by 473 

greater structural mass fractions in shade vs. sun leaves. 474 

 The improved predictions and understanding provided by decomposing LMA into 475 

photosynthetic and structural components challenge the view that leaf functional diversity 476 

can be accurately represented by a single leaf economics spectrum (LES) axis (Wright et al. 477 

2004). Lloyd et al. (2013) argued that the apparent dominance of a single LES axis is an 478 

artifact of expressing area-dependent leaf traits on a per-mass basis, and Osnas et al. (2013) 479 

demonstrated that across the global flora, traits related to photosynthesis and metabolism are 480 

indeed area-dependent. Intraspecific patterns in trait variation, which contrast with 481 

interspecific patterns, pose additional challenges for a one-dimensional view of leaf 482 

functional diversity. Our analysis shows that considering two primary axes of leaf trait 483 

variation (photosynthesis and structure) provides improved quantitative predictions and 484 

insights compared to a single LES. Our results point to a simple two-dimensional framework 485 

for representing leaf functional diversity in global ecosystem models: a LMAp axis that 486 

determines Amax, accounts for nearly all Rdark (see rp and rs estimates in Table S1), and affects 487 

LL as predicted by optimality theory (Kikuzawa 1992); and a LMAs axis that determines 488 

potential LL through its effects on leaf toughness (Kitajima et al. 2012). In the datasets we 489 

analyzed (the global flora and tropical trees in Panama), these two axes are only weakly 490 

correlated with each other (Fig. S5), which suggests that trait-based approaches to global 491 

ecosystem modeling (Scheiter et al., 2013; Wullschleger et al., 2014) could consider these as 492 

independent axes. 493 

 Our statistical decomposition of LMA into photosynthetic and structural components 494 

provides important insights (summarized above), but additional insights and accuracy could 495 

be gained by a more mechanistic modeling approach. For example, John et al. (2017) 496 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 30, 2017. ; https://doi.org/10.1101/116855doi: bioRxiv preprint 

https://doi.org/10.1101/116855
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

decomposed interspecific LMA variation into anatomical components such as the size, 497 

number of layers, and mass density of cells in different leaf tissues. If such detailed 498 

information became available for a large number of leaves, representing both intra- and 499 

interspecific variation, it should be possible to quantify how these anatomical traits scale up 500 

to leaf-level Amax , Rdark, and LL. A simpler alternative would be to modify our model (see 501 

methods) to account for variation in cell wall thickness (TCW): for a given cell size, increasing 502 

TCW would lead to an increase in lamina density, cellulose per volume, toughness, and LL 503 

(Kitajima and Poorter 2010; Kitajima et al. 2012, 2016), and a decrease in mesophyll 504 

conductance and Amax (Evans et al., 2009; Terashima et al., 2011; Onoda et al., 2017). 505 

 506 

Conclusions 507 

It is widely recognized that LMA variation is associated with multiple tissues and functions, 508 

including metabolically active mesophyll that largely determines photosynthetic capacity, as 509 

well as structural and chemical components that contribute primarily to leaf toughness and 510 

defense (Roderick et al., 1999; Shipley et al., 2006; Lusk et al., 2010). It should not be 511 

surprising then, that partitioning LMA into photosynthetic and structural components yields 512 

enhanced predictions and improved understanding of patterns of leaf trait variation both 513 

within and among species. Yet for over a decade, the vast literature on leaf traits has been 514 

strongly influenced by the view that leaf trait variation can usefully be represented by a single 515 

LES axis. Our results provide quantitative evidence that this one-dimensional view of leaf 516 

trait variation is insufficient, and our model provides a biological explanation for previous 517 

statistical analyses that have demonstrated area-dependence of leaf traits across species 518 

(Osnas et al. 2013), while also explaining mass-dependence within species. Our results 519 

suggest that most of the interspecific variation in LMA concerns structural mass that 520 

contributes to LL but not to photosynthetic capacity, and that structural and photosynthetic 521 

LMA components are only weakly correlated across species. Thus, strong interspecific 522 

correlations between LMA and mass-normalized photosynthetic capacity (and related traits, 523 

such as respiration rate, and nitrogen and phosphorus concentrations) are likely driven by 524 

mass-normalization itself, rather than any functional dependence of these photosynthetic and 525 

metabolic traits on LMA (Lloyd et al. 2013, Osnas et al. 2013). In contrast, intraspecific 526 

variation in LMA is driven by coordinated changes in structural and photosynthetic mass 527 

components, which explains why mass-normalized photosynthetic and metabolic traits vary 528 

little from sun to shade within species (Aranda et al., 2004; Poorter et al., 2006; Niinemets et 529 

al., 2014). 530 
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Supporting information 661 

Notes S1 Defining and understanding leaf trait mass- vs. area-dependence. 662 

Notes S2 Implications of photosynthetic and structural leaf mass for trait mass- vs. area-663 

dependence. 664 

Notes S3 Alternative leaf lifespan models and realized net photosynthesis.  665 

Notes S4 Model tests with simulated data.  666 

Fig. S1 Boxplots comparing posterior means of the latent variable f (the fraction of total 667 

LMA comprised by LMAp) across deciduous (D) and evergreen (E) leaves in GLOPNET and 668 

Panama, and across sites (wet and dry) and canopy strata (sun and shade) in Panama.  669 

Fig. S2 Boxplots comparing leaf mass per area (LMA), photosynthetic leaf mass per area 670 

(LMAp; posterior means), and structural leaf mass per area (LMAs; posterior means) across 671 

sites (wet and dry) and canopy strata (sun and shade) in all leaves in the Panama datasets. 672 

Fig. S3 Measured traits related to photosynthesis and metabolism (nitrogen and phosphorus 673 

per-unit leaf area; Narea and Parea) are positively correlated with LMA and with estimates 674 

(posterior means) of the photosynthetic and structural LMA components (LMAp and LMAs, 675 

respectively) in the GLOPNET dataset. 676 

Fig. S4 Boxplots comparing cellulose content (percent of total leaf mass) across sites (wet 677 

and dry) and canopy strata (sun and shade) in Panama. 678 

Fig. S5 Posterior means of LMAp vs LMAs in the (a) GLOPNET and (b) Panama datasets. 679 

Table S1 Summary of results for Potential LL Model (Eq. 5) and Optimal LL Models (Notes 680 

S3).  681 

Table S2 Correlations between LMAp or LMAs and other traits derived from the Potential 682 

LL model (Eq. 5) fit to GLOPNET data. 683 

Table S3 Correlations between LMAp or LMAs and other traits derived from the three 684 

alternative LL models (Notes S3) fit to Panama data. 685 

Table S4 Correlations between observed and predicted LL for the Potential LL Model (Eq. 5) 686 

and the Optimal LL Model (Notes S3) fit to Panama data. 687 
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Figure legends 689 

Fig. 1 Observed and estimated leaf-trait relationships in the global GLOPNET dataset. Leaf 690 

life span (LL), net photosynthetic rate per unit leaf area (Aarea), and dark respiration rate per 691 

unit leaf area (Rarea) are plotted against observed LMA and estimates (posterior means) of 692 

photosynthetic and structural LMA components (LMAp and LMAs, respectively). Gray 693 

symbols show 1 of 10 randomized datasets, in which LMA was randomized among all leaves 694 

in the GLOPNET dataset we analyzed (which includes all leaves for which LMA, Aarea, Rarea, 695 

and LL were available). Pearson correlation coefficients are for observed LMA (left column) 696 

and posterior means of LMAp (middle column) and LMAs (right column). P-values (** P < 697 

0.01; *** P < 0.001) for LMA test the null hypothesis of zero correlation, and for LMAp and 698 

LMAs test the null hypothesis of equal correlation in observed and randomized datasets (see 699 

‘Randomized LMA Datasets’ in Methods for details). In some cases, robs is near zero but 700 

significantly greater than rrand because rrand is negative (see Table S2 for details).  701 

 702 

Fig. 2 Observed and estimated leaf-trait relationships in the Panama dataset. Estimates are 703 

from the Optimal LL Model with site effects (Eq. 13 and Notes S3). Details as in Fig. 1, 704 

except that in the randomized dataset shown here (gray symbols), LMA was randomized 705 

within sites (wet and dry) across canopy strata (sun and shade). Results for other LL models 706 

are summarized in Table S3. 707 

 708 

Fig. 3 Observed vs. predicted leaf lifespan (LL) in the (a) Potential LL Model (Eq. 5) and (b) 709 

Optimal LL Model with site effects (Eq. 13 and Notes S3). Predicted LL values are posterior 710 

means. The dashed line indicates the 1:1 relationship. Gray symbols show predicted LL 711 

values from 1 of 10 randomized LMA datasets for each model. Pearson correlation 712 

coefficients are for predictions derived from the observed datasets, and P-values (*** P < 713 

0.001) are for the null hypothesis of equal correlation in observed and randomized datasets 714 

(see ‘Randomized LMA Datasets’ in Methods for details). Results for other LL models are 715 

reported in Table S4.  716 

 717 

Fig. 4 Percent of interspecific variation in leaf mass per area (LMA) explained by 718 

photosynthetic and structural components of LMA (LMAp and LMAs, respectively) for the 719 

global GLOPNET dataset (GL), sun leaves in Panama (PA Sun), and shade leaves in Panama 720 

(PA Shade). Variance was partitioned by applying Eq. 15 to posterior means of LMAp and 721 

LMAs.  722 
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 723 

Fig. 5 Boxplots comparing leaf mass per area (LMA) and posterior means of photosynthetic 724 

and structural LMA components (LMAp and LMAs, respectively) across deciduous (D) and 725 

evergreen (E) leaves in the GLOPNET dataset (top), and across sites (wet and dry) and 726 

canopy strata (sun and shade) in the Panama dataset (bottom). The center line in each box 727 

indicates the median, upper and lower box edges indicate the interquartile range, whiskers 728 

show 1.5 times the interquartile range, and points are outliers. Groups sharing the same letters 729 

are not significantly different (P > 0.05; t-tests). To isolate the effects of intraspecific 730 

variation (i.e., plastic responses to light), the Panama results shown here only include species 731 

for which both sun and shade leaves were available. Qualitatively similar results were 732 

obtained when all Panama species were included (Fig. S2). Note that the vertical axis is on a 733 

log10 scale. 734 

 735 

Fig. 6 Measured traits related to photosynthesis and metabolism traits (nitrogen and 736 

phosphorus per-unit leaf area; Narea and Parea) are strongly correlated with estimates (posterior 737 

means) of the photosynthetic LMA component (LMAp), and a measured structural trait 738 

(cellulose per-unit leaf area; CLarea) is strongly correlated with estimates of the structural 739 

LMA component (LMAs) for the Panama dataset. Note that sun and shade leaves align along 740 

a single relationship for CLarea vs. LMAs, but not for CLarea vs. LMA or LMAp. Narea, Parea, 741 

and CLarea data were not used to fit the models, and are presented here as independent support 742 

for the model results. Analogous results were obtained for Narea and Parea vs. LMAp for 743 

GLOPNET (Fig. S3). Gray symbols show 1 of 10 datasets in which LMA was randomized 744 

within sites (wet and dry) across canopy strata (sun and shade). Others details as in Fig. 1. 745 

Results for other LL models are reported in Table S3. 746 

 747 
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 749 

 750 

Fig. 1 Observed and estimated leaf-trait relationships in the global GLOPNET dataset. Leaf 751 

life span (LL), net photosynthetic rate per unit leaf area (Aarea), and dark respiration rate per 752 

unit leaf area (Rarea) are plotted against observed LMA and estimates (posterior means) of 753 

photosynthetic and structural LMA components (LMAp and LMAs, respectively). Gray 754 

symbols show 1 of 10 randomized datasets, in which LMA was randomized among all leaves 755 

in the GLOPNET dataset we analyzed (which includes all leaves for which LMA, Aarea, Rarea, 756 

and LL were available). Pearson correlation coefficients are for observed LMA (left column) 757 

and posterior means of LMAp (middle column) and LMAs (right column). P-values (** P < 758 

0.01; *** P < 0.001) for LMA test the null hypothesis of zero correlation, and for LMAp and 759 

LMAs test the null hypothesis of equal correlation in observed and randomized datasets (see 760 

‘Randomized LMA Datasets’ in Methods for details). In some cases, robs is near zero but 761 

significantly greater than rrand because rrand is negative (see Table S2 for details).  762 
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 763 

Fig. 2 Observed and estimated leaf-trait relationships in the Panama dataset. Estimates are 764 

from the Optimal LL Model with site effects (Eq. 13 and Notes S3). Details as in Fig. 1, 765 

except that in the randomized dataset shown here (gray symbols), LMA was randomized 766 

within sites (wet and dry) across canopy strata (sun and shade). Results for other LL models 767 

are summarized in Table S3. 768 
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 770 

Fig. 3 Observed vs. predicted leaf lifespan (LL) in the (a) Potential LL Model (Eq. 5) and (b) 771 

Optimal LL Model with site effects (Eq. 13 and Notes S3). Predicted LL values are posterior 772 

means. The dashed line indicates the 1:1 relationship. Gray symbols show predicted LL 773 

values from 1 of 10 randomized LMA datasets for each model. Pearson correlation 774 

coefficients are for predictions derived from the observed datasets, and P-values (*** P < 775 

0.001) are for the null hypothesis of equal correlation in observed and randomized datasets 776 

(see ‘Randomized LMA Datasets’ in Methods for details). Results for other LL models are 777 

reported in Table S4.    778 
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 779 

Fig. 4 Percent of interspecific variation in leaf mass per area (LMA) explained by 780 

photosynthetic and structural components of LMA (LMAp and LMAs, respectively) for the 781 

global GLOPNET dataset (GL), sun leaves in Panama (PA Sun), and shade leaves in Panama 782 

(PA Shade). Variance was partitioned by applying Eq. 15 to posterior means of LMAp and 783 

LMAs.  784 
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 786 

 787 

 788 

Fig. 5 Boxplots comparing leaf mass per area (LMA) and posterior means of photosynthetic 789 

and structural LMA components (LMAp and LMAs, respectively) across deciduous (D) and 790 

evergreen (E) leaves in the GLOPNET dataset (top), and across sites (wet and dry) and 791 

canopy strata (sun and shade) in the Panama dataset (bottom). The center line in each box 792 

indicates the median, upper and lower box edges indicate the interquartile range, whiskers 793 

show 1.5 times the interquartile range, and points are outliers. Groups sharing the same letters 794 

are not significantly different (P > 0.05; t-tests). To isolate the effects of intraspecific 795 

variation (i.e., plastic responses to light), the Panama results shown here only include species 796 

for which both sun and shade leaves were available. Qualitatively similar results were 797 

obtained when all Panama species were included (Fig. S2). Note that the vertical axis is on a 798 

log10 scale.  799 
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 800 

Fig. 6 Measured traits related to photosynthesis and metabolism traits (nitrogen and 801 

phosphorus per-unit leaf area; Narea and Parea) are strongly correlated with estimates (posterior 802 

means) of the photosynthetic LMA component (LMAp), and a measured structural trait 803 

(cellulose per-unit leaf area; CLarea) is strongly correlated with estimates of the structural 804 

LMA component (LMAs) for the Panama dataset. Note that sun and shade leaves align along 805 

a single relationship for CLarea vs. LMAs, but not for CLarea vs. LMA or LMAp. Narea, Parea, 806 

and CLarea data were not used to fit the models, and are presented here as independent support 807 

for the model results. Analogous results were obtained for Narea and Parea vs. LMAp for 808 

GLOPNET (Fig. S3). Gray symbols show 1 of 10 datasets in which LMA was randomized 809 

within sites (wet and dry) across canopy strata (sun and shade). Others details as in Fig. 1. 810 

Results for other LL models are reported in Table S3. 811 
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