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ABSTRACT 

Conformal prediction has been proposed as a more rigorous way to define prediction 

confidence compared to other application domain concepts that have earlier been used 

for QSAR modelling. One main advantage of such a method is that it provides a prediction 

region potentially with multiple predicted labels, which contrasts to the single valued 

(regression) or single label (classification) output predictions by standard QSAR 
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modelling algorithms. Standard conformal prediction might not be suitable for imbalanced 

datasets. Therefore, Mondrian cross-conformal prediction (MCCP) which combines the 

Mondrian inductive conformal prediction with cross-fold calibration sets has been 

introduced. In this study, the MCCP method was applied to 18 publicly available datasets 

that have various imbalance levels varying from 1:10 to 1:1000 (ratio of active/inactive 

compounds). Our results show that MCCP in general performed well on cheminformatics 

datasets with various imbalance levels. More importantly, the method not only provides 

confidence of prediction and prediction regions compared to standard machine learning 

methods, but also produces valid predictions for the minority class. In addition, a 

compound similarity based nonconformity measure was investigated. Our results 

demonstrate that although it gives valid predictions, its efficiency is much worse than 

nonconformity measures obtained from supervised learning. 

INTRODUCTION 

To address the increasing drug development costs and reduced productivity faced by the 

pharmaceutical industry, QSAR/QSPR (Quantitative Structure-Activity/Property 

Relationship) models have gained popularity for predictions of biological activities and 

physicochemical properties as well as for in silico screening of large number of 

compounds. Informed decisions based on predictions from a QSAR model are frequently 

confounded by a poor understanding of the confidence of the prediction for the compound 

of interest. These computational models are not guaranteed to give equally accurate 

predictions in all of the chemical space of interest. In other words, the QSAR models have 

limited applicability domain (AD). The AD refers to the chemical space where the property 

can be predicted by the model with high confidence. An assumption of the AD concept is 
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that the further away a molecule is from a QSAR model’s AD (according to a given 

measure), the less reliable the prediction is. 

A number of metrics1-2 have been proposed in the literature to define the AD, e.g. 

“distance/similarity to model”, “bagged variance” and “reliability indices”. The most 

common type is distance-to-model metrics3-5 that measure the distance between a test 

compound and the training set for the model to estimate the “closeness” between the test 

compound and the training set. This is done by calculating the distance between the used 

descriptors according to a specified metric. Alternative approaches include defining 

regions of the descriptor space with different levels of reliability6-7 and, subsequently, 

assessing the prediction error using sensitivity analysis that samples or perturbs the 

composition of the training set to estimate a distribution of predictions8. Recently, another 

type of AD measurement was proposed by building an additional error model to assess 

the prediction reliability9-10. Benchmark studies2, 11-12 on various AD metrics have 

previously been performed. Toplak et al12 showed that methods of reliability indices were 

sensitive to dataset characteristics and to the regression method used in building the 

QSAR model. Most of these AD metrics lack a rigorous scientific derivation. Their 

correlation with prediction confidence is only empirically validated and might therefore be 

dataset dependent. In practice, what an experimentalist would like to know is if a 

prediction falls in a given prediction interval with a certain confidence, for instance a 

prediction with 80% or 95 % confidence. 

Conformal prediction13-15 is a method for using known data to estimate prediction 

confidence for new examples. It has recently been proposed to address insufficiencies of 

earlier AD metrics in the QSAR domain16-17. Our previous studies18-19 have shown that 
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conformal prediction provides a rational and intuitive way of interpreting AD metrics as 

prediction confidence with a given confidence level. Most AD estimates can actually be 

seamlessly used within the conformal prediction framework. Conformal prediction is also 

a rigorously defined concept within statistical learning theory. To deal with imbalanced 

data sets, the Mondrian conformal prediction (MCP) was introduced20. It divides data 

according to their label where a separate significance level is set for each class. 

Therefore, MCP can guarantee validity for each class. MCP have been  applied to 

diagnose bovine tuberculosis21. 

In the current study, a novel conformal prediction protocol, Mondrian cross-conformal 

prediction (MCCP) has been used to estimate the confidence of predictions.  It has been 

applied to several large cheminformatics datasets with various levels of imbalance 

between number of active and inactive compounds. The performance of the method on 

the datasets was evaluated and it is shown that MCCP is valid even for severely 

imbalanced datasets. This indicates that MCCP is a suitable approach for 

chemogenomics data modelling when an estimation of confidence is desired. 

MONDRIAN CROSS-CONFORMAL PREDICTION 

The mathematically formal description and proofs of conformal prediction can be found in 

the work of Vovk et al.14 and detailed descriptions of the conformal prediction framework 

within the QSAR domain can be found in our previous papers18-19. The idea with MCCP 

is to combine the benefits of a Mondrian conformal predictor and a cross-conformal 

predictor. Here we will first briefly discuss how conformal prediction estimates the 

prediction confidence in general. Then the concept of Mondrian conformal prediction will 
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be discussed. We confine our discussion to classification problems only, but a similar 

approach can be adopted to regression problems. 

Conformal prediction 

Intuitively, the problem of conformal prediction is how to estimate the confidence of 

predicting the class label, 𝑦 , to an new object, 𝑥,  for which given a training set of 

examples, 𝑧1 = (𝑥1 , 𝑦1),  𝑧2 = (𝑥2 , 𝑦2), … , 𝑧𝑙 = (𝑥𝑙 , 𝑦𝑙) , the example  𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖) 

conforms to. This is done by finding how strange (nonconformal) a new example is in 

comparison to the training set, by calculating the nonconformity measure (NCM) of 𝑧𝑖, 

assuming each and every possible class label that the object, 𝑥𝑖 , can have according to, 

𝛼𝑖 = 𝛢( 〈𝑧1,𝑧2, … 𝑧𝑙〉 , 𝑧𝑖).  (1) 

Here the 〈… 〉 denotes a bag or a collection of examples and 𝛼𝑖 is the NCM of test example 

𝑧𝑖. The function A is defined by an underlying machine-learning model based on the 

training set. We remark that the machine learning can be of any type as long as it does 

not violate the requirement that the training set and any examples that would be predicted 

are exchangeable. To assess how different a new example 𝑧𝑖 is from all old examples, 

we need to compare 𝛼𝑖 to  𝛼𝑗 of the previous examples 𝑧𝑗  (𝑗 = 1, … , 𝑙).  

In the inductive learning setting, which would normally be used in QSAR, we can split the 

training set into a proper training set (𝑧1, … , 𝑧𝑚) and a calibration set (𝑧𝑚+1 , … , 𝑧𝑙), where 

m < l. The examples (𝑧𝑙+1, … , 𝑧𝑙+𝑘 )  are in the prediction set. The p-value for every 

prediction example 𝑧𝑖 can then be calculated as 

𝑝𝑦
𝑖 =

|{𝑗=𝑚+1,…,𝑙:𝛼𝑗,𝑦≥𝛼𝑖,𝑦}|

𝑙−𝑚+1
  (2) 
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where only calibration set examples are used to calculate p-values in inductive conformal 

prediction (ICP)22 and the proper training set is used to define the NCM. This reduces the 

computational overhead since only a single model is built from a training set.  

For the classification model of conformal prediction, the region prediction Г𝜖 for every test 

object is calculated as 

Г𝜖 = {𝑦 ∈ 𝑌 ∶  𝑝𝑦 >  𝜖}  (3) 

where Y is the set of the possible class labels and Г𝜖 can be empty or contain one or more 

classes at a significance level 𝜖. If the data sets are exchangeable then the predictions 

will be wrong at a fraction of the number of predictions that will not exceed the significance 

level. For a binary classifier with the two classes represented by active and inactive, the 

prediction region could be any of the following sets: {active}, {inactive}, {active, inactive} 

(both) or {null} (the empty set, i.e. the prediction is that the new example belong neither 

to the active nor to the inactive class). In this case, a prediction is always considered to 

be wrong if the set is empty and it is always correct if all possible class labels are 

predicted.  

Several variants of conformal predictions have been proposed22-24. One of them is cross-

conformal prediction (CCP)23 that divides the data into k folds the way cross-validation 

works so that all training data is used as calibration set. Each fold is used once as a 

calibration set and the remaining training data is used to compute NCMs. For a single 

prediction, this would lead to k p-values being predicted for each possible class label. The 

final output of those p-values would be to for example report the mean p-value for each 

possible class label. The motivation for using a CCP is to use all training data for 

calibration and NCM calculations. However, theoretical guarantees have not been shown 

in terms of validity. 
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Mondrian cross-conformal prediction paradigm 

The validity guarantee of the conformal predictor is based on all class labels, not on 

individual labels. This might be problematic for some applications, in particular if the 

datasets are imbalanced. For instance, if only 1% of the compounds in a dataset have 

the label active, most of the active compounds might be assigned as inactive and the 

conformal prediction would still be considered as valid. Mondrian conformal prediction 

was developed to address this issue. In the Mondrian framework, the p-value for a 

hypothesis 𝑦𝑙+1 = 𝑦 for the label of test object 𝑧𝑙+1 is defined as follows 

𝑝𝑦
𝑖 =

|{𝑗=𝑚+1,…,𝑙: 𝑦𝑖=𝑦, 𝛼𝑗,𝑦≥𝛼𝑖,𝑦}|

𝑙−𝑚+1
   (4) 

The difference with respect to the definition of p-value in cross-conformal prediction is 

that the NCM 𝛼𝑖 comparisons are restricted to training examples with the same class 

label. This transforms the global validity guarantee into a label specific guarantee. 

Per definition the selection of the calibration set will influence the region prediction in ICP 

setting. In this investigation a new protocol, called Mondrian cross-conformal prediction 

(MCCP), is proposed to alleviate the bias caused by randomly selecting the calibration 

set. The concept is illustrated in Figure 1 and is similar to k-fold cross-validation. The 

original training sample is randomly partitioned into k equal sized subsamples. Of the k 

subsamples, a single subsample is retained as the calibration set for calculating the p-

value as in Equation 4, and the remaining k − 1 subsamples are used as the proper 

training set for model building. The process is then repeated k times (the folds), with each 

of the k subsamples used exactly once as the calibration set. The k p-values from the 

folds can then be averaged to produce a single estimation for the final prediction region 

of prediction objects.  
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MATERIAL AND METHODS 

Datasets 

18 datasets were extracted from the ExCAPE-DB database25, a repository storing public 

available chemogenomics data. The datasets are binary (active/inactive) and have levels 

of imbalance varying from 1:10 to 1:1000 (ratio of active/inactive, listed in Table 1). 

Dataset structures and activity labels are deposited in the GitHub26. Signature 

descriptors27 of heights 0-3 were generated for all the compounds. 

Application of inductive conformal prediction 

Both MCCP and CCP were performed on all 18 datasets to compare their performance. 

The MCCP workflow is displayed in Figure 1. First, the dataset was randomly divided into 

two parts: training (70%) and external test (30%) set. As described earlier, the training 

set was randomly partitioned into 5 folds for estimating prediction regions of test set 

compounds using MCCP. The support vector machine (SVM) module of the Scikit-Learn 

package28 was used to build SVM models. We defined the NCM by using the SVM 

decision function as follows: 

𝑁𝐶𝑀 = −𝑦 ∗ 𝑑(𝑥𝑖)  (5) 

where y is the non-zero class label (1, -1) and 𝑑(𝑥𝑖) is the decision value obtain from the 

SVM decision function for compound 𝑥𝑖. 

For comparison, the Tanimoto distance between a specific compound and the proper 

training set was also used as a NCM. The distance was calculated by averaging the 

Tanimoto similarity values between the five most similar compounds in the proper training 

set and the specific compound. The pairwise Tanimoto similarity was calculated in Scikit-

Learn28 using the 2048-length bit string Extended-Connectivity Fingerprints (ECFPs).  
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The jCompoundMapper29 was used to generate ECFP fingerprints by setting search 

depth to 6. 

Evaluation metrics 

For a compound, given that the p-value for active and inactive class is p1 and p0 

respectively, an output label from conformal prediction under significance level ϵ can be 

defined as following: 

Active: p1 > 𝜖 and p0 ≤ 𝜖 

Inactive: p0 > 𝜖 and p1 ≤ 𝜖 

Uncertain (Both): p1 > 𝜖 and p0 > 𝜖 

Empty (None): p1 ≤ 𝜖 and p0 ≤ 𝜖 

Two measurements, validity and efficiency, are used to measure the performance of 

conformal prediction. The conformal prediction is said to be valid if the frequency of errors 

(i.e., the fraction of true values outside the prediction region) is less than ϵ at a chosen 

confidence level 1− 𝜖.  The validity can be calculated for all class objects as well as for 

objects of one specific class. Efficiency is defined as the observed singleton prediction 

set rate at a given significance value 𝜖30. Here, singleton means either predicted as active 

or as inactive. 

Cohen's kappa31 is a classification metrics designed to measure the agreement between 

the observed and the predicted labels of test set according to equation below 

Kappa = ((𝑇𝑃 + 𝑇𝑁)

𝐼
− (𝑃∗𝑃𝑃 𝐼⁄  + 𝑁∗𝑃𝑁 𝐼⁄ )

𝐼
) (1 − (𝑃∗𝑃𝑃 𝐼⁄  + 𝑁∗𝑃𝑁 𝐼⁄ )

𝐼
)⁄   (6) 

where TP denotes the number of true positive, TN the number of true negative, P the 

number of positive instances, N the number of negative instances, PP the number of the 
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predicted positives, PN the number of the predicted negatives, and I the number of total 

instances. 

RESULTS AND DISCUSSION 

Performances of Mondrian cross-conformal prediction 

The validity curves in Figure 2A shows that MCCPs in general are valid for both balanced 

and imbalanced datasets for significance values less than 0.2 and also confirmed in Table 

1 at significance level 0.05 are all lower than 0.05. The validity is also demonstrated for 

both active and inactive classes. Notably, MCCPs are also valid for the minority class of 

very imbalanced datasets, e g. data set 18. The observed singleton prediction set rates 

(efficiency) are good for the balanced (data sets 1 and 2) and some highly imbalanced 

dataset (data sets 13-15 and 18) but lower for data sets 6-8, 10-11 and 17 when the 

significance value ϵ is less than 0.2. 

Performances of cross-conformal prediction 

As a comparison to MCCP, the CCP method was applied on the same datasets (Figure 

3A-B and Table 2). It can be seen that the global validity of the CCP models is achieved 

on both balanced and imbalanced datasets. Investigating the local validity for each class 

label, the CCP models are still valid for the balanced dataset (e g. Data sets 1-3). However, 

the CCP models do not seem to be valid for the minority class in the imbalanced datasets 

(e.g. data sets 4-18) whose active-to-inactive-ratios are less than 1:5. It is likely due to 

that CCP tends to predict the active data points (minority class) as inactive (majority class) 

in those data sets. But CCP models generally have higher efficiency compared to that of 

MCCPs. These results demonstrate, as previously discussed, that CCP models cannot 
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guarantee the label-conditional validity for all labels on imbalanced datasets, while 

MCCPs can obtain both the global and label-conditional validity even for highly 

imbalanced datasets.  

Comparison of accuracy between MCCP and ordinary SVM prediction 

Although the main goal of the MCCP method is to provide confidence estimation for 

prediction, it is still interesting to investigate if MCCP can provide better prediction at 

certain significance levels than the ordinary SVM prediction. Therefore, SVM calculations 

is done using the RBF kernel on the same data set as MCCP. The proper training and 

calibration set is merged together as the SVM training set. We compare the prediction 

performances of MCCP and ordinary SVM in terms of Kappa. To make a fair comparison, 

only instances which have a singleton class prediction in MCCP were used for computing 

the Kappa value for the SVM model (Table 3 and Figure 4). At significance level ϵ of 0.05 

(i.e. corresponding to confidence level of 95%), MCCPs and SVMs have almost the same 

accuracy in most cases based on Kappa. This is logical since that the same underlying 

classifier is used for both MCCP used SVM. It was also noticed that SVM has better 

performance on data sets 14-16 at 0.05 significance level, which might be due to that the 

actual training set is larger. Nevertheless, MCCP can in general achieve the same level 

of accuracy as ordinary SVM while provide additional confidence estimations. Moreover, 

MCCP outperformed SVM in most cases except for data sets 13-16 and 18 if the kappa 

values of SVM were computed based on all compounds in the test set (Figure 4).  

Influence of different nonconformity measure  

The NCM function is used in conformal prediction framework to characterise the 

nonconformity between a test example and the training examples. Per definition, most 
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AD measures can be easily adopted as NCM and integrated into the conformal prediction 

paradigm. Calculating similarity between test compound and its k nearest neighbours (k-

NN) among training compounds is usually used as an intuitive way of measuring AD32. 

Here we compare the region prediction performance of k-NN similarity based NCM and 

the default NCM using the SVM embedded decision function. For the k-NN based NCM 

calculation, the top five most similar compounds in the training set were obtained for each 

query (test) compound and the NCM is the average similarity distance to the five nearest 

neighbours. 

The validity and efficiency plots of k-NN based MCCP models are shown in Figure 5A-B. 

MCCPs based on k-NN similarity are also valid for most datasets (except data sets 4 and 

5) but their efficiency are lower than 0.4, which means for most of compounds (more than 

60% of compounds in the test set) that the prediction region is either empty or uncertain. 

In contrast, a higher efficiency can be obtained when the NCM is based on the SVM 

decision value (Figures 2B and 3B) compared to that based on k-NN similarity. This 

demonstrate that k-NN similarity is a valid but not an efficient NCM. This is not surprising 

since the k-NN similarity is a model independent metrics generated in a non-supervised 

manner, while the SVM decision value is a model dependent metrics which has been 

optimized on the training set.  

CONCLUSIONS 

In this study, the conformal prediction protocol MCCP was for the first time used for an 

application in cheminformatics. We investigated the validity and efficiency of MCCP on 

18 large scale cheminformatics datasets with various levels of imbalance and compared 

the method with conventional CCP. Our results show that the MCCP confidence 
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estimation is valid globally, i.e. overall for both classes, as well as locally for each class . 

While CCP models is not guaranteed to be valid for the minority class for imbalanced data 

sets. The prediction accuracy of MCCP model is similar to the original SVM model at 

significance level 0.05. The k-NN similarity based NCM is also evaluated in MCCP and 

compared with the SVM decision value based NCM. Although the k-NN similarity based 

confidence estimation is valid for most of the data sets, its efficiency is significantly worse 

than the SVM decision value based NCM. This result highlights the importance of 

choosing a suitable NCM with respect to the efficiency of conformal prediction.  
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TABLES 

Table 1. Performance of MCCPs for the 18 datasets 

Data set Gene Actives Inactives Ratio Validity (all)*# Validity (negative)*# Validity (positive)*# Efficiency*# 

1 PPARA 1955 1465 1,33 0,949 0,956 0,943 0,904 

2 MMP2 2742 2363 1,16 0,95 0,953 0,948 0,966 

3 MAOA 732 733 1,09 0,964 0,959 0,969 0,523 

4 NR1I2 249 1090 0,23 0,949 0,951 0,94 0,785 

5 TMPRSS15 139 724 0,19 0,973 0,973 0,972 0,285 

6 HSD17B10 3410 11510 0,30 0,96 0,96 0,959 0,159 

7 KDM4E 3938 35059 0,11 0,974 0,974 0,974 0,097 

8 LMNA 14533 171164 0,09 0,966 0,967 0,966 0,119 

9 TDP1 23133 276782 0,08 0,956 0,956 0,957 0,607 

10 TARDBP 12193 387934 0,03 0,966 0,967 0,959 0,166 

11 ALOX15 1932 69362 0,03 0,97 0,97 0,961 0,160 

12 BRCA1 8619 363912 0,02 0,958 0,958 0,96 0,662 

13 DRD2 4613 343076 0,01 0,955 0,955 0,954 0,957 

14 GSK3B 3334 300186 0,01 0,96 0,96 0,946 0,991 

15 JAK2 2158 213915 0,01 0,961 0,961 0,946 0,945 

16 POLK 773 389418 0,002 0,97 0,97 0,952 0,407 

17 FEN1 1050 381575 0,003 0,975 0,975 0,97 0,141 

18 HDAC3 369 311425 0,001 0,959 0,959 0,96 0,959 

Ratio: active compounds divided by inactive compounds 

*mean value of 5 runs 

#validity and efficiency was given when significance level ϵ = 0.05 

 

Table 2. Performance of CCPs for the 18 datasets 

Data set Gene Validity (all)*# Validity (negative) *# Validity (positive)*# Efficiency*# 

1 PPARA 0,949 0,932 0,962 0,979 

2 MMP2 0,957 0,951 0,963 0,994 

3 MAOA 0,96 0,965 0,954 0,461 

4 NR1I2 0,936 0,951 0,867 0,911 

5 TMPRSS15 0,963 0,993 0,804 0,654 

6 HSD17B10 0,969 0,994 0,884 0,232 

7 KDM4E 0,955 0,998 0,581 0,624 

8 LMNA 0,962 0,968 0,896 0,232 

9 TDP1 0,956 0,963 0,868 0,797 

10 TARDBP 0,967 0,988 0,313 0,879 

11 ALOX15 0,967 0,976 0,615 0,830 

12 BRCA1 0,955 0,96 0,769 0,947 

13 DRD2 0,954 0,962 0,362 0,954 

14 GSK3B 0,962 0,967 0,456 0,963 

15 JAK2 0,963 0,967 0,483 0,963 
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16 POLK 0,97 0,971 0,25 0,971 

17 FEN1 0,98 0,982 0,31 0,985 

18 HDAC3 0,957 0,958 0,412 0,957 

*mean value of 5 runs 

#validity and efficiency was given when significance level ϵ = 0.05 

 

Table 3. Performance of MCCP versus SVM 

Data set Gene Kappa*# (MCCP) Kappa*#(SVM) Kappa*†(SVM) 

1 PPARA 0,887 0,888  0,880 

2 MMP2 0,899 0,899  0,912 

3 MAOA 0,861 0,861  0,568 

4 NR1I2 0,812 0,813  0,776 

5 TMPRSS15 0,752 0,752  0,522 

6 HSD17B10 0,376 0,376  0,223 

7 KDM4E 0,383 0,383  0,175 

8 LMNA 0,227 0,227  0,093 

9 TDP1 0,624  0,624  0,451 

10 TARDBP 0,145  0,145  0,081 

11 ALOX15 0,286  0,328  0,160 

12 BRCA1 0,366  0,381  0,287 

13 DRD2 0,933  0,933  0,938 

14 GSK3B 0,322  0,761  0,784 

15 JAK2 0,298  0,725  0,831 

16 POLK 0,064  0,314  0,268 

17 FEN1 0,050  0,126  0,049 

18 HDAC3 0,918  0,917  0,845 

*mean value of 5 runs 

#value was given when significance level ϵ = 0.05, only prediction of singleton class in MCCP were considered 

†value was computed based on the whole test set 

 

CAPTIONS OF FIGURES 

Figure 1. Mondrian cross-conformal prediction framework.  

Figure 2. Performances of MCCP. (A) Validities and (B) efficiencies of the18 data sets. Active 

(red), inactive (blue) and both classes (green) are displayed separately. The colour of curves 

corresponds to different type of examples and the light grey refers to the diagonal line to 
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demonstrate the validity. Validities in different class may have overlaps in some data sets that 

make some colours invisible. 

Figure 3. Performances of CCP. (A) Validities and (B) efficiencies of 18 data sets. Active (red), 

inactive (blue) and both classes (green) are displayed separately. Validities in different class may 

have overlaps in some data sets that make some colours invisible.  

Figure 4. Comparison of performance between MCCP and ordinary SVM. Kappa values are 

computed based on singletons of MCCP (red) and its corresponding sets in SVM (green), and all 

instances in SVM (blue), respectively. Kappa values in different group may have overlaps in some 

data sets that make some colours invisible. 

Figure 5. Performance of MCCP based on k-NN. (A) Validities and (B) efficiencies of 18 data 

sets. Active (red), inactive (blue) and both classes (green) are displayed separately. Validities in 

different class may have overlaps in some data sets that make some colours invisible. 
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