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Abstract	
	
Model-based	 reinforcement	 learning	 (mbRL)	 has	 been	 widely	 used	 in	 explaining	 animal	
behavior.	In	mbRL,	the	model,	or	the	structure	of	the	task,	is	used	to	evaluate	the	associations	
between	 actions	 and	 outcomes.	 It	 has	 been	 proposed	 that	 the	 orbitofrontal	 cortex	 (OFC)	
encodes	the	model	during	mbRL.	However,	it	is	not	well	understood	how	the	OFC	acquires	and	
stores	model	information.	Here,	we	propose	a	neural	network	framework	based	on	reservoir	
computing.	Reservoir	networks	exhibit	heterogeneous	and	dynamic	activity	patterns	that	are	
suitable	to	encode	task	states.	The	information	can	be	extracted	by	a	linear	readout	trained	
with	 reinforcement	 learning.	We	demonstrate	how	our	 framework	acquires	 and	 stores	 the	
task	 state	 space.	 The	 framework	 exhibits	 mbRL	 behavior	 and	 its	 aspects	 resemble	
experimental	findings	of	the	OFC.	Our	study	provides	a	theoretical	explanation	of	how	the	OFC	
may	 contribute	 to	 mbRL	 and	 a	 new	 approach	 to	 understanding	 the	 neural	 mechanism	
underlying	mbRL.	 	
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Introduction	
	
Even	 the	 simplest	 reinforcement	 learning	 (RL)	 algorithm	 captures	 the	 essence	 of	 operant	
conditioning	in	psychology	and	animal	learning	(Rescorla	&	Wagner,	1972).	That	is,	actions	
that	are	rewarded	tend	to	be	repeated	more	frequently;	actions	that	are	punished	are	more	
likely	 to	 be	 avoided.	 However,	 it	 fails	 to	 explain	 animals’	 behavior	 in	 more	 complicated	
situations.	One	particular	approach	to	extending	the	capabilities	of	RL	algorithms,	known	as	
model-based	reinforcement	learning	(mbRL,	as	contrast	to	model-free	RL,	or	mfRL),	uses	the	
knowledge	of	the	task	structure,	i.e.,	the	model,	to	guide	the	learning	(Beck	et	al.,	2008).	mbRL	
is	 especially	 successful	 in	 explaining	 the	 goal-directed	 learning	 behavior	 in	 complex	
environments	(Dolan	&	Dayan,	2013;	Doll,	Simon,	&	Daw,	2012;	Keramati,	Smittenaar,	Dolan,	
&	Dayan,	2016).	 	
	 	
Several	studies	have	investigated	the	possible	brain	structures	that	may	be	involved	in	mbRL	
(Daw,	Gershman,	Seymour,	Dayan,	&	Dolan,	2011;	Glascher,	Daw,	Dayan,	&	O'Doherty,	2010;	
Haber,	Kim,	Mailly,	&	Calzavara,	2006;	Kennerley,	Behrens,	&	Wallis,	2011;	Schultz,	Dayan,	&	
Montague,	1997).	Notably,	the	orbitofrontal	cortex	(OFC)	has	been	hypothesized	to	represent	
the	task	space	and	encode	task	states	(Wilson,	Takahashi,	Schoenbaum,	&	Niv,	2014).	Several	
lesion	 studies	 showed	 that	 the	 animals	 with	 OFC	 lesions	 exhibited	 deficits	 acquiring	 task	
information	for	building	a	task	model	(Hornak	et	al.,	2004;	Izquierdo,	Suda,	&	Murray,	2004;	
Takahashi	et	al.,	2011).	Electrophysiology	studies	of	the	OFC	have	demonstrated	that	the	OFC	
encodes	many	aspects	of	reward	information,	including	reward	value	(J.	L.	Jones	et	al.,	2012;	
Padoa-Schioppa,	 2011;	 Padoa-Schioppa	&	 Assad,	 2006;	 Rudebeck,	Mitz,	 Chacko,	 &	Murray,	
2013;	Wallis	&	Miller,	2003),	probability	(Kennerley	&	Wallis,	2009),	risk	(O'Neill	&	Schultz,	
2015),	 information	 value	 (Blanchard,	 Hayden,	 &	 Bromberg-Martin,	 2015),	 abstract	 rules	
(Wallis,	Anderson,	&	Miller,	2001),	and	strategies	(Tsujimoto,	Genovesio,	&	Wise,	2011).	Yet,	it	
is	not	well	understood	how	models	themselves	may	be	encoded	and	represented	by	a	neural	
network,	and	what	sort	of	neuronal	firing	properties	we	expect	to	find	in	neurophysiological	
experiments.	Furthermore,	we	do	not	know	how	to	teach	a	model-agnostic	neural	network	to	
acquire	the	structure	of	the	task	just	based	on	trial	and	error.	
	
The	recent	development	of	reservoir	computing	may	provide	a	solution	(Buonomano	&	Maass,	
2009;	Laje	&	Buonomano,	2013;	Maass,	Natschlager,	&	Markram,	2002).	Reservoir	networks	
are	 recurrent	 networks	 with	 fixed	 connections.	 Within	 a	 reservoir	 network,	 neurons	 are	
randomly	and	sparsely	connected.	Importantly,	the	internal	states	of	a	reservoir	exhibit	rich	
temporal	dynamics,	which	represents	a	nonlinear	transformation	of	its	input	history	and	can	
be	very	useful	for	encoding	task	state	sequences.	The	information	encoded	by	the	network	can	
be	extracted	with	a	linear	output,	which	can	be	trained	during	learning.	Reservoir	networks	
have	been	shown	to	exhibit	dynamics	similar	to	that	observed	in	the	prefrontal	cortex	(Barak,	
Sussillo,	Romo,	Tsodyks,	&	Abbott,	2013;	Cheng,	Deng,	Hu,	Zhang,	&	Yang,	2015;	Enel,	Procyk,	
Quilodran,	&	Dominey,	2016).	 	
	
In	 the	 current	 study,	we	demonstrate	with	 two	 commonly	used	 learning	paradigms	how	a	
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reservoir	network	may	achieve	mbRL	by	encoding	task	states	without	prior	knowledge	of	task	
structures.	 Task	 event	 sequences,	 including	 reward	 events,	 are	 provided	 as	 inputs	 to	 the	
network.	A	simple	yet	biologically	feasible	reward-dependent	Hebbian	learning	algorithm	is	
used	 to	 adjust	 its	 output	 weights.	We	 show	 that	 our	 framework	 can	 solve	 problems	with	
different	 task	 structures	 and	 exhibits	 mbRL	 behavior	 previously	 reported	 in	 animals	 and	
humans.	We	further	demonstrate	the	similarities	between	the	reservoir	network	and	the	OFC.	
Manipulations	 to	 our	 network	 reproduce	 the	 behavior	 of	 animals	 with	 OFC	 lesions.	 The	
reservoir	neurons’	response	patterns	resemble	characteristics	of	the	OFC	neurons	reported	
from	previous	electrophysiological	experiments.	 	
	
Taken	 together,	 these	 results	 suggest	 a	 simple	 mechanism	 that	 naturally	 leads	 to	 the	
acquisition	of	task	structure	and	therefore	supports	mbRL.	Finally,	we	propose	some	future	
experiments	that	may	be	used	to	test	our	model.	
	
	
Results	
	
We	describe	our	results	in	three	parts.	We	start	with	using	our	network	to	model	a	classical	
reversal	learning	task.	We	take	advantage	of	the	simplicity	of	the	task	to	explain	the	principal	
ideas	behind	the	framework	and	why	we	think	the	framework	resembles	the	OFC.	Then	we	
show	such	a	framework	may	be	applied	to	more	complex	scenarios	in	which	the	OFC	has	been	
shown	 to	 play	 important	 roles.	 Finally,	 to	 further	 illustrate	 the	 similarities	 between	 our	
framework	 and	 the	 OFC,	 we	 demonstrate	 how	 the	 network	 framework	 may	 describe	
experimental	findings	in	the	OFC	during	value-based	decision	making.	
	
Reversal	Learning	 	
	
In	a	classical	reversal	learning	task,	the	animals	have	to	keep	track	of	the	reward	contingency	
of	 two	choice	options	that	may	be	reversed	during	a	test	session	(Izquierdo	et	al.,	2004;	B.	
Jones	&	Mishkin,	1972).	Normal	animals	were	found	to	learn	reversals	faster	and	faster,	which	
has	been	used	as	an	indication	of	mbRL	(Wilson	et	al.,	2014).	The	mbRL	behavior	was	however	
found	to	be	impaired	in	animals	with	OFC	lesions	or	with	lesions	that	contained	fibers	passing	
near	the	OFC	(Izquierdo	et	al.,	2004;	Rudebeck,	Saunders,	Prescott,	Chau,	&	Murray,	2013).	
These	animals	were	not	able	to	learn	reversals	faster	and	faster	when	they	were	repeatedly	
tested.	The	learning	impairments	could	be	explained	by	mfRL	(Wilson	et	al.,	2014).	 	
	
Our	neural	network	framework	consists	of	a	state	encoding	layer	(SEL),	which	is	a	reservoir	
network.	It	receives	three	inputs	and	generates	two	outputs	(Fig	1a).	The	three	inputs	to	the	
SEL	are	the	two	choice	options	A	and	B,	together	with	a	reward	input	that	indicates	whether	
the	choice	yields	a	reward	or	not	in	the	current	trial.	The	outputs	represent	choice	actions	A	
and	B	 for	 the	 next	 trial.	We	 use	 the	 neural	 activity	 of	 the	 SEL	 at	 the	 end	 of	 the	 input	 to	
determine	the	SEL’s	output.	
	
The	framework	is	able	to	reproduce	animals’	behavior.	The	number	of	error	trials	that	takes	
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for	 the	 framework	 to	achieve	 the	performance	 threshold,	which	 is	 set	at	93%	 in	 the	 initial	
learning	and	at	80%	in	the	subsequent	reversals,	decreases	as	the	model	goes	through	more	
and	more	reversals	(Fig	1b).	Interestingly,	a	learning	deficit	similar	to	that	found	in	OFC-lesion	
animals	 is	observed	 if	we	remove	the	reward	 input	 to	 the	SEL	(Fig	1b).	As	 the	OFC	and	 its	
neighboring	brain	areas	such	as	 the	ventromedial	prefrontal	 cortex	 (vmPFC)	are	known	to	
receive	both	the	sensory	inputs	and	reward	inputs	from	sensory	and	reward	circuitry	in	the	
brain,	removing	the	reward	input	from	our	model	mimics	the	situation	where	the	brain	has	to	
learn	without	functioning	structures	in	or	near	the	OFC.	 	 	
	
Neurons	in	the	SEL,	as	expected	from	a	typical	reservoir	network,	show	highly	heterogeneous	
response	patterns.	Some	neurons	are	 found	 to	encode	 the	stimulus	 identity,	 some	neurons	
encode	reward,	and	others	show	mixed	tuning	(Fig	2a).	A	principal	component	analysis	(PCA)	
based	on	the	population	activity	shows	that	the	network	can	distinguish	all	four	possible	task	
states:	 choice	 A	 rewarded,	 choice	 A	 not	 rewarded,	 choice	 B	 rewarded,	 and	 choice	 B	 not	
rewarded	(Fig2b).	 	
	
The	 ability	 to	 distinguish	 these	 states	 is	 essential	 for	 learning.	 To	 understand	 the	 mbRL	
behavior	exhibited	by	our	model,	we	study	how	neurons	with	different	selectivity	contribute	
to	the	learning	(Fig	2c).	We	find	that	readout	weights	of	the	neurons	that	are	selective	to	the	
combination	of	stimulus	and	reward	inputs	(e.g.	AR	and	BR)	are	mostly	affected	by	the	learning.	
The	difference	between	the	weights	of	their	connections	to	the	outputs	A	and	B	keeps	growing	
despite	repeated	reversals.	In	contrast,	the	weights	of	the	output	connections	of	pure	stimulus-
selective	neurons	only	wiggle	around	the	baseline	between	reversals.	
	
The	 difference	 between	 these	 two	 groups	 of	 neurons	 explains	 why	 our	 network	 achieves	
mbRL	only	when	the	reward	input	is	available.	Let	us	first	consider	the	AR	neurons,	which	are	
selective	 for	 the	 situation	when	 choice	A	 leads	 to	 reward.	 In	 these	A-rewarded	blocks,	 the	
connections	between	the	AR	neurons	and	the	DML	neuron	of	choice	A	are	strengthened.	When	
the	 reward	 contingency	 is	 reversed	and	now	choice	A	 leads	 to	no	 reward,	 the	 connections	
between	the	AR	neurons	and	choice	A	are	not	affected	very	much.	That	is	because	the	group	of	
AN	 neurons	 instead	 of	 the	 AR	 neurons	 are	 activated	 in	 the	 blocks	 when	 choice	 A	 is	 not	
rewarded.	As	 the	 result,	 the	 connections	between	 the	AN	 neurons	 and	 the	DML	neuron	of	
choice	B	are	strengthened	and	the	connections	between	the	AN	neurons	and	the	DML	neuron	
of	 choice	A	 are	weakened.	When	 the	 reward	 contingency	 is	 flipped	 again,	 the	 connections	
between	the	AR	neurons	and	the	DML	neuron	of	choice	A	are	strengthened	further.	This	way,	
the	 learning	 is	 never	 erased	 by	 the	 reversals,	 and	 the	 network	 learns	 faster	 and	 faster.	 In	
comparison,	let	us	now	consider	the	A	neurons,	which	encode	only	the	sensory	inputs	and	are	
activated	whenever	input	A	is	present.	In	the	A-rewarded	blocks,	the	connections	between	the	
A	 neurons	 and	 the	 DML	 neuron	 of	 choice	 A	 are	 strengthened.	 In	 B-rewarded	 blocks,	 the	
connections	between	the	A	neurons	and	the	DML	neuron	of	choice	A	are	however	weakened	
when	the	network	chooses	A	and	gets	no	reward,	and	the	 learning	 in	the	previous	block	 is	
reversed.	Thus,	the	output	connections	of	A	neurons	only	fluctuate	around	the	baseline	with	
the	reversals.	They	do	not	contribute	much	to	 the	 learning,	and	the	overall	behavior	of	 the	
network	is	mostly	driven	by	neurons	that	are	activated	by	the	combination	of	reward	input	
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and	 sensory	 inputs.	 Removing	 R	 deactivates	 these	 neurons	 and	 leads	 to	 the	 model-free	
behavior.	
	
	
	
Two-stage	Markov	decision	task	
	
We	further	test	our	network	model	with	a	two-stage	decision	making	task.	The	task	is	similar	
to	the	Markov	decision	task	used	previously	in	several	human	fMRI	studies	(Glascher	et	al.,	
2010).	In	this	task,	the	subjects	have	to	choose	between	two	options	A1	and	A2.	Their	choices	
then	 lead	 to	 two	 intermediate	outcomes	B1	 and	B2	 at	different	but	 fixed	probabilities.	The	
choice	 of	A1	 more	 likely	 leads	 to	B1,	 and	 the	 choice	 of	A2	 is	 more	 likely	 followed	 by	B2.	
Importantly,	 the	 final	 reward	 is	 contingent	 only	 on	 these	 intermediate	 outcomes,	 and	 the	
contingency	 is	 reversed	across	blocks	 (Fig	3a).	Thus,	 the	probability	of	getting	a	 reward	 is	
higher	for	B1	in	one	block	and	becomes	lower	in	the	next	block.	The	probabilistic	association	
between	the	initial	choices	and	the	intermediate	outcomes	never	changes.	The	subjects	are	
not	informed	of	the	structure	of	the	task,	and	they	have	to	figure	out	the	best	option	by	tracking	
not	only	the	reward	outcomes	but	also	the	intermediate	outcomes.	
	
We	keep	our	framework	mostly	the	same	as	in	the	previous	task.	Here,	we	have	two	additional	
input	units	that	reflect	the	intermediate	outcomes	(Fig	3b).	To	demonstrate	our	framework’s	
capability	 of	 encoding	 sequential	 events,	 the	 input	 units	 are	 activated	 sequentially	 in	 our	
simulations	as	they	are	in	the	real	experiment	(Fig	3c).	We	also	add	a	non-reward	input	unit	
whose	activity	is	set	to	1	when	a	reward	is	not	obtained	at	the	end	of	a	trial.	The	additional	
non-reward	input	facilitates	learning	but	does	not	change	the	results	qualitatively.	
	
For	 a	mfRL	 strategy,	 the	 probability	 of	 repeating	 the	 previous	 choice	 only	 depends	 on	 the	
reward	outcome.	The	probability	of	repeating	the	previous	choice	is	higher	when	a	reward	is	
obtained	than	when	no	reward	is	obtained.	The	intermediate	outcome	is	ignored.	However,	for	
a	mbRL	 strategy,	 this	 is	 no	 longer	 the	 case.	 For	 example,	 consider	 the	 situation	when	 the	
subject	 initially	 chooses	A1,	 the	 intermediate	 outcome	 happens	 to	 be	B2,	 and	 a	 reward	 is	
obtained.	If	the	subject	understands	B2	is	an	unlikely	outcome	of	choice	A1	(rare),	but	a	likely	
outcome	of	choice	A2	(common),	a	reward	obtained	after	the	rare	event	B2	should	actually	
motivate	 the	 subject	 to	 switch	 from	 the	previous	 choice	 and	 choose	A2	 the	next	 time.	The	
subject	should	always	choose	the	option	that	is	more	likely	to	lead	to	the	intermediate	outcome	
that	is	currently	associated	with	the	better	reward.	
	
To	quantify	the	model-based	learning	behavior,	we	first	evaluate	the	impact	of	the	previous	
trial’s	 outcome	 on	 the	 current	 trial.	 We	 classify	 all	 trial	 outcomes	 into	 four	 categories:	
common-rewarded	 (CR),	 common-unrewarded	 (CN),	 rare-rewarded	 (RR)	 and	 rare-
unrewarded	(RN).	Here,	common	and	rare	indicate	whether	the	intermediate	outcome	is	the	
more	likely	outcome	of	the	chosen	option	or	not.	Glascher	et	al	(Glascher	et	al.,	2010)	showed	
that	the	mbRL	led	to	a	higher	probability	of	repeating	the	previous	choice	in	the	CR	and	RN	
conditions.	This	is	also	what	we	observe	in	our	network	model’s	behavior	(Fig	4a).	 	
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To	 illustrate	how	the	network	acquires	the	model,	we	define	the	model-based	index,	which	
represents	the	tendency	of	model-based	behavior	(see	the	Method).	The	model-based	index	
grows	larger	as	the	training	goes	on	(Fig	4b).	It	indicates	that	the	network	learns	the	structure	
of	 the	 task	gradually	and	transits	 to	 the	model-based	behavior	 from	an	 initially	model-free	
behavior.	Similar	to	our	findings	in	the	first	task,	the	SEL	without	the	reward	input	does	not	
show	this	transition	(Fig	4b).	We	further	quantify	the	contributions	of	mbRL	and	mfRL	to	the	
network	 behavior	 using	 a	model	 fitting	 procedure	 previously	 described	 by	 Glascher	 et	 al.	
(Glascher	et	al.,	2010),	and	the	network	without	the	reward	input	shows	a	significantly	smaller	
weight	for	mbRL,	suggesting	it	is	worse	at	picking	up	the	task	structure	(Fig	4c).	 	
	
Again,	a	PCA	on	the	SEL	population	activity	shows	that	the	SEL	distinguishes	different	task	
states	(Fig	4d).	Because	of	the	structure	of	the	task	in	which	the	contingency	between	the	first	
stage	options	and	the	intermediate	outcomes	is	fixed,	the	network	only	needs	to	find	out	the	
current	reward	contingency	of	the	intermediate	outcomes.	We	found	that	the	learning	picks	
out	 the	 most	 relevant	 neurons	 that	 encode	 the	 contingency	 between	 the	 intermediate	
outcomes	and	 the	 reward	outcomes	 (B1R,	B2R,	 etc.).	Their	 connection	weights	 to	 the	DML	
neurons	show	better	and	better	differentiation	of	the	two	choices	throughout	the	training	(Fig	
4e).	In	contrast,	the	connection	weights	of	neurons	that	encode	the	association	between	the	
first	 stage	 options	 and	 the	 reward	outcomes	 (A1R,	A2R,	 etc.)	 are	 less	differentiated.	 These	
results	suggest	that	the	network	acquires	the	task	structure	as	the	result	of	training.	
	
Value	representation	by	the	OFC	
	
Previous	 electrophysiology	 studies	 have	 shown	 that	 OFC	 neurons	 encode	 value	 during	
economic	choices	(Padoa-Schioppa	&	Assad,	2006;	Wallis	&	Miller,	2003).	Among	these	value	
encoding	neurons,	studies	have	identified	multiple	classes	of	neurons	encoding	a	variety	of	
information,	 including	the	 value	 of	 individual	 offers	 (offer	 value),	 the	 value	 of	 the	 chosen	
option	(chosen	value),	and	the	identity	of	the	chosen	option	(chosen	identity)	(Cai	&	Padoa-
Schioppa,	2014;	Padoa-Schioppa,	2013).	 	
	
Here	we	show	that	our	framework	may	explain	this	apparent	heterogeneous	value	encoding	
in	the	OFC.	Here	we	model	a	two-alternative	economic	choice	task	by	providing	two	inputs	to	
the	SEL,	 representing	 the	value	of	 each	option	 (Fig	5a).	The	 framework	 can	 reproduce	 the	
choice	 behavior	 of	 monkeys	 (Fig	 5b)(Padoa-Schioppa	 &	 Assad,	 2006).	 Then	 we	 study	 the	
selectivity	of	the	SEL	neurons.	We	find	not	only	neurons	that	encode	the	value	of	each	option	
(offer	value	neurons,	middle	panel	in	Fig	6a),	but	also	neurons	that	encode	the	value	of	the	
chosen	 option	 (chosen	 value	 neurons,	 left	 panel	 in	 Fig	 6a).	 Furthermore,	 a	 proportion	 of	
neurons	show	the	selectivity	for	the	choice	as	previously	reported	(chosen	identity	neurons,	
right	panel	in	Fig	6a).	We	classify	the	neurons	in	the	reservoir	network	into	10	categories	as	
described	in	Padoa-Schioppa	and	Assad	(Padoa-Schioppa	&	Assad,	2006).	Interestingly,	we	are	
able	to	find	neurons	in	9	of	the	10	categories	(Fig	6b,	c).	The	only	missing	category	(neurons	
encoding	 other/chosen	 value)	 was	 also	 very	 rare	 in	 the	 experimental	 data.	 Although	 the	
proportions	of	neurons	encoding	each	category	are	not	an	exact	copy	of	the	experimental	data,	
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but	 the	 similarity	 is	 apparent.	 This	 is	 surprising	 given	 that	 we	 do	 not	 tune	 the	 internal	
connections	of	the	SEL	to	the	task.	The	heterogeneity	is	naturally	expected	from	a	reservoir	
network,	but	it	takes	much	more	effort	to	explain	with	recurrent	network	models	that	have	a	
well-defined	structure	(Daie,	Goldman,	&	Aksay,	2015;	Rustichini	&	Padoa-Schioppa,	2015).	
	
	
Discussion	
	
So	far,	we	have	shown	that	a	simple	reservoir-based	network	model	may	exhibit	model-based	
learning	behavior.	The	more	interesting	question	is	that	why	the	network	is	capable	of	doing	
so	and	how	this	network	model	may	help	us	to	understand	the	functions	of	the	OFC.	
	
We	place	a	reservoir	network	as	the	centerpiece	of	our	model.	Reservoir	networks	are	large,	
distributed,	nonlinear	dynamical	 recurrent	neural	networks	with	 fixed	weights.	Because	of	
recurrent	networks’	complicated	dynamics,	they	are	especially	useful	in	modeling	temporal	
sequences	including	languages	(Rodriguez,	2001;	Suykens,	Vandewalle,	&	Moor,	1996).	They	
have	 been	 shown	 to	 be	 Turing	 equivalent	 (Kilian	 &	 Siegelmann,	 1996)	 and	 capable	 of	
approximating	arbitrary	dynamical	systems	(Funahashi	&	Nakamura,	1993).	In	our	model,	the	
reservoir	network	encodes	 the	combinations	of	 inputs	 that	 constitute	 the	 task	 state	 space.	
States	are	encoded	by	the	activities	of	the	reservoir	neurons,	and	the	learned	action	values	are	
represented	by	the	weights	of	the	readout	connections.	We	show	that	a	reinforcement	learning	
algorithm	is	capable	of	solving	the	relatively	simple	tasks	in	this	study.	However,	it	has	been	
shown	that	reinforcement	learning	is	in	general	not	very	efficient	for	extracting	information	
from	reservoir	networks.	A	possible	solution	is	to	introduce	additional	layers	to	help	with	the	
readout	(Cheng	et	al.,	2015).	
	
It	is	important	to	note	that	reward	events	must	also	be	provided	as	an	input	to	allow	mbRL.	
Including	reward	events	allows	the	network	to	establish	associations	between	sensory	stimuli	
and	rewards,	thus	facilitates	model-based	learning.	Removing	reward	inputs	to	the	reservoir	
leads	to	a	mfRL	behavior.	Although	reward	modulates	neural	activities	almost	everywhere	in	
the	cortex,	the	OFC	is	unique	in	its	role	of	encoding	the	association	between	sensory	stimuli	
and	rewards.	Removing	the	reward	input	to	the	reservoir	mimics	the	situation	when	animals	
cannot	rely	on	such	an	association	to	learn	tasks.	In	this	case,	the	reservoir	is	still	perfectly	
functional	in	terms	of	encoding	task	events	other	than	rewards.	This	is	similar	to	the	situation	
when	 animals	 have	 to	 depend	 on	 their	 other	 memory	 structures	 in	 the	 brain	 –such	 as	
hippocampus	or	other	medial	temporal	lobe	structures	–	for	learning.	The	importance	of	the	
reward	input	to	the	reservoir	explains	the	key	role	that	the	OFC	plays	in	mbRL.	
	
Several	 recent	 studies	 reported	 that	 selective	 lesions	 in	 the	 OFC	 did	 not	 reproduce	 the	
behavior	deficits	in	reversal	learning	previously	seen	if	the	fibers	passing	through	or	near	the	
OFC	were	 spared	 (Rudebeck,	 Saunders,	 et	 al.,	 2013).	 Since	 these	 fibers	 probably	 carry	 the	
reward	information	from	the	midbrain	areas,	these	results	do	not	undermine	the	importance	
of	 reward	 inputs.	 Presumably,	 when	 the	 lesion	 is	 limited	 to	 the	 OFC,	 the	 projections	 that	
carrying	the	reward	information	were	still	available	to	or	might	even	be	redirected	to	other	
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neighboring	prefrontal	structures,	including	ventromedial	prefrontal	cortex,	which	might	take	
over	the	role	of	the	OFC	and	contribute	to	mbRL	in	animals	with	selective	OFC	lesions.	
	
There	are	several	reasons	why	we	choose	reservoir	networks	to	construct	our	model.	First	
reason	is	that	we	would	like	to	pair	our	network	model	with	reinforcement	learning.	Reservoir	
networks	have	fixed	internal	connections;	the	training	occurs	only	at	the	readout.	The	number	
of	 parameters	 is	 thus	much	 smaller,	 which	 could	 be	 important	 for	 efficient	 reinforcement	
learning.	Generality	 is	 another	 benefit	 offered	by	 reservoir	 networks.	Because	 the	 internal	
connections	 are	 fixed,	 we	 can	 use	 the	 same	 network	 to	 solve	 a	 different	 problem	 by	 just	
training	 a	 different	 readout.	 The	 reservoir	 can	 be	 seen	 as	 a	 general-purpose	 task	 state	
representation	network.	Lastly,	our	results	as	well	as	several	other	studies	show	that	neurons	
in	 reservoir	 networks	 –	 although	 with	 untrained	 connections	 weights	 –	 show	 properties	
similar	 to	 that	observed	 in	 the	real	brain	 (Barak	et	al.,	2013;	Cheng	et	al.,	2015;	Sussillo	&	
Abbott,	 2009),	 suggesting	 local	 plasticity	 may	 not	 play	 a	 role	 as	 important	 as	 previously	
thought.	
	
The	 fact	 that	 the	 internal	 connections	 are	 fixed	 in	 a	 reservoir	 network	 means	 that	 the	
selectivities	 of	 the	 reservoir	 neurons	 are	 also	 fixed.	 This	 may	 seem	 at	 odds	 with	 the	
experimental	findings	of	many	OFC	neurons	shifting	their	encodings	rapidly	during	reversals	
(Rolls,	Critchley,	Mason,	&	Wakeman,	1996).	However,	these	observations	may	be	interpreted	
differently.	The	neurons	that	were	found	to	have	different	responses	during	reversals	might	
be	 in	 fact	 encoding	 rewards.	 On	 the	 other	 hand,	 there	 is	 evidence	 that	 OFC	 neurons	with	
inflexible	 encodings	 during	 reversals	 might	 be	 more	 important	 for	 mbRL	 behavior	
(Schoenbaum,	Saddoris,	&	Stalnaker,	2007).	 	
	
The	 performance	 of	 our	 network	 depends	 on	 several	 factors.	 First,	 it	 is	 important	 that	
reservoir	should	be	able	to	distinguish	between	different	task	states.	The	number	of	possible	
task	 states	may	be	only	4	 or	 8	 as	 in	 our	 examples,	 or	may	be	 impossibly	 large	 even	 if	 the	
number	 of	 inputs	 increases	 only	 slightly.	 The	 latter	 is	 due	 to	 the	 infamous	 combinatorial	
explosion	problem.	One	may	alleviate	the	problem	by	introducing	learning	in	the	reservoir	to	
weed	 out	 irrelevant	 combinations.	 Second,	 the	 dynamics	 of	 the	 reservoir	 should	 allow	
information	to	be	maintained	long	enough	until	the	decision	is	made.	The	recent	developed	
gated	 recurrent	 neural	 networks	 may	 provide	 a	 solution	 with	 units	 that	 may	 maintain	
information	for	long	periods	(Chung,	Gulcehre,	Cho,	&	Bengio,	2014).	Third,	the	model	exhibits	
substantial	variability	between	runs,	suggesting	the	initialization	may	impact	its	performance.	
Further	investigation	is	needed	to	make	the	model	more	robust.	
	
Our	model	makes	several	 testable	predictions.	First,	because	of	 the	reservoir	structure,	 the	
inputs	from	the	same	source	should	be	represented	evenly	in	the	network.	For	example,	in	a	
visual	task,	different	visual	stimuli	should	be	represented	at	roughly	the	same	strength	in	the	
OFC,	even	if	their	visual	salience	may	be	drastically	different.	Second,	we	should	be	able	to	find	
neurons	encoding	all	relevant	task	parameters	in	the	network.	Third,	reducing	the	number	of	
inputs	may	make	the	network	to	be	more	efficient	in	certain	tasks.	This	may	seem	counter-
intuitive.	But	removing	inputs	reduces	the	number	of	states	that	the	network	has	to	encode,	
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thus	 improves	 learning	 efficiency	 for	 tasks	 that	do	not	 require	 those	 additional	 states.	For	
example,	if	we	remove	the	reward	input	to	the	SEL,	which	is	essential	for	model-based	learning,	
the	network	should	however	be	more	efficient	at	model-free	learning.	Indeed,	animals	with	
OFC	lesions	were	found	to	perform	better	than	control	animals	when	reward	history	was	not	
important	(Riceberg	&	Shapiro,	2012).	
	
In	summary,	our	framework	does	not	intend	to	be	a	complete	model	of	how	the	OFC	works.	
Instead	 of	 creating	 a	 complete	 neural	 network	 solution	 of	 mbRL	 or	 the	 OFC,	 which	 is	
improbable	at	the	moment,	we	are	aiming	at	the	modest	goal	of	providing	a	proof	of	concept	
that	approaches	the	critical	problem	of	how	to	acquire	the	model	in	mbRL	with	a	biologically	
feasible	mechanism.	By	demonstrating	the	network’s	similarity	to	the	experimental	findings	
in	the	OFC,	our	study	opens	up	new	possibilities	in	future	investigation.	
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Materials	and	Methods	
	
Neural	Network	Model	
	
The	model	is	composed	of	three	layers:	an	input	layer	(IL),	a	state	encoding	layer	(SEL),	and	a	
decision-making	output	layer	(DML)	(Fig.	1a).	 	
	
The	units	in	the	input	layer	represent	the	identities	of	sensory	stimuli	and	the	reward	obtained.	

The	input	neurons	are	sparsely	connected	to	the	SEL	units.	The	connection	weights	 𝑤"
($)	 are	

set	to	0	at	a	probability	of	pIR.	Nonzero	weights	are	assigned	independently	from	a	standard	
uniform	distribution	[0,	1].	
	
In	 the	 SEL,	 there	 are	N=	 500	 neurons.	 The	 neurons	 in	 the	 SEL	 are	 connected	 with	 a	 low	
probability	p=0.1	and	the	connections	are	randomly	and	independently	set	from	a	Gaussian	
distribution	with	zero	mean	and	a	variance	of	g2/(p*N),	where	the	gain	g	acts	as	the	control	
parameter	in	the	SEL.	Connections	in	the	SEL	could	be	both	positive	and	negative.	 	
	
Each	neuron	 in	 the	SEL	 is	described	by	an	activation	variable	xi	 for	 i	=	1,	2,	…,	N,	which	 is	
initialized	with	a	normal	distribution	N(0,	σini2)	at	the	beginning	of	each	trial.	xi	is	updated	at	
each	time	step	(dt	=	1ms)	as	follows:	

τ '()
'*
= 	−𝑥" + 𝑔 𝑤"1𝑦1 + 𝑤"

($)𝐼 + 𝜎56"78𝑑𝑊"
;
1<$ 	 	 	 	 	 	 	 	 (1)	

where	τ	represents	the	time	constant,	wij	is	the	synaptic	weight	between	neurons	i	and	j,	dWi	
stands	for	the	white	noise,	and	σnoise	is	its	variance.	The	firing	rate	yi	of	neuron	i	is	a	function	
of	the	activation	variable	xi	relative	to	a	minimal	firing	rate	ymin=0	and	the	maximal	rate	ymax=1:	

y = 	 	𝑦> + 	𝑦>𝑡𝑎𝑛ℎ 𝑥 𝑦> 																																									𝑥 ≤ 0
𝑦> + (𝑦EF( − 𝑦>) ∗ 𝑡𝑎𝑛ℎ 𝑥 (𝑦EF( − 𝑦>) 									𝑥 > 0	 	 	 	 	 	 	 (2)	

	
Here	y0	=	0.1	is	the	baseline	firing	rate.	 	
	
The	SEL	neurons	project	to	the	DML.	The	two	competing	neurons	in	the	DML	represent	the	
two	choices	respectively.	The	total	input	of	neuron	k	in	the	DML	is	 	

𝑣J = 	 𝑤"J
(K)𝑦"" 	 	

for	k	=	1,	2	 	 	 	 	 	 	 	 	 	 	 (3)	

where	wik(2)	is	the	weight	of	the	synapse	between	neuron	i	in	the	SEL	circuit	and	neuron	k	in	
the	 DML.	 The	 synaptic	 weights	 between	 the	 SEL	 and	 DML	 are	 randomly	 initialized	 with	
uniform	 distribution	 [0,	 1],	 and	 normalized	 to	 keep	 the	 squared	 sum	 of	 synaptic	 weights	
projecting	to	the	same	DML	unit	equal	to	1.	 	
	
The	 synaptic	weights	 between	 the	 SEL	 and	DML	are	updated	based	on	 the	 choice	 and	 the	
reward	outcome	during	 the	 training	phase.	The	 stochastic	 choice	behavior	of	our	model	 is	
described	by	a	softmax	function:	
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𝑝J =
MNOPQ
MNOPRR

		 		 	 	 	 	 	 	 	 	 	 	 	 	 (4)	

where	pk	represents	the	probability	for	choosing	the	choice	ak,	and	the	other	choice	is	chosen	
with	probability	1-	pk.	β	adjusts	the	competition	strength	of	two	choices,	and	vk	is	the	input	of	
the	DML	unit	k.	The	firing	rate	of	the	unit	k,	yk,	is	set	to	1	if	choice	ak	is	chosen,	otherwise	it	is	
set	to	0.	
	
Reinforcement	Learning	
	
At	the	end	of	each	trial,	the	weights	between	the	SEL	and	the	DML	neurons	are	updated.	The	
plastic	weights	in	eq	(3)	in	trial	n+1	are	updated	as	follows:	

𝑤"J
K 𝑛 + 1 = 𝑤"J

K 𝑛 + Δ𝑤"J 	 	 	 	 	 	 	 	 	 	 	 	 (5)	

The	 update	 term	 Δwik	 depends	 on	 the	 reward	 prediction	 error	 and	 the	 responses	 of	 the	
neurons	in	the	SEL	circuit	and	DML:	
𝛥𝑤"J = 	𝜂 𝑟	 − 	𝐸 𝑟 (𝑦"−𝑦*Z)𝑦J 	 	 	 	 	 	 	 	 	 	 	 	 (6)	
where	η	is	the	learning	rate,	and	r	is	the	reward.	E[r]	denotes	the	expected	value.	When	the	
reward	r	 is	 larger	 than	E[r],	 the	connections	between	the	SEL	neurons	whose	 firing	rate	 is	
above	 the	 threshold	 yth	 and	 the	 neurons	 in	 the	 DML	 would	 be	 strengthened,	 and	 the	
connections	between	the	neurons	whose	firing	rate	is	below	yth	and	the	neurons	in	the	DML	

would	be	weakened.	After	each	update,	the	weights	 𝑤"J
K 𝑛 	 are	normalized:	

𝑤"J
K 𝑛 = [)Q

\ 	 5

[[)Q
\ (5)]\_

)`a

		 	 	 	 	 	 	 	 	 	 	 	 	 (7)	

so	that	the	vector	length	of	 𝑤"J
K 𝑛 	 remains	constant.	The	normalization	stops	the	weights	

from	growing	infinitely	(Royer	&	Pare,	2003).	
	
Behavior	Task	
	
Reversal	learning	
	
The	network	has	to	choose	between	two	options.	One	option	leads	to	a	reward,	and	the	other	
does	 not.	 The	 stimulus-reward	 contingency	 is	 reversed	 every	 100	 trials.	 The	 criterion	 for	
learning	is	set	to	28	correct	trials	in	30	successive	trials	for	the	initial	learning	and	24	correct	
trials	in	30	successive	trials	for	subsequent	reversals.	 	
	
The	input	layer	units	represent	the	identities	of	the	two	options	and	the	reward.	An	option	
unit’s	 response	 is	 set	 to	 1	 for	 if	 the	 corresponding	 option	 is	 chosen	 in	 the	 current	 trial,	
otherwise	it	is	set	to	0.	The	reward	unit’s	response	is	set	to	1	if	the	choice	is	rewarded	in	the	
current	 trial.	The	output	of	 the	network	 indicates	 its	choice	 for	 the	next	 trial.	The	network	
parameters	are	set	as	follows.	Time	constant	τ	=	100ms,	network	gain	g=2,	training	threshold	
yth	=	0.4,	temperature	parameter	β	=	4,	learning	rate	 𝜂	 =	0.001,	noise	gain	σnoise	=0.01,	initial	
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noise	gain	σini	=	0.01,	input	connection	probability	pIR=0.2.	
	
The	selectivity	of	neurons	in	the	SEL	is	determined	at	the	time	point	when	the	decision	is	made.	
A	unit	is	defined	as	selective	to	a	certain	input	or	a	combination	of	inputs	if	its	responses	are	
significantly	higher	under	the	condition	when	the	input	or	all	inputs	of	the	combination	are	
set	to	1	than	when	some	of	them	are	set	to	0.	
	
Two-stage	Markov	decision	task	
	
The	 network	 has	 to	 make	 a	 choice	 between	 options	A1	 and	A2.	A1	 leads	 to	 intermediate	
outcome	B1	at	the	probability	of	80%,	and	B2	at	the	probability	of	20%.	Vice	versa,	option	A2	
leads	to	B2	at	the	probability	of	80%,	and	B1	at	a	lower	probability	of	20%.	The	contingency	
between	options	(A1,	A2)	and	intermediate	outcomes	(B1,	B2)	is	fixed.	Initially,	B1	leads	to	a	
reward	at	the	probability	of	80%	and	B2	leads	to	reward	at	the	probability	of	20%.	The	reward	
contingency	is	reversed	every	50	trials.	
	
The	input	layer	contains	6	units,	representing	the	identities	of	two	first	stage	options	A1	and	
A2,	 two	 intermediate	 outcomes	 B1	 and	 B2,	 and	 the	 reward	 and	 non-reward	 conditions,	
respectively.	The	activity	of	option	unit	A1	or	A2	is	set	to	1	when	the	respective	option	is	chosen.	
The	activity	of	intermediate	outcome	unit	B1	or	B2	is	set	to	1	when	the	respective	intermediate	
outcome	is	presented.	The	reward	unit’s	activity	is	set	to	1	when	a	reward	is	obtained,	and	the	
non-reward	 unit’s	 activity	 is	 set	 to	 1	when	 no	 reward	 is	 obtained.	 The	 units	 are	 activated	
sequentially,	reflecting	the	sequential	nature	of	 the	task.	The	A	units	are	activated	between	
200	and	700ms	after	a	trial	starts,	the	B	units	between	700	and	1200ms,	and	the	reward	units	
between	1200	and	1700ms.	 	
	
The	output	of	 the	network	 indicates	 its	choice.	The	network	parameters	are	set	as	 follows.	
Time	 constant	 τ	 =	 500ms,	 Network	 gain	 g=2.25,	 training	 threshold	 yth	 =	 0.2,	 temperature	
parameter	β	=	2,	learning	rate	 𝜂	 =	0.001,	noise	gain	σnoise	=0.01,	initial	noise	gain	σini	=	0.01,	
input	connection	probability	pIR=0.2.	
	
The	selectivity	of	neurons	in	the	SEL	is	determined	at	the	time	point	when	the	decision	is	made.	
There	 are	 8	 conditions	 in	 this	 task,	 namely	A1B1R,	A1B1N,	A2B1R,	A2B1N,	A1B2R,	A1B2N,	
A2B2R,	 and	 A2B2N.	 For	 example,	 A1B1R	 indicates	 the	 condition	 when	 A1	 is	 chosen,	
intermediate	 outcome	 B1	 is	 presented,	 and	 a	 reward	 is	 obtained.	 A	 neuron’s	 preferred	
condition	is	the	condition	under	which	its	activity	is	the	largest	and	significantly	higher	than	
its	activity	under	any	other	conditions.	Then	the	neurons	are	grouped	into	different	categories	
based	 on	 their	 preferred	 conditions.	 The	 neurons	 in	 category	A1R	 are	 the	 neurons	whose	
preferred	conditions	are	A1B1R,	A1B2R,	A2B1N	and	A2B2N.	All	the	preferred	conditions	of	the	
neurons	in	category	A1R	provide	evidence	for	associating	A1	with	the	reward.	Similarly,	the	
preferred	conditions	of	the	neurons	in	the	category	B1N	are	A1B1N,	A1B2R,	A2B1N	and	A2B2R.	
They	provide	evidence	that	B1	is	not	associated	with	the	reward.	
	
Model-based	model	fitting	
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In	order	to	test	the	model-based	learning,	we	fit	our	data	based	on	the	model	introduced	by	
Daw	et	al.	(Daw	et	al.,	2011).	The	model	fits	the	behavioral	results	with	a	mixture	of	model-
free	and	model-based	learning	algorithm.	In	our	simplified	task,	the	network	makes	only	one	
choice	in	each	trial.	The	inverse	temperature	parameters	β1	is	set	to	2,	which	is	also	used	to	
produce	 simulated	 behavioral	 choices.	 The	 parameter	 p,	 which	 captures	 the	 tendency	 for	
perseveration	and	switching,	is	set	to	0,	although	all	conclusions	still	hold	when	p	is	allowed	
to	vary.	The	free	parameters	relevant	in	our	task	are	α1,	α2,	λ	and	w.	α1	and	α2	are	the	learning	
rates	 in	 the	model-free	and	model-based	 learning	algorithms,	 respectively.	The	eligibility	λ	
represents	how	large	proportion	of	credit	from	the	reward	can	be	given	to	the	first	states	and	
actions	in	our	task	paradigm.	w	is	the	weight	for	model-based	learning.	When	w	equals	1,	the	
behavior	 is	 purely	model-based.	When	w	 equals	 0,	 the	 behavior	 is	 purely	model-free.	 The	
fitting	is	done	by	a	maximum	likelihood	estimation	procedure.	 	
	
Model-based	index	
	
Inspired	by	the	factorial	analysis	from	Daw	et	al.	(Daw	et	al.,	2011),	we	define	a	MB	index	(eq.8)	
to	quantify	the	tendency	of	repeating	the	choice	in	the	last	trial	under	different	situations.	The	
combination	of	the	two	reward	outcomes	and	the	two	intermediate	outcomes,	common	and	
rare,	 gives	us	 four	possible	outcomes:	 common-rewarded	 (CR),	 common-unrewarded	 (CN),	
rare-rewarded	(RR)	and	rare-unrewarded	(RN).	In	the	model-based	learning,	the	agent	is	more	
likely	to	repeat	the	previous	choice	if	the	last	trial	is	a	CR	or	an	RN	trial.	Higher	MB	index	means	
that	the	behavioral	pattern	is	more	similar	to	the	mbRL	behavior.	

MB	index = 	 i(7*Fj|lm)ni(7*Fj|m;)oi(7*Fj|l;)oi(7*Fj|mm)
i(7*Fj|lm)ni(7*Fj|m;)ni(7*Fj|l;)ni(7*Fj|mm)

	 	 	 	 	 	 (8)	

	
Value-based	economic	choice	task	
	
Unlike	the	two	previous	paradigms,	both	options	in	this	paradigm	lead	to	a	reward.	Two	input	
units	represent	the	rewards	associated	with	the	two	options,	respectively.	The	input	strength	
is	proportional	to	reward	magnitude.	In	our	simulations,	the	reward	A	is	valued	twice	as	much	
as	reward	B	for	the	same	reward	magnitude.	The	relative	value	preference	between	the	two	
options	is	not	provided	as	an	input	to	the	network	directly,	but	used	in	calculating	the	expected	
value.	The	value	of	the	reward	is	defined	as	the	product	of	the	relative	value	and	the	reward	
magnitude.	
	
The	activity	of	the	input	unit,	f(t),	is	described	by	the	following	equations	(Rustichini	&	Padoa-
Schioppa,	2015).	 	

g(𝑡) 	= 	 1 ((1 + exp −(𝑡 − 475)/30) ∗ (1 + exp (𝑡 − 700)/100 ))	 	 	 	 (9)	

f(𝑡) 	= 	
(magz" − min mag_r" ) ∗ g(t)

(max mag_r" − min mag_r" ) ∗ max(g(𝑡))
	 (10)	

Here	t	is	the	time	in	the	unit	of	ms	within	a	trial,	 magz" 	 is	the	magnitude	of	the	reward	type	i	
in	each	trial,	 max magz" 	is	the	maximal	reward	magnitude	of	reward	type	i	within	the	block,	
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and	 min mag_r" 	 represents	the	minimal	reward	magnitude	of	reward	type	i,	which	is	always	
0	 in	 our	 simulations.	 The	 expected	 value	 is	 the	 sum	 of	 the	 product	 of	 the	 probability	 of	
choosing	the	option	and	corresponding	reward	magnitude.	 	
𝐸 𝑟 = 	𝑝$(𝛾 ∗ 𝑚$) + 𝑝K𝑚K	 	 	 	 	 	 	 	 	 	 	 	 	 	 (11)	
where	pi	and	mi	are	the	probability	of	choosing	option	i	and	its	reward	magnitude,	and	γ=2	is	
the	relative	value	preference	between	the	two	reward	options.	Only	the	data	from	the	trials	
after	6000	 trials	 training	are	 included	 for	 the	analyses.	The	network	parameters	are	set	as	
follows.	 Time	 constant	 τ	 =	 100ms,	 Network	 gain	 g=2.5,	 training	 threshold	 yth	 =	 0.2,	
temperature	parameter	β	=	4,	learning	rate	 𝜂	 =	0.005,	noise	gain	σnoise	=0.05,	initial	noise	gain	
σini	=	0.2,	input	connection	probability	pIR=0.2.	
	
As	in	Padoa-schioppa	and	Assad	(Padoa-Schioppa	&	Assad,	2006),	the	following	variables	are	
defined	for	further	analysis:	total	value	(the	sum	of	the	value	of	two	options),	chosen	value	
(the	 value	 of	 the	 chosen	 option),	 other	 value	 (the	 value	 of	 the	 unchosen	 option),	 value	
difference	(chosen-other	value),	value	ratio	(other/chosen	value),	offer	value	(the	value	of	the	
one	option),	chosen	juice	(the	identity	of	the	chosen	option),	and	value	A	chosen	(the	value	of	
the	option	A	when	option	A	is	chosen).	
	
We	use	an	analysis	 similar	 to	 that	 in	Padoa-schioppa	and	Assad	 (Padoa-Schioppa	&	Assad,	
2006)	 to	 study	 the	selectivity	of	SEL	units	during	 the	post-offer	period	 (0-500ms	after	 the	
stimulus	onset).	Linear	regressions	are	applied	to	each	variable	to	fit	the	neural	responses	in	
this	time	window	for	each	SEL	unit	separately.	A	variable	is	considered	to	explain	the	response	
of	a	neuron	if	the	slope	of	a	fitting	linear	function	is	significantly	different	from	zero.	
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Figures	
	

	
Figure	1.	(a)	The	schematic	diagram	of	the	model.	The	network	is	composed	of	three	parts:	
input	layer	(IL),	the	state	encoding	layer	(SEL)	and	the	decision-making	output	layer	(DML).	
(b)	 The	 number	 of	 the	 error	 trials	 made	 before	 the	 network	 achieves	 the	 performance	
threshold.	The	dark	line	indicates	the	performance	of	the	network	with	the	reward	input;	the	
light	line	indicates	the	performance	of	the	network	without	the	reward	input	as	a	model	for	
animals	of	OFC	lesions.	
	 	

A

B

excitatory

inhibitory

Reward

Input Layer

State Encoding Layer

Decision-making 
Output Layer

A

B

R

a

Initial R1 R2 R3 R4 R5 R6 R7 R8 R9

10

20

30

M
ea

n 
er

ro
rs

 to
 c

rit
er

io
n

With reward
Without reward

b

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 20, 2017. ; https://doi.org/10.1101/116608doi: bioRxiv preprint 

https://doi.org/10.1101/116608
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	
	
Figure	2.	(a)	Selectivity	of	three	example	neurons	in	the	reservoir	network.	Input	units	are	set	
to	1	from	200ms	to	700ms.	Left	panel:	an	example	neuron	that	encodes	choice	options;	middle	
panel:	an	example	neuron	that	encodes	reward	outcomes;	right	panel:	an	example	neuron	with	
mixed	selectivity.	(b)	PCA	on	the	network	population	activity.	The	network	states	are	plotted	
in	the	space	spanned	by	the	first	3	PCA	components.	The	activities	in	different	conditions	are	
differentiated	after	the	cue	onset.	(c)	The	difference	between	the	connection	weights	between	
SEL	neurons	and	the	DML	unit	A	and	DML	unit	B.	The	SEL	neurons	are	grouped	according	to	
their	selectivities.	For	example,	AR	represents	the	group	of	neurons	that	respond	most	strongly	
when	the	input	units	A	and	R	are	both	activated.	The	gray	and	white	area	indicates	the	blocks	
in	which	the	option	A	and	the	option	B	leads	to	the	reward,	respectively.	
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Figure	3.	(a)	Task	structure	of	the	two-stage	Markov	decision	task.	Two	options	A1	and	A2	are	
available,	 they	 lead	to	 two	 intermediate	outcomes	B1	and	B2	at	different	probabilities.	The	
width	of	the	arrows	indicates	the	transition	probability.	Intermediate	outcomes	B1	and	B2	lead	
to	rewards	at	different	probability,	but	the	reward	contingency	of	the	intermediate	outcomes	
is	reversed	between	blocks.	(b)	The	schematic	diagram	of	the	model.	It	is	similar	to	Fig	1a.	The	
only	difference	 is	 that	 there	are	more	 input	units.	 (c)	Units	 in	 the	 input	 layer	are	activated	
sequentially.	 In	 the	 example	 trial,	 option	A1	 is	 chosen,	B2	 is	 presented,	 and	 no	 reward	 is	
obtained.	 	
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Figure	4.	(a)	Factorial	analysis	of	choice	behavior.	The	agent	is	more	likely	to	repeat	the	choice	
under	 the	 conditions	 common-rewarded	 (CR)	 and	 rare-unrewarded	 (RN)	 than	 under	 the	
conditions	common-unrewarded	(CU)	and	rare-rewarded	(RR).	(b)	MB	index	keeps	growing	
in	 the	 intact	 network	 (blue	 line),	 but	 stays	 at	 a	 low	 level	when	 the	 network	 is	without	 its	
reward	input	(red	line).	(c)	Fitting	the	behavioral	performance	with	a	mixture	of	model-free	
and	 model-based	 algorithms.	 The	 weight	 parameter	 w	 for	 model-based	 learning	 is	
significantly	 larger	 for	 the	 intact	network	 (blue	data	points)	 than	 the	network	without	 the	
reward	input	(red	data	points).	Each	data	point	represents	a	simulation	run.	(d)	PCA	on	the	
network	population	activity.	The	network	states	are	plotted	in	the	space	spanned	by	the	first	
3	 PCA	 components.	 The	 network	 can	 distinguish	 all	 8	 different	 states.	 (e)	 The	 weight	
differences	between	the	connections	between	SEL	neurons	and	the	DML	unit	A1	and	DML	unit	
A2.	 Similar	 to	 Fig	 2c.	 The	 gray	 and	white	 areas	 indicate	 the	 blocks	 in	which	 intermediate	
outcome	B1	is	more	likely	to	lead	to	a	reward	and	the	blocks	in	which	B2	is	more	likely	to	lead	
to	a	reward,	respectively.	
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Figure	5.	(a)	The	schematic	diagram	of	the	model.	The	input	neurons’	responses	are	not	a	step	
function	 as	 in	 the	 previous	 paradigms,	 illustrated	 in	 the	 left	 side	 of	 the	 panel.	 (b)	 Choice	
pattern.	The	relative	value	preference	calculated	based	on	the	network	behavior	is	indicated	
on	the	top	left,	and	the	actual	relative	value	preference	used	in	the	simulation	is	1A	=	2B.	
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Figure	6.	(a)	Three	example	neurons	in	the	SEL.	Left	panel:	a	neuron	that	encodes	chosen	value;	
middle	panel:	a	neuron	that	encodes	offer	value;	right	panel:	a	neuron	that	encodes	chosen	
juice.	 (b)	 The	 proportions	 of	 the	 neurons	 with	 different	 selectivities	 from	 a	 previous	
experimental	study	(Padoa-Schioppa	&	Assad,	2006).	(c)	The	proportions	of	the	neurons	in	
our	reservoir	network	with	different	selectivities.	
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