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Abstract

Motivation: A number of approaches have been introduced in recent years al-
lowing gene expression data to be integrated into the standard Flux Balance Anal-
ysis (FBA) technique. This additional information permits greater accuracy in the
prediction of intracellular fluxes, even when knowledge of the growth medium and
biomass composition is incomplete, and allows exploration of organisms’ metabolism
under wide-ranging conditions. However, existing techniques still focus on the re-
action as the fundamental unit of their modelling. This carries the advantages of
incorporating expression measurements, but discounts the fact that genes (and their
associated proteins) may be involved in the catalysis of multiple reactions through
the formation of alternative protein complexes.

Results: We demonstrate an approach focusing not on reactions or genes as the
fundamental unit, but on the ‘Gene Complex’ (GC), a set of genes that is sufficient
to catalyse a given reaction. We define expression-based limits in such a way that
proteins cannot do ‘double duty’: no single molecule is permitted to contribute
to the catalysis of more than one reaction at a time. Using experimentally deter-
mined RNA expression and intracellular fluxes, we validate this novel and more
conceptually sound approach.

Availability and Implementation: An implementation of the GC-Flux al-
gorithm is available as part of the Pyabolism python module. https://github.com/nickfyson/pyabolism

Contact: nickfyson@gmail.com

1 Introduction

Modelling the network of metabolic reactions inside cells is key to understanding their
behaviour, and recent years have seen a diverse range of approaches tackling the prob-
lem [7]. Fundamentally, the metabolism of a cell can be viewed as a large system of
differential equations, but limitations on availability and accuracy of the necessary data
means such full-cell dynamic models remain rare [27]. Consequently, we have seen wide-
spread development of Constraint-Based Models (CBMs), based on the foundation of
Flux Balance Analysis (FBA) [41]. FBA does not require knowledge of reaction kinetics,
instead relying on the evolutionary assumption that cells will exhibit near-optimal be-
haviour under their internal and externally imposed constraints. Crucially, this requires
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only the list of all reactions present inside a given cell, information for which acquisition
may be largely automated.

Constraint-based modelling is well established [43, 45, 41]; the framework is as fol-
lows. Given a comprehensive set of all reactions within a cell, R, the state of the cell’s
metabolism can be represented by a vector of fluxes, one for each reaction. In isolation
the reactions are free to run at any thermodynamically feasible rate, but if we assume
that the cell is operating at steady state, with no overall changes in the concentrations
of the metabolites, this imposes a large set of linked constraints on the flux vector — the
fluxes must be such that the total of each metabolite generated is equal to that consumed.
This network of reactions can be represented by the stoichiometric matrix, S, in which
each row represents a metabolite and each column gives the stoichiometry for a particular
reaction.

To simulate the growth of cells, some additional special reactions are needed. ‘Ex-
change reactions’ represent the input/output of metabolites from/to the outside world,
where the metabolite is only present on one side of the reaction. These permit an overall
imbalance in specific metabolites — such as the primary carbon source — and can be con-
strained to represent particular growth conditions. Finally, the standard FBA approach
requires a ‘biomass reaction’ which details the range and precise quantity of metabolites
that go into constructing a new gram of cellular biomass.

A Linear Program (LP) is then constructed using the stoichiometry and exchange
bounds as constraints, and the flux through the biomass vector as the objective function.
We follow the standard notation for FBA modelling, where S the stoichiometric matrix
and v the vector of reaction fluxes. The objective for optimization is defined by a vector
c, which gives a weighting to each of the reaction fluxes, and in the standard FBA
formulation will have a single non-zero entry corresponding to the biomass reaction.
Finally each reaction i has a lower bound ai and an upper bound bi. The optimisation
problem can then be defined as

max cTv (1)

s.t. Sv = 0

ar ≤ vr ≤ br ∀r ∈ R.

This basic formulation has been widely used for modeling bacterial growth for decades
(e.g. [41, 45, 15, 3, 51, 7] and many others). In early studies the flux space was constrained
by limiting only the uptake of nutrients [14, 48, 6]. Subsequent studies showed that it
is possible to make quantitative predictions of internal flux distributions using CBMs,
both with more sophisticated use of the basic stoichiometric model [34, 50, 45], and
through combination with increasingly abundant high-throughput expression data (e.g.
[10, 34, 52] and many others).

Transcriptomic data define an in-depth, quantitative and genome-scale description of
cellular activity, and as a result, integrating transcriptomic measurements with constraint-
based modeling (CBM) in principle allows researchers to compare an organism’s metabolic
function in a wide range of different states. For this reason, there has been considerable
interest in integrating ’omics data with constraint-based metabolic modeling [47, 23, 43,
56], and numerous methods for transcriptomic data are available [2, 31, 30, 12, 4, 17,
10, 52, 57, 25, 9, 47, 23, 44, 5, 11]. One study has examined a wide range of different
approaches for integrating expression data with constraint-based modelling, and found no
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consistent performance benefit, in terms of predicting measured internal fluxes, over the
more basic FBA approach [35]. However, the integration of transcriptomic data allows
interrogation of situations that cannot be addressed by pFBA ([34]) or similar methods,
because these methods do not capture changes in internal regulation that drive differences
in metabolism.

There have been many successful applications of tools incorporating transcriptomic
data with CBM, despite the fact that mRNA measurements do not directly reflect either
protein abundances or, typically, measured flux values (though there are some correla-
tions). [37] used an integrated approach to characterize phenotypes of Yersinia pestis
under temperature changes which induce virulence and under antibiotic stress. [53] pre-
dicted starch content through time in Ostreococcus tauri, a model alga, and validated their
predictions experimentally; the main regulatory targets in the starch production pathway
were correctly predicted. [16] characterized the metabolic adaptations of M. tuberculosis
to hypoxia. [20] found 88 altered reaction fluxes that characterized a sub-optimal growth
state of the cellulolytic anaerobe C thermocellum. [1] used metabolic modeling to study
the switch from biomass optimization to antibiotic production in Streptomyces coelicolor,
and found that predicted fluxes showed high correlations with gene expression data. [40]
compared two related lineages of P. aeruginosa and explored how bacterial metabolism
changes over time in cystic fibrosis lungs. [32] examined how Phaeodactylum tricornutum
increases lipid production, not by a change in growth medium or removal of a reaction
but by a remodeling of internal constraints. Transcriptomic data are also incorporated
in tools for strain design and engineering [28].

One remaining challenge in integrating transcriptomic (expression) measurements
with constraint-based models, despite the successes to date, is that the mapping be-
tween genes whose mRNA is measured and reactions in the CBM is not one-to-one. In
this paper we introduce a novel approach, introducing the concept of a Gene Complex
(GC) and showing how such a shift in focus can improve the prediction of internal fluxes
in the hardest of prediction tasks.

1.1 E-Flux and E-Flux2

The E-Flux algorithm of Colijn et al. is an extension to basic FBA methodology, per-
mitting the integration of gene expression data into modelling of cellular metabolism
without first converting expression into Boolean on/off values [10]. The basic idea relies
on the fact that reactions inside cells are catalysed by enzymes, and these enzymes con-
sist of proteins, which are in turn generated through the expression of RNA. The exact
quantitative relationship is complicated and generally unknown, but higher intracellular
concentration of a given RNA molecule will to some extent be associated with a higher
concentration of the corresponding enzyme [19, 18, 38, 39]. This in turn will lead to a
greater potential capacity for the reaction, since there is more of the necessary catalyst
available.

E-Flux therefore takes experimentally determined data on RNA expression for a
particular growth state of a cell, and uses this to set maximum capacities on the internal
reactions in the constraint-based model. The core E-Flux method chooses the maximum
flux, br, for the rth reaction according to a function of the expression of gene r and
associated genes:

br = f(expression level of genes associated with reaction r). (2)
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Figure 1: Alternative representation of GPR information as a Directed Acyclic
Graph (DAG). While the information is the same, converting into a DAG representation
makes it easier to determine effective capacity and viable gene-complexes for a given
string.

If the reaction catalyzed by the corresponding enzyme is reversible then ar = −br, other-
wise ar = 0. For the standard E-Flux approach, ‘associated genes’ refers both to genes
that are components of the same enzyme complex, and genes associated with separate
isozymes of the reaction. Note that this is not the same as assuming that expression
levels determine realised fluxes, only maximal flux capacities.

The Gene-Protein-Reaction (GPR) associations for a metabolic model are normally
coded using a field in the notes of a reaction labelled ‘GENE ASSOCIATION’, which
while not (yet) part of the standard SBML specification has been widely adopted due
to implementation in the popular COBRA toolbox. A typical GPR string found in the
standard E. coli model [42] is

(( b0978 and b0979 ) or ( b0733 and b0734 )).

This indicates that the reaction requires one of two enzyme complexes in order to run,
either the complex consisting of b0978 and b0979, or the complex consisting of b0733 and
b0734. The E-Flux approach uses the expression of RNA as a proxy for the availability
of the coded protein, which gives a single number associated with each gene. To translate
these into a bound for a reaction with the GPR shown above the following expression is
used.

vmax = min(b0978, b0979) + min(b0733, b0734) (3)

The ‘and’ element of the GPR string become min expressions, since the total quantity of
the enzyme complex cannot be higher than any one of the constituent proteins. The ‘or’
becomes ‘+’ in the expression, since both enzyme complexes can contribute individually
to the maximum rate of the reaction. Using this approach we can determine upper bounds
on the reaction rate for all reactions in the model that have appropriate transcriptomic
data, and then optimise for biomass flux to find the maximum permitted growth rate.

When looking to predict a specific flux distribution, however, we need to take further
steps to ensure a unique distribution. In general there will be a space of fluxes that
correspond to the maximal objective value, and the recent paper published by Kim et
al. outlines an extension to the original E-Flux algorithm [29]. The E-Flux2 approach
consists first of creating a model in which all a priori information on cellular uptake rates
and ATP maintenance flux have been removed, before performing a two-stage optimiza-
tion. The the achieved objective flux from standard E-Flux is added as an additional
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constraint to the LP, and then the the Euclidean (or L2) norm of the flux vector is min-
imized. This returns a unique solution, and [29] demonstrated that the resulting flux
distribution was significantly correlated with that observed in experiment.

1.2 Limitations of E-Flux2

The problem of setting principled bounds for the reactions is complicated when genes
appear more than once in the GPR expressions.

(( b2762 and b2582 ) or ( b2762 and b3781 )).

In this case we should not simply replace the or statement with an addition, since the
gene b2762 appears in both clauses. For this reaction we could solve the problem by
nesting our min functions, but there are further cases in which genes appear not just
multiple times in a single GPR string, but across multiple reactions within the model.

The E-Flux2 approach has been shown to allow prediction of internal fluxes [29], but
it treats all the GPR associations in isolation, permitting enzymes to do ‘double duty’. It
is effectively assumed that one protein can be taking part in multiple enzyme complexes,
catalysing more than a single reaction at a time. To resolve this issue we restructure the
problem, addressing the metabolite network not in a reaction-centric manner, but instead
focusing on the Gene Complex (GC).

2 Methods

The primary contribution of this paper is the GC-Flux algorithm, but both this novel
approach and the existing E-Flux require processing of GPR strings in their implementa-
tion. We therefore discuss how the established DAG representation of logical expressions
is related to the implementation of our algorithms.

2.1 Tree Representation of GPR Strings

While the format for GPR strings found in the Cobra toolbox has seen wide adoption,
this still leads to a wide range of equivalent ways to encode relations. Brackets are used
to group terms in the GPR string, and hence parsing the string correctly takes some care.
Parsing logical expressions is a recognised problem in computer science, and the standard
approach is to convert the string into a Directed Acyclic Graph (DAG). In Fig. 1 we give
an example of this established approach, showing how a GPR string with brackets may
be converted into a DAG representation (in this case a tree), with each gene represented
as a leaf node. Internal nodes are labelled by the logical operation associated with that
clause in the string, either ‘OR’ or ‘AND’. In cases where both logical operators appear in
a single clause convention dictates that AND take precidence, but in practice published
metabolic models tend to use brackets to avoid any potential confusion.

Representing the GPR string as a DAG clarifies the situation when determining key
properties for implementing E-Flux and GC-Flux. For E-Flux we need to determine
the maximum quantity of viable catalyst for the reaction, which will guide how fast the
reaction is allowed to run. In the DAG representation each unique gene in the GPR string
corresponds to a leaf node, and we can add the expression data as a property of each leaf.
All the internal nodes are either AND or OR nodes, and determine how the expression of its

5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 14, 2017. ; https://doi.org/10.1101/116558doi: bioRxiv preprint 

https://doi.org/10.1101/116558
http://creativecommons.org/licenses/by/4.0/


Reaction 1

(A and B) or (A and C)
Reaction 2

(C and D)

This reaction can be 
catalysed by two different 
gene complexes, so will 
be converted into two 
duplicate reactions.

This reaction is reversible, 
so will be converted into 

two irreversible reactions, 
one with stoichiometry 

flipped.

Expression data for each 
gene is translated to a 

maximum total flow through 
all the associated reactions.

A and B

A and C

C and D

A B

C

D

Only one of these 
mirror-image reactions 

can run at a time.

A B C D
gene

e
x
p

re
s
s
io

n

{

}

Figure 2: Illustration of how two original reactions relate to those in the con-
verted model and the associated expression data. As indicated, the expression of
each gene is directly proportional to the amount of flux permitted in total through all
associated reactions. The ‘loops’ that constrain the fluxes are the same size as the cor-
responding bars on the chart showing expression levels. All reactions are uni-directional,
and the dotted line indicates a reaction that is carrying no flux.

child should be calculated. For AND nodes, expression is the minimum across all children.
For OR nodes the effective value of expression is the sum across children. Iterating over
the network from leaf to root in reverse topological order will thus allow us to calculate
the effective capacity for a reaction as afforded by its GPR string and expression data.

In implementing the GC-Flux algorithm we face a slightly different problem, in
which it is necessary to determine a list of gene complexes that are each individually
sufficient for catalysis. The full list of viable gene-complexes can be built up from leaves
to root, following rules for combining the children of internal nodes. In Fig. 1 we see an
example of the approach, with OR nodes with two leaf children resulting in a list of two
separate complexes, while AND nodes lead to each complex being enlarged (while the total
number remains the same). An example implementation with full details can be found
in the Pyabolism module.

2.2 The GC-Flux Algorithm

In the GC-Flux approach we manipulate the original optimization problem into a math-
ematically equivalent form, but one where every reaction is associated with a simple GPR
string, which is either empty, a single gene or a single AND clause. This allows us to use
expression data to impose constraints on our flux vector in a novel way, which better
reflects the organisation of genes into functional complexes.

We first duplicate all reversible reactions, replacing each with one running in the
forward direction and one with reactants and products exchanged. This results in a
mathematically equivalent optimisation problem. While it is possible to constrain these
pairs such that only one can run at a time, in this case we minimise the norm of the flux
vector so that this additional constraint is not required. In this model, all elements of
the flux vector are positive.

The second stage is to go through each reaction in turn and split the GPR string
into individual viable gene complexes. As outlined in Sec. 2.1 this can be conveniently
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achieved by first converting the GPR string into a graph representation, before iterating
over the directed graph to determine the appropriate list of gene-complexes. An example
implementation of this can be found in the GC-Flux code of the Pyabolism python
module. For example, if a reversible reaction had the GPR string ‘A or B’, we would
end up with four reactions, a forward and reverse reaction associated with each of the
genes A and B.

We are now left with a model that has many more and different reactions than the
original, but is mathematically equivalent to that found in Eq. 1. Applying either FBA
or E-Flux to either model will give the same results as the unmodified model. However,
this manipulation allows us to apply expression-related constraints in a principled way.

We still treat the RNA expression level as indicative of the protein’s total flux-
producing capability (not a model for the flux itself), but we now assume that this
must place an upper limit on the rate across all reactions that rely on this gene for
catalysis. Now that each gene only ever appears at most once in the GPR string for a
given reaction, we can add the constraints separately to our linear program. We use the
notation

G = {set of all genes g}
S ′ = stoichiometric matrix of manipulated model

Rg = {reactions catalysed by gene g}
Eg = expression level of gene g.

We are now in a position to define our GC-Flux problem in the following two-stage
optimization problem. We first find z∗, the maximum achievable value of our chosen
objective function.

Optimization 1.

z∗ = max cTv (4)

s.t. S ′v = 0∑
r∈Rg

vr ≤ Eg ∀g ∈ G

0 ≤ vr ∀r ∈ Ri

We then find v∗, the flux vector of minimal magnitude that achieves this optimal flux.

Optimization 2.

v∗ = arg min |v| (5)

s.t. S ′v = 0∑
r∈Rg

vr ≤ Eg ∀g ∈ G

0 ≤ vr ∀r ∈ Ri
cTv ≥ z∗

(6)

Figure 2 gives an intuition for this approach, considering each of the new reactions
as pipes that expand to accommodate the flux they carry. Unconstrained, they can
expand to accommodate any positive quantity of flux, but all those with GPR strings
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pass through hoops labelled with the relevant gene. The capacities of these hoops are set
by the expression level of the respective gene, and there may often be multiple reactions
passing through each hoop. The fluxes carried by reactions in the network are free to
vary up the limits, but where multiple reactions are catalysed by the same gene, the
total capacity must be divided between them. In this example, the capacity afforded by
expression of gene ‘C’ must be shared between three different reactions.

2.3 Verification with Experimental Data

To assess the performance of our algorithm, we use published experimental data for gene
expression and metabolic fluxes in a variety of different conditions. This expression data
provides input to the GC-Flux algorithm, and the correlation between predicted internal
fluxes and those experimentally measured provides a metric for algorithm performance.
We use data from two organisms across five different publications. For Escherichia coli
(ecoli), we use transcriptomic data from Ishii et al. [24] and Holm et al. [22]. For the
Ishii et al. study we use the microarray data which has wider coverage of genes, and
covers five different knockout conditions. For Saccharomyces cerevisiae (yeast) we use
data from [8] as well as the combined datasets from [46] and [26]. Henceforth we will refer
to these datasets simply as Ishii, Holm, Celton and Rintalta, and we use the processed
form provided by [29]. Kim et al.’s study gathers all the necessary data together as well as
providing a mapping between measured reaction fluxes and reactions inside the models.
Full details can be found in [29] and the associated supplementary material. As our ecoli
model we use iJO1366 [42], and for yeast we use Yeast5 [21]. Details of all experimental
conditions can be found in the original papers.

As a proof-of-concept demonstration we use a worst case scenario for such predictions,
in which the only information we have on the growth conditions of the organism is the
transcriptomic data. Such conditions could correspond to expression data from in-vivo
growth, where bacterial growth occurs at an unknown rate on complex or uncharacterised
media. This means no growth rate or carbon source specificity is known for the targeted
cells, and hence the models we use in simulation do not have the corresponding con-
straints. For all algorithms we use the biomass vector included included in the curated
models as the objective function.

We compare performance of GC-Flux to two existing algorithms, the afformentioned
E-Flux2 [29] and pFBA [34]. The pFBA approach assumes that the organism will
achieve the optimal objective, while minimising the resources used. Hence it performs
standard FBA before minimising the flux through all reactions associated with enzymes.
In order to allow comparison between the algorithms we choose to set an arbitrary uptake
limit of 0.1 for all carbon sources, while every other exchange reaction with a non-zero
limit is set to ±∞ as appropriate. The same non-expression constraints are used for all
algorithms, meaning that we use a slightly adapted version of E-Flux2 in which uptake
and ATP maintenance limits have been reintroduced.

The situation in which carbon source and growth rate is unknown removes a lot
of information from the model, but there is still a large amount of organism-specific
information tied up in the biomass vector. For commonly studied bacteria with well
characterised metabolic models this special reaction has been carefully tuned, with a lot
of experimental information and verification captured in its components and coefficients.
To understand what predictive power this specific objective function brings to pFBA
we also examine the capability of our algorithms to predict fluxes under an alternative
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Figure 3: Results of flux vector predictions for the three algorithms with both
biomass and ATP flux objectives. Both the Pearson correlation and normalised error
metrics give the same qualitative pattern, in which performance is extremely similar when
an appropriate biomass vector is known, but the expression-based techniques are much
more robust when an alternative objective is employed.

objective. In line with the study of [49] we predict flux distributions from all three
algorithms not only using biomass flux as an objective, but also maximsisation of ATP
production.

We use multiple measures to assess the performance of the algorithms. Spearman
correlation is the least stringent, assessing only the degree of monotonicity between silico
and vitro fluxes. Pearson correlation indicates how well the data fits a linear model, and
while the non-normality of the data means we cannot use the standard tests of statistical
significance the measure nonetheless gives an indication of the how well the data fits a
linear model. We also use the performance metric employed in [35], a normalised measure
of the residuals between simulated and experimental fluxes. This takes the Euclidean
norm of the residuals and normalises by the Euclidean norm of the experimental flux
vector, allowing us to compare performance across the different experiments (which may
have very different typical flux magnitudes).

normalised error =
||vexp − vsim||
||vexp||

(7)

3 Results

Figure 3 shows the correlation achieved across all algorithms and objectives, with results
displayed as violin plots showing not only the mean and degree of variation, but also how
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the results are distributed [55]. Performance is similar for all algorithms when biomass
is employed as the objective, and this pattern is consistent across the three measures of
performance. In contrast, when the objective is the production of ATP, we see a marked
shift in performance between the algorithms. The pFBA approach shows a drop in
performance, particularly for those metrics that are sensitive to the magnitude of error.
In contrast, the integration of transcriptomic data to E-Flux2 and GC-Flux has made
the predictions more robust to the choice of objective. This is not unexpected, given the
relative lack of constraint when switching to a less sophisticated objective function, but it
indicates that the predictive power of pFBA is at least partially due to the information
contained in a well curated biomass vector.

3.1 Scaling Expression Data

Approaches that integrate transcriptomic data with constraint-based modelling have ex-
isting fixed constraints that impose, for example, ATP costs for cell maintenance [41],
and where known, the uptake of a nutrient also provides a fixed constraint in defined
units. The second type of constraint – on the internal reactions of the system, derived
from transcriptomic measurements – is linked to the internal state of the organism, in-
cluding expression and regulation of metabolic genes. Transcriptomic measurements do
not naturally correspond to model units. Changing the relative values (via a conversion
factor) of these two kinds of constraints changes the optimization problem in Eq. 4 and
Eq. 5, and hence the predicted fluxes. To examine how this trade-off affects the quality
of prediction, we rescaled the gene-centric constraints.

We performed the same set of simulations again, but with a range of linear scalings
applied uniformly to the experimental expression values. For example, the constraints
in the GC-Flux optimisation problem simply have a multiplicative factor added on the
right side of the inequality, constant for all genes.∑

j∈Jg
vj ≤ αEg ∀g ∈ G (8)

α = linear scaling of expression data

The bounds on E-Flux2 are similarly effected, and in our adapted version of the algo-
rithm with absolute bounds on uptake and ATP maintenance, the scale-dependence is
reintroduced.

Figure 4 shows the results of simulations for a wide range of scaling values, and dis-
plays a clear systematic variation in performance of both transcriptomic-based algorithms
relative to the pFBA baseline. By definition the pFBA performance does not vary at
all since it takes no account of the gene expression data, and in the limit of very large
scaling the performance of both algorithms tends toward the pFBA value. At this limit
the expression-derived bounds become so large as to be irrelevant as they are not provid-
ing any further constraint to the problem (the effective constraints are on the exchange
reactions).

Figure 4 does not show an entirely straightforward relationship between performance
and scaling value, but the ‘default’ scaling of 1.0 (used in Fig. 3 and previous studies
[29, 35]) does not result in the best (peak) performance. Further, the peak performance
achieved for GC-Flux is better in both cases than that of E-Flux2. As we vary the
scaling we see fluctuations in performance, but given that applying the same scaling to
all genes is somewhat blunt, this is not unexpected. The scaling that will ideally balance
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Figure 4: Variation in algorithm performance with uniform linear scaling of the
transcriptomic data. As the magnitude of expression-derived constraints shifts relative
to the inherent constraints we observe a non-monotonic shift in the performance of both
E-Flux2 and GC-Flux. This clearly demonstrates that scaling of gene expression data,
even when uniformly applied, can have a marked impact on the prediction of internal
fluxes.
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existing (exchange, ATP maintenance, thermodynamic) constraints with transcriptomic
constraints will likely not be the same for all genes.

Transcriptomic data reflects the amount of mRNA present, and while this is overall
likely to be indicative of metabolic activity and of flux capacity [10, 29, 38, 19, 18], the
measured units are not directly comparable to that of flux constraints in FBA models.
Scaling the expression data as we have done is a simple, global way of linking the two
units. Our investigation gives an indication of what, on average, is the best scaling for the
performance measures we have used, taken in the aggregate across all the genes/enzymes.
Ideally, if individual kinetics were known, individual-level scalings for each gene, enzyme
or complex could refine the constraints further. Our approach with a single global scaling
is a first step, but can already improve flux prediction. In future it is possible that gene- or
enzyme-specific scalings could even be learned from experimental observations combined
with well-curated models, and that this could improve the use of transcriptomic data for
future flux predictions.

4 Conclusions

We have introduced a novel formulation combining experimental gene expression data
with constraint-based metabolic modelling, in which viable gene complexes are considered
as the fundamental unit. This relegation of the status of reactions allows more realistic
use of expression data, acknowledging that the individual proteins present in cells cannot
be simultaneously employed in multiple reactions.

Using expression data to set limits on reaction rates is fraught with difficulty, and such
data can only really be seen as indicative rather than truly quantitative. As discussed
in [5], RNA expression data is far from perfectly correlated with intracellular protein
concentration, but despite the post-translational factors such as protein half-lives and
sRNA regulation contributing to discrepancies between mRNA and protein abundance
[36], the literature indicates a degree of positive correlation, both in yeast [19, 18] and
prokaryotic organisms [38, 39]. In both E-Flux2 and GC-Flux the limits are set as
maximum rates rather than realised flux rates, leaving scope for system-level effects to
prevent the full utilisation of reactions’ capacities. Despite the limitations, treating such
experimental data as quantitatively predictive can give useful and verifiable results.

We have worked in the setting in which the carbon source and growth rate are not
known, as well as examining performance in cases when the biomass objective function
is absent. While this information would typically be available in many culture-based
experiments, there is growing interest in using constraint-based metabolic modelling ap-
proaches to understand the function and dynamics of communities of microbes described
with metagenomics [33, 54]. As metagenomic tools cannot preserve linkage information,
it is challenging to reconstruct which species are present in a sample [13]; many species
present are unknown and/or cannot be cultured. It is currently prohibitive to define
high-quality species-specific metabolic models to capture the metabolic capabilities of the
microbial communities that are characterised with metagenomics. Consequently, mov-
ing to a gene-centric approach, as we have done here, has a natural appeal for applying
metabolic modelling tools to metagenomic datasets.

The GC-Flux approach also opens up the possibility of tuning expression-derived
constraints individually, learning the appropriate coefficients that would translate indi-
vidual mRNA measurements into more accurate constraints on the maximum reaction
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rates. Each reaction r ∈ R would have an associated constant kr ∈ K, which determines
how fast a particular value of the expression of the gene-complex will permit the reaction
to run.

vr ≤ kr (quantity of catalyst / gene-complex)
vr/kr ≤ (quantity of catalyst / gene-complex)
vr/kr ≤ min(E1, E2, . . . , Ei)
vr/kr ≤ Ei ∀Ei

The constant kr is a property of the reaction, and incorporating this into the framework
of optimisation problems 1 & 2, we define new optimisation problems that take these
‘kinetic constants’ into account.

Optimization 3.

z† = max cTv

s.t. S ′v = 0∑
r∈Rg

vr/kr ≤ Eg ∀g ∈ G

0 ≤ vr ∀r ∈ R

Optimization 4.

v† = arg min |v|
s.t. S ′v = 0∑

r∈Rg

vr/kr ≤ Eg ∀g ∈ G

0 ≤ vr ∀r ∈ R
cTv ≥ z†

We are left with the task of finding a suitable set of constants K such that in solving
Optimisations 3 & 4 we obtain a flux vector with the best possible correlation with
experimental results.

An approach to solving this problem could provide a step toward high-throughput
determination of kinetic parameters in metabolic networks, permitting improved dynamic
modelling (e.g. with ordinary differential equations). This multi-level optimisation is not
easily tackled, and may require the introduction of a suitable approximate form, but it
represents an interesting avenue for future research.

GC-Flux represents a conceptual advance in constraint-based modelling, giving a
principled basis for linking expression data with maximum flux capacities. We have
demonstrated the algorithm on experimental data, showing improved predictive power
when multiple representation of genes in models is taken into account. A shift to focusing
on gene complexes as the fundamental unit of constraint-based metabolic modelling is
both theoretically appropriate and practical.
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