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Abstract  

To make accurate perceptual estimates observers must take the reliability of 

sensory information into account. Despite many behavioural studies showing that 

subjects weight individual sensory cues in proportion to their reliabilities, it is still 

unclear when during a trial neuronal responses are modulated by the reliability of 

sensory information, or when they reflect the perceptual weights attributed to 

each sensory input during decision making. We investigated these questions using a 

combination of psychophysics, EEG based neuroimaging and single-trial decoding. 

Our results show that the weighted integration of sensory information in the brain 

is a dynamic process; effects of sensory reliability on task-relevant EEG 

components were evident around 84ms after stimulus onset, while neural 

correlates of perceptual weights emerged around 120ms after stimulus onset. 

These neural processes also had different underlying topographies, arising from 

areas consistent with sensory and parietal regions. Together these results reveal 

the temporal dynamics of perceptual and neural audio-visual integration and 

support the notion of temporally early and functionally specific multisensory 

processes in the brain.  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2017. ; https://doi.org/10.1101/116392doi: bioRxiv preprint 

https://doi.org/10.1101/116392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction 

The reliability of the information received by our senses varies. For 

example, visual cues become unreliable in dim or fogged conditions, and auditory 

cues become unreliable in loud or noisy situations. Studies have shown that 

observers deal with such variations in reliability by combining cues, where each is 

weighted in proportion to its apparent reliability [Battaglia et al., 2003; Butler et 

al., 2010; Ernst and Banks, 2002; Fetsch et al., 2009; Helbig and Ernst, 2007; Hillis 

et al., 2004; Jacobs, 1999; Raposo et al., 2012; Sheppard et al., 2013]. By doing 

so, more reliable cues are assigned a higher weight and have stronger influence on 

the perceptual estimate. In most cases, this leads to a more precise and reliable 

percept [Angelaki et al., 2009; Ernst, 2006; Ernst and Bülthoff, 2004; Fetsch et al., 

2013; Rohde et al., 2015].  

Despite many psychophysical studies investigating the weighted combination 

of sensory information, the neural mechanisms underlying this process remain 

unclear. Single-cell recordings have shown that neuronal sensory weights extracted 

from selected brain regions can vary with cue reliability in a manner consistent 

with predictions from statistical optimality [Gu et al., 2008; Morgan et al., 2008], 

and can predict those derived from behaviour [Fetsch et al., 2012]. Similarly, fMRI 

studies have demonstrated that BOLD responses are modulated by sensory 

reliability during visual-tactile [Beauchamp et al., 2010; Helbig et al., 2012] and 

audio-visual tasks [Rohe and Noppeney, 2016], and have suggested that the sensory 

weighting process emerges gradually along the cortical hierarchy [Rohe and 

Noppeney, 2015a; Rohe and Noppeney, 2016].  

While providing valuable computational insights, these studies have not 

determined the temporal evolution of the neural processes implementing the 

weighting of sensory information. Studies comparing neural response amplitudes 

underlying sensory integration have shown that multisensory interactions can occur 

at surprisingly short latencies, starting around 40-76ms after stimulus onset [Cappe 

et al., 2010; Cappe et al., 2012; Fort et al., 2002; Foxe et al., 2000; Giard and 

Peronnet, 1999; De Meo et al., 2015; Molholm et al., 2002; Murray et al., 2004; 

Murray et al., 2016]. However these results were obtained by comparing generic 

response amplitudes between uni- and multi-sensory conditions, and hence did not 

specifically associate neural activity with either sensory reliability or a specific 
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computational process during cue integration. Therefore it remains unclear when 

following stimulus onset neuronal responses are modulated by the reliability of 

sensory information, and when they reflect the sensory weights that drive the 

subsequent perceptual decision [Bizley et al., 2016].  

In this study we investigated these questions by examining the temporal 

dynamics of weighted cue combination during an audio-visual task. We combined a 

rate discrimination task with EEG based neuroimaging, single-trial decoding, and 

linear modelling to identify the neural correlates of audio-visual cue weighting. 

Our results show that neural activity is modulated by sensory reliability early in the 

trial, starting from 84ms after stimulus onset. Furthermore, we find that neural 

correlates of perceptual weights emerge shortly after stimulus onset (around 

120ms) and well before a decision is made. Finally, these EEG correlates of sensory 

reliability and perceptual weights have topographies that are consistent with 

activations in early sensory cortical and parietal brain areas. Taken together, these 

results suggesting that reliability based cue weighting computations occur early 

during the audio-visual integration process.  

 

Materials and Methods 

Subjects  

We obtained data from 20 right-handed subjects (13 females; mean age 26 years) 

after written informed consent.  The sample size was set a priori to 20, based on 

sample sizes used in related previous EEG studies and general recommendations 

[Simmons et al., 2011]. All subjects reported normal or corrected to normal vision, 

normal hearing, and received £6 per hour for their participation. The study was 

approved by the local ethics committee (College of Science and Engineering, 

University of Glasgow) and conducted in accordance with the Declaration of 

Helsinki.  

 

Stimuli and Task 

The task was an adapted version of a 2-alternative forced choice rate 

discrimination task [Raposo et al., 2012; Sheppard et al., 2013]. Subjects were 

presented with two streams (each lasting 900ms) of auditory, visual or audio-visual 
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events and asked to decide which stream had a higher event rate (Fig. 1A). Visual 

events were noise squares (3x3cm, 2.1° of visual angle, flashed for 12ms each) 

presented atop a static pink-noise background image. Acoustic events were brief 

click sounds (65 dB SPL, 12ms duration) presented in silence. Individual acoustic or 

visual events were instantiated by random pauses of short (48ms) or long (96ms) 

intervals, causing them to appear as auditory and/or visual flicker.  

In the first “experimental” stream, events were presented at seven different rates 

(8 to 14Hz). In the second “standard” stream events always flickered at 11Hz. We 

also manipulated the reliability of the visual stimulus, as well as the congruency 

between the rates of the auditory and visual stimuli [Angelaki et al., 2009; Fetsch 

et al., 2012; Fetsch et al., 2013; Sheppard et al., 2013]. Placing the audio-visual 

cues in conflict is necessary, as it allows assessment of the degree to which 

subjects are biased towards each cue.  

Congruency was manipulated by introducing differences in the event rate between 

the auditory and visual streams. Audio-visual trials were either Congruent (Δ = 0) 

with auditory and visual streams each having the same number of events, or 

incongruent, with the visual either containing two more (Δ =+2), or two fewer (Δ = 

-2) events than the auditory stream (Fig. 1B).  

The reliability of the visual stimulus was manipulated by adjusting the contrast of 

the visual stimulus relative to the background (Fig. 1C). Contrast levels were 

derived to match individual subject’s psychometric thresholds in separate 

calibration blocks carried out prior to the main experiment (see Procedure). 

Auditory reliability was constant throughout.  

These manipulations resulted in: three unisensory conditions (auditory [AUD], 

visual high [VH] and visual low [VL]), two congruent (Δ =0) multisensory conditions 

(one where both the streams were highly reliable [AVH], and one where the 

auditory had high and the visual low reliability [AVL]) and four incongruent audio-

visual conditions (AVH Δ =+2, AVH Δ =-2, AVL Δ =+2 and AVL Δ =-2).  

 

Experimental Procedure 

The experiment was controlled through MATLAB (MathWorks) using the 

Psychophysics Toolbox Extensions [Brainard, 1997] and custom written scripts.  
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Figure 1. Experimental set up. (A) Subjects were presented with two sequential streams of auditory, visual 

and/or audio-visual events and had to indicate which stream contained more events. The first stream varied in 

modality, event rate, reliability and congruency of the events (see Methods). (B) Schematic showing one 

combination for each level of congruency (left: equal rates, middle: auditory fewer events, right: auditory more 

events).  Δ = Visual – Auditory rate. (C) Example of high and low reliability visual stimuli. 

 

 

Auditory stimuli were presented using Sennheiser headphones and visual stimuli 

were presented on a Hansol 2100A CRT monitor at a refresh rate of 85 Hz. All 

recordings were carried out in a dark and electrical shielded room. 

 

Subjects completed two simultaneous behavioural and EEG sessions (one session 

per day). Each session started with two unisensory calibration blocks used to 

calibrate performance between auditory and visual trials for each observer. The 

auditory calibration block consisted of 30 trials of auditory stimuli presented in 

silence (high reliable auditory stimuli), and an overall performance score was 

calculated. The visual calibration block consisted of 150 trials (30 trials x 5 SNRs), 

where the reliability of the visual stimulus varied systematically from high to low 

reliability. Psychometric functions were fit to the visual data, and two signal-to-

noise (SNR) levels for visual reliability selected from the resulting psychometric 

curve. Visual high reliability was set as the SNR at which visual performance was 

equal to performance on the auditory calibration block. Visual low reliability was 

set at the SNR at which performance was ~30% lower than auditory performance.  

 

Each block of the main study consisted of 510 trials with modality (auditory, visual, 

audio-visual), reliability (visual high and low), event rate (8-14Hz) and congruency 
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(audio-visual Δ = 0, ± 2) varying pseudo-randomly across trials (see Stimuli and 

Task). In total, subjects completed four blocks across the two sessions, resulting in 

approximately 2040 trials per subject. 

Each trial began with a white fixation cross presented centrally on a dark grey 

noise image (500-1000ms). This was followed by the first “experimental” stream 

(900ms), a fixation period (200-400ms), and then the standard stream (900ms). 

Subjects were then cued to respond using the left (“first stream has more events”) 

or right (“second stream has more events”) keyboard buttons, and received 

feedback on their performance (Fig. 1A). For trials where the rates in the 

experimental and standard stream were equal, feedback was randomly generated.  

 

EEG Recording and Preprocessing  

EEG data was recorded using a 64-channel BioSemi system and ActiView recording 

software (Biosemi, Amsterdam, Netherlands). Signals were digitised at 512 Hz and 

band-pass filtered online between 0.16 and 100 Hz. Signals originating from ocular 

muscles were recorded from four additional electrodes placed below and at the 

outer canthi of each eye.  

 

Data from individual subject blocks were preprocessed separately in MATLAB using 

the FieldTrip toolbox [Oostenveld et al., 2011] and custom written scripts. Epochs 

around the first stimuli stream (-1 to 2s relative to stream onset) were extracted 

and filtered between 0.5 and 90 Hz (Butterworth filter) and down-sampled to 200 

Hz. Potential signal artefacts were removed using independent component analysis 

(ICA) as implemented in the FieldTrip toolbox [Oostenveld et al., 2011] and 

components related to typical eye blink activity or noisy electrode channels were 

removed. Horizontal, vertical and radial EOG signals were computed using 

established procedures [Hipp and Siegel, 2013; Keren et al., 2010] and trials during 

which there was a high correlation between eye movements and components in the 

EEG data were removed. Finally, remaining trials with amplitudes exceeding ±120 

μV were removed. Successful cleaning was verified by visual inspection of single 

trials. For one subject (S20), three noisy channels (FT7, P9, TP8) were interpolated 

using the channel repair function as implemented in the FieldTrip toolbox.  
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Analysis Methods 

Psychometric performance and Bayesian Integration Model 

For each subject, modality, and stimulation rate, the proportion of “first stream 

had a higher event rate” responses were calculated and cumulative Gaussian 

functions fit to the data using the psignifit toolbox for Matlab [Fründ et al., 2011] 

http://psignifit.sourceforge.net/). The threshold (s.d., σ) and the point of 

subjective equality (PSE, μ) were obtained from the best fitting function (2000 

simulations via bootstrapping), and used to calculate predicted and observed 

perceptual weights [Fetsch et al., 2012].  

Predicted weights reflect the weights that a Bayesian optimal observer would 

assign to each sensory cue in multisensory conditions [Fetsch et al., 2012]. These 

were calculated using the thresholds (σ) from unisensory trials: 

 

WAUD = [σVIS
2 / [σAUD

2 + σVIS
2]  (1) 

 

Observed perceptual weights represent the apparent weight a subject assigns to 

each sensory cue. These were calculated from the PSE (μ) from multisensory trials:  

 

WAUD = [μAV(Δ) – μAV(Δ==0) + Δ/2] / Δ     (2) 

 

where Δ represents the incongruency between the auditory and visual stimuli 

[Fetsch et al., 2012]. For both perceptual and observed weights we assumed that 

auditory and visual weights sum to one:  

 

WVIS = 1 - WAUD 

 

Predicted and observed weights were derived for each modality and reliability 

separately, and averaged over congruency levels. 

 

Time-dependent Perceptual Weights 

To examine how perceptual weights evolved over the course of a trial, we used 

logistic regression to model the relationship between sensory evidence and 

behavioural reports at each time point.  
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As a measure of sensory evidence, we used the accumulated rate, defined as the 

number of stimulus events presented up to each time point in the trial. This was 

generated for each trial, condition (AVH auditory, AVH visual, AVL auditory and 

AVL visual) and time point separately, yielding a trial and time-specific measure of 

the experienced sensory evidence. This analysis was restricted to incongruent 

audio-visual trials and a time window from 24ms to 600ms post stimulus onset to 

account for null values (pre-24ms) and multicollinearity in the predictor matrix 

(post 600ms).  

To assess whether the accumulated rate was a significant predictor of perceptual 

choice, we quantified the predictive performance of the regression model 

(referred to as Az) using the area under the receiver operator characteristic (ROC) 

of the regression model, based on 10-fold cross-validation (see Statistics).  To 

determine how well the perceptual weights derived from the psychometric curves 

corresponded to the perceptual weights derived from the regression model, we 

also computed the correlation between the reliability influence for each pair of 

weights (psychometric and regression) at each time point during the trial (see 

Statistics).  The reliability influence was here defined as the effect of visual 

reliability on auditory weights:  

 

D(t) = AVH (WAUD – WVIS) – AVL (WAUD – WVIS)   (3) 

 

Single-Trial EEG Analysis 

We used single-trial, multivariate linear discriminant analysis [Kayser et al., 2016; 

Parra et al., 2005; Philiastides et al., 2006; Philiastides et al., 2014; Ratcliff et al., 

2009] to uncover EEG components that best discriminated between our two 

conditions of interest. Here, we chose to discriminate between whether the first 

stream had an event rate that was lower or higher than the standard stream (</> 

11 Hz), as this reflected the task the subjects were asked to complete. This 

analysis generated a one-dimensional projection (Yt) of the multidimensional EEG 

data (Xt), defined by spatial weights (Wt) and a constant (C): 

 

Y(t) = W(t) X(t) + C            (4) 
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where the weight vector (W) represents the activity components most sensitive to 

the sensory stimuli, and the discriminant output (Y) provides a neural signature of 

the quality of the single-trial evidence about the condition of interest. This 

approach preserves the trial-to-trial variability of the data, and is assumed to be a 

better estimator of the underlying single trial task-relevant activity than the data 

on individual channels [Blankertz et al., 2011; Kayser et al., 2016; Parra et al., 

2005; Philiastides et al., 2014]. 

Classification was based on regularised linear discriminant analysis [Philiastides et 

al., 2014], and applied to the EEG activity at each 5ms time point from stimulus 

onset to 600ms post stimulus onset, in sliding time windows of 55ms. For each time 

point, the discriminant output (Y) was aligned to the onset of the 55ms window. To 

avoid introducing bias to either sensory modality, we derived the weighting vector 

(Wt) and constant (C) from the congruent audio-visual trials only (AVH and AVL 

Δ=0), and applied these to all other trials at the same time point. Scalp 

topographies for the discriminating component were estimated via the forward 

model [Philiastides et al., 2014], defined as the normalised correlation between 

the discriminant output and the EEG activity. 

 

Neural Weights 

To quantify the apparent weight with which the sensory information in each 

modality contributed to the neural representation of the event rate we used linear 

regression. Similar to the behavioural data, the trial specific accumulated rates 

were used as predictors and regressed against the discriminant output (Y) at each 

time point (24ms to 600ms) in the trial. As conflict between the sensory cues is 

necessary to see how subjects are weighting the sensory information, this analysis 

was restricted to incongruent audio-visual conditions (AVH and AVL Δ ±2) and 

included separate weights for each modality in the high and low reliability 

conditions. This resulted in four neural weights for each time point (one for AVH 

auditory, AVH visual, AVL auditory and AVL visual). To assess the relationship 

between these neural weights and the time-dependent perceptual weights we 

correlated the reliability influence (Eqn. 3) between these at each time point.  
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Statistics 

All descriptive statistics reported represent median values. All Z values reported 

were generated from a two-sided Wilcoxon signed rank test after testing 

assumptions of normality, and effect sizes calculated by dividing the Z value by the 

square root of N (where N = the number of observations rather than subjects). 

Correlations were calculated using Spearman rank correlation analysis. All reported 

p-values were checked for inconsistencies using the R software package 

“statcheck” [Nuijten et al., 2015]. 

To correct for multiple comparisons along time, data were shuffled randomly 

across conditions, and for each separate comparison a distribution of t-values 

based on 1,000 randomisations was computed. Significance levels were determined 

using a cluster based randomisation technique [Maris and Oostenveld, 2007] using a 

cluster-threshold of t=1.8 and the max-size as cluster-forming variable (referred to 

as cluster randomisation test in text). 

Significance levels of classification performance (Az) were determined by randomly 

shuffling data by condition 2000 times, computing the group averaged Az value for 

each randomisation, and taking the maximal Az value over time to correct for 

multiple comparisons (referred to as randomisation test in text). This generated a 

distribution of group averaged Az values based on 2000 randomised data sets, from 

which we could estimate the Az value leading to a significance level of p<0.01.  

 

Results 

Psychometric behaviour and perceptual thresholds  

Subjects’ performance was quantified by fitting behavioural performance (“first 

stream higher” responses) with psychometric curves to derive psychometric 

thresholds (σ) and points of subjective equality (PSE, μ).   

 

Figure 2A shows the group-level psychometric curves for each sensory condition. 

On unisensory trials, thresholds were significantly lower (i.e. better performance) 

for high compared to low reliability stimuli across subjects (p<0.05, Table I).  

Thresholds were comparable for the auditory and both congruent audio-visual 

conditions (p>0.05, Table I). Thresholds on audio-visual trials were however 
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significantly lower compared to the visual conditions (p<0.05, Table I). This 

demonstrates that performance was comparable on audio-visual and auditory 

trials, and better for high vs. low reliable stimuli.  

Comparing psychometric curves for congruent and incongruent multisensory 

conditions showed that regardless of visual reliability, subjects preferentially 

weighted the auditory modality, as demonstrated by shifts in the psychometric 

curves towards the auditory rate (Fig. 2A left and right). However as expected, 

this shift was more pronounced in the low reliability condition, showing a stronger 

influence of the auditory modality when visual reliability was reduced (Table I).   

 

Based on these psychometric data we derived a set of predicted and observed 

perceptual weights for each modality under each level of reliability. Predicted 

auditory weights significantly increased when visual reliability was reduced 

(p<0.05, Table II). However, this pattern was not consistently found in the 

observed weights (Fig. 2B), where there was no significant difference between 

observed auditory weights between reliabilities (p>0.05, Table II). Furthermore, a 

direct comparison between observed and predicted weights (Fig. 2C) revealed only 

a weak correlation (AVH p>0.05, AVL p<0.05, Table II).  

The lack of a significant difference between unisensory and multisensory 

thresholds and the weak correlation between observed and predicted weights 

suggests that observers did not systematically follow the behavioural pattern 

predicted by Bayesian models of multisensory integration. This is corroborated by 

Figure 2D, which shows the magnitude and direction of the weight shift across 

subjects. Only 11 subjects showed a shift of auditory weight shifts in the predicted 

direction (i.e. increased auditory weighting when visual reliability is reduced). For 

the present study, this heterogeneity in the change of perceptual weights with 

reliability presents a unique opportunity to investigate the neural correlates of 

perceptual weights independently of an effect of sensory reliability, as these two 

effects are dissociable across subjects. 

 

Evolution of Perceptual Weights over Time 

To obtain insights into the temporal dynamics of the perceptual weighting process 

we modelled the relationship between behavioural choice and sensory evidence at  
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Figure 2. Behavioural Results. (A) Group (n=20) level psychometric curves are displayed as the proportion of 

“first stream” decisions as a function of event rate for each condition. Note that for incongruent trials the x-axis 

indicates the average event rate (Δ= Visual Rate – Auditory rate). Vertical dashed lines represent the standard 

rate (11Hz) and horizontal dashed lines represent chance (50%) performance. (B) Observed perceptual weights 

with individual subject data shown in grey. AVH represents the audiovisual condition where both the auditory and 

visual cues were equally reliable. AVL represents the audiovisual condition where the auditory was highly reliable 

and the visual was less reliable. (C) Predicted and observed auditory weights separately for AVH and AVL 

conditions. Subjects with data below the grey line (representing WPRED = WOBS) have higher auditory weights 

than predicted. (D) The difference between auditory weights in the AVH and AVL conditions (WAVL – WAVH) for 

each subject. (E-F) Logistic regression was used to predict single trial choice (event rate >/<11Hz) based on the 

accumulated event rate at each time point in the trial. (E) Performance of the logistic model quantified using the 

area under the ROC (dashed line p<0.01, randomisation test) (F) Auditory and visual perceptual weights derived 

from the regression model  .Time points with significant reliability effects are denoted with black circles. (G) 

Correlation of perceptual weights derived from psychometric curves and from the logistic model. Time points with 

significant correlations are marked with orange circles. 

 
each time point within a trial, and derived a set of dynamic perceptual weights for 

each modality and reliability condition (see Methods). Importantly, having a time-
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resolved measure of perceptual weights allowed us to test when during a trial 

these changed with sensory reliability. 

We found that our measure of sensory evidence (accumulated rate) was 

significantly predictive of behavioural choice across the trial (randomisation test, 

p<0.01, Fig. 2E). Auditory and visual perceptual weights increased as sensory 

evidence was accumulated throughout the trial, and confirmed that subjects 

preferentially weighted the auditory over the visual modality (cluster 

randomisation test, p<0.05, Fig. 2F, Table III).  We found that both auditory and 

visual weights changed significantly with reliability (cluster randomisation tests, 

p<0.05, Fig. 2F), and did so early during the trial (five auditory clusters covering 

24ms to 384ms, one visual cluster covering 24ms to 192ms, Table III).  

To test how consistent these time-resolved perceptual weights were with those 

derived from the psychometric curves, we computed their correlation. Significant 

correlations (cluster randomisation tests, p<0.05, Fig. 2G) emerged during three 

epochs that collectively covered most of the trial (three clusters: 132ms to 192ms, 

252ms to 408ms, and 420ms to 600ms, Table III). 

 

EEG signatures of event rates 

We used a linear discriminant analysis to extract EEG components that maximally 

discriminated between event rates (</> 11 Hz). Such an approach allowed the use 

of the discriminant output (Y) as a proxy to the single trial stimulus evidence 

reflected in the EEG activity [Kayser et al., 2016; Philiastides et al., 2014; Ratcliff 

et al., 2009], and we exploited this to link the neural signature of the sensory 

input to changes in the external sensory reliability and perceptual weights (see 

Methods).  

 

Figure 3A displays the discriminant performance across subjects. Significant 

performance emerged early in the trial (48ms to 396ms, randomisation test, 

p<0.01) and was highest during three time epochs (96ms to 120ms, 168ms to 

204ms, and 252ms to 288ms, with peaks defined as Az performance >0.58). To 

assess how this neural signature of the event rate was modulated by sensory 

reliability, we regressed the discriminant output (Y) against the accumulated rate 

to obtain neural sensory weights.  
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Influence of reliability on neural weights  

First, to determine whether the neural weights exhibited a similar bias towards the 

auditory modality as the perceptual weights, we compared them between 

modalities. Indeed, auditory weights dominated in both reliability conditions (Fig. 

3B left and right), and these difference emerged at several epochs across the trial 

(four clusters AVH: 36ms to 60ms, 108ms to 120ms, 252ms to 264ms, and 504ms to 

540ms; three clusters AVL: 60ms to 96ms, 120ms to 336ms, 528ms to 540ms; 

cluster randomisation tests, p<0.05,Table III).  

Second, we quantified how neural weights were affected by sensory reliability. 

Consistent with perceptual weights, auditory weights were significantly higher 

when the visual reliability was reduced, and these differences emerged during two 

epochs (156ms to 204ms, and 264 to 276ms; cluster randomisation test, p<0.05; 

Fig. 3C left; Table III). In addition, visual weights were significantly lower when 

the visual reliability was reduced at two epochs (84ms to 108ms, and 252ms to 

288ms; cluster randomisation test, p<0.05, Fig.  3C right; Table III).  

Finally, we asked whether there was a significant relationship between the 

reliability effect on the time-resolved perceptual and the neural weights. This 

revealed two epochs during which neural and perceptual weights correlated 

significantly: 120ms to 132ms, and 204ms to 228ms (cluster randomisation test, 

p<0.05, Fig. 3D; Table III).  

Summarising the above results in order of time (rather than by statistical contrast) 

shows that there is an evolving pattern of weights as the trial progresses. Starting 

from stimulus onset, we first observe a change in visual weights (starting 84ms) 

and a significant relationship between perceptual and neural weights (starting 

120ms). This is followed by a change in auditory weights (starting 156ms) and 

another epoch where there is a significant relationship between perceptual and 

neural weights (starting 204ms). Finally, we observe a change in both visual 

(starting 252ms) and auditory weights (starting 264ms), later in the trial.  

 

These three statistical contrasts above revealed six epochs during which neural 

weights exhibited patterns of interest in relation to our main question. To 

disentangle whether these epochs represented distinct neural processes, or 
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Figure 3. EEG Decoding, Neural Weights and Neuro-Behavioural Correlation. (A) Group averaged 

performance of a linear classifier discriminating between the two stimulus conditions (event rate >/<11Hz), 

quantified using the area under the ROC curve. The discriminant output (Y) was calculated using a sliding time 

window of 55ms aligned to the window onset, from 24ms to 600ms post stimulus onset. (B) Neural weights for 

each modality for high reliability (left) and low reliability trials (right). (C) Neural weights for each reliability for 

auditory (left) and visual stimuli (right). In each panel (B,C), time points with significant reliability / modality effects 

are indicated by black circles. (D) Neuro-behavioural correlation between the perceptual and neural weights 

obtained from the regression models. Time points with significant correlations are indicated by orange circles. 

 

 

whether some of these likely relate to the same underlying neural generators, we 

analysed the relationship between these effects further. We did so by comparing 
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scalp projections and neural weights between the six epochs (Supplementary Fig. 

1). This revealed that temporally adjacent topographies (84ms to 108ms and 120ms 

to 132ms; 158ms to 204ms and 204ms to 228ms; and 252ms to 288ms and 264ms to 

276ms) were highly correlated (within Epochs: RS >0.6, p<0.005 for all 

comparisons). The reliability difference in neural weights (Eqn. 3) at temporally 

adjacent epochs were also highly correlated (Rs >0.6, p<0.001) and showed similar 

patterns of neural weights. Therefore, we report the topographies and neural 

weights for these three time epochs of interest (Epoch 1: 84ms to 132ms; Epoch 2: 

158ms to 228ms; and Epoch 3: 252ms to 276ms).  

 

 

 
 

Figure 4. Neural Weights and Scalp Topographies for three EEG components of interest. Each 

component was defined based on the statistical contrast between sensory reliabilities (Fig. 3), or a 

significant neuro-behavioural (N2B) correlation (Fig. 3D). In each panel, boxplots represent neural 

weights averaged over each epoch, with individual subject data in grey. Topographies represent the 

group averaged forward models averaged over the epoch, where the values represent the 

correlation between the discriminating output (Y) and the underlying EEG activity. 

 

 

Figure 4 shows the neural weights and forward model scalp topographies for the 

three epochs of interest. The first component was characterized by a scalp 

projection revealing strong contributions of occipital electrodes, consistent with a 

potential origin in sensory cortices. The second component had a scalp projection 

that revealed strong contributions from fronto-central electrodes, consistent with 
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sensory (temporal) and parietal regions. Finally, the third component revealed 

strong contributions from temporal and central electrodes.  

 

Discussion 

This study examined the temporal dynamics of reliability based cue 

weighting during an audio-visual task. Our results revealed three epochs during the 

integration process in which brain activity exhibited correlates of sensory 

reliability and perceptual weights. Specifically, perceptual and neural weights are 

modulated by the reliability of sensory information as early as 84ms after stimulus 

onset and correlate with the perceptual weights underlying perceptual choice 

around 120ms. Together, these results suggest that the weighted combination of 

sensory information occurs early and within sensory regions, rather than only late 

and in amodal association cortices. Additionally, we step beyond previous 

neurophysiological [Fetsch et al., 2012; Gu et al., 2008; Morgan et al., 2008] and 

neuroimaging studies [Beauchamp et al., 2010; Helbig et al., 2012; Rohe and  

Noppeney, 2015b; Rohe and Noppeney, 2016] by revealing the temporal evolution 

of the sensory weighting process in functionally specific brain activity. Finally, by 

dissociating the influence of sensory reliability on the representation of sensory 

information from perceptual weighting in EEG responses rather than demonstrating 

a simple modulation of evoked response amplitudes, we show that these early 

effects reflect sensory and computationally specific processes.  

 

Early Effects of Sensory Reliability 

We found that early during the trial neural sensory weights scaled with 

reliability. At the earliest window (84ms to 132ms) these effects were associated 

with changes in visual weights, while at the slightly later window (starting at 

156ms) auditory neural weights scaled with changes in visual reliability. At a 

slightly later time window (starting at 252ms) changes in auditory and visual 

weights were evident. This finding that visual and auditory weights first scaled 

with reliability at different latencies during the trial is noteworthy. While visual 

weights were affected early (<100ms), auditory weights increased with decreasing 

reliability of the visual stimulus later (around 150ms). This temporal dissociation of 

visual and auditory weight changes with reliability could reflect the adaptive 
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nature of multisensory integration during this paradigm. Perhaps visual encoding is 

adjusted at short latencies and in a bottom-up (i.e. sensory driven manner) to 

cope with trial-by-trial changes in visual sensory reliability; in contrast, auditory 

encoding is adjusted only later (possibly as result of top-down processes) in order 

to meet the increased demands for representing the unreliable sensory 

environment.  

 

Early Correlates of Perceptual Weighting 

In our behavioural data, we show that the time-varying perceptual weights 

are significantly predictive of choice, and show similar reliability differences as 

seen in perceptual weights obtained from the psychometric curves. These 

differences again emerge early in the trial, starting around 24ms after stimulus 

onset. In addition, we show that neural correlates of the perceptual weighting 

process emerge early in the trial (around 120ms after stimulus onset), and a long 

time before the perceptual choice at the end of the trial.  

We were able to dissociate these processes, given that sensory reliability 

and perceptual weights were not strongly associated across participants, as not 

every subject attributed perceptual weights in a statistically optimal manner. 

Hence, the scaling of sensory representations in proportion to the physical 

reliability of the sensory input, and the correlation of neural with perceptual 

weights are computationally distinct and so reflect different aspects of the 

sensory-perceptual cascade. It remains unclear whether these perceptual weights 

are adjusted on each trial individually, and in response to the experienced sensory 

reliabilities, or whether they are at least in part already established based on task-

context in a predictive manner even before stimulus onset. Future work is required 

to elucidate the precise neural correlates of these perceptual weights and how 

different brain regions contribute to establishing the perceptual integration 

process. 

 

Temporal organisation of effects 

The temporal organization and localisation of the reliability and perceptual 

weighting effects in three clusters showed distinct patterns of topographies. At the 
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earliest window (84ms to 132ms), effects of sensory reliability and perceptual 

weights were associated with scalp topographies consistent with early sensory 

areas . At the slightly later time point (starting at 156ms), our effects were 

associated with activity over central electrodes consistent with activations 

including prominent contributions from auditory cortex. Finally, at the latest 

window (252ms to 288ms), effects were associated with activity over posterior and 

central regions. While the localization of the relevant EEG components was quite 

distributed, our results fit with the notion that earliest effects arise from occipital 

sensory regions and are followed by activity in the temporal and parietal lobe. 

This evolving pattern of activation lends support to the idea that early 

sensory and parietal regions encode unisensory cues and represent the integrated 

evidence weighted by the relative reliability and scaled by task-demands and 

relevance. This complements existing findings from fMRI work showing 

multisensory interactions occurring along primary sensory and parietal areas in 

response to changing reliability [Helbig et al., 2012; Beauchamp et al., 2010; Rohe 

& Noppeny 2015, 2016]. Taken together with this prior literature, our results 

support the idea that sensory reweighting is an evolving and hierarchical process, 

with multisensory interactions emerging along the sensory pathway in primary 

sensory and parietal areas. Yet our results add a temporal dimension to these 

processes and demonstrate that effects related to external sensory reliability and 

perceptual weighting emerge at slightly different times and from distinct brain 

regions. 

 

 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 13, 2017. ; https://doi.org/10.1101/116392doi: bioRxiv preprint 

https://doi.org/10.1101/116392
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Figures and Tables 

 

 

Supplementary Figure 1. Neural weights and scalp topographies underlying the six time epochs that showed a 

significant effect of reliability. Topographies marked with * represent R >0.6 and p<0.005 for correlations between 

scalp topographies. For each epoch the difference in neural weights (AVHAUD-AVHVIS)-(AVLAUD-AVLVIS) was 

calculated and correlated, * represent R>0.6 and p<0.001. 
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TABLE I. Analysis of psychometric data. 

Psychometric Fits  Comparison of Perceptual Thresholds 

 Median σ Median μ   Z value p value Effect Size 

AUD 2.19 11.45  VH vs AUD -2.688 0.007 -0.425 

VH 2.87 11.44  VL vs. AUD -3.658 0.0003 -0.579 

VL 4.55 10.53  VH vs. VL -3.136 0.002 -0.496 

        

AVH (Δ=0) 1.98 11.72  AUD vs. AVH -0.336 0.737 -0.053 

AVH (Δ=+2) 1.80 12.25  AUD vs. AVL -0.261 0.794 -0.041 

AVH (Δ=-2) 1.89 11.05      

    AVH vs. AVL -0.018 0.986 -0.003 

AVL (Δ=0) 2.29 11.14  AVH vs. VH 3.322 0.0009 0.525 

AVL (Δ=+2) 1.82 11.94  AVH vs. VL 3.621 0.0003 0.573 

AVL (Δ=-2) 2.10 10.58  AVL vs. VH 3.397 0.0007 0.535 

    AVL vs. VL 3.919 0.00009 0.619 

Median threshold (σ) and PSE (μ) values from fits to psychometric data (left). Statistical tests (right) were based on 

two sided Wilcoxon Signed Rank tests of thresholds (σ). 

TABLE II. Analysis of predicted and observed psychometric perceptual weights. 

High vs. Low Reliability Perceptual (Auditory) Weights  Predicted vs. Observed Perceptual Auditory Weights 

 Z p-value Effect Size   Rs p-value 

Pred AVH vs. Pred AVL -2.837 0.005 -0.454  Pred AVH vs. Obs AVH 0.21 0.381 

Obs AVH vs. Obs AVL -1.261 0.207 -0.199  Pred AVL vs. Obs AVL 0.48 0.034 

Comparison of auditory weights based on two sided Wilcoxon signed rank tests (left; High vs. Low reliability comparisons) 
and Spearman rank correlations (right; Rs, Pred vs. Obs comparisons). 
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TABLE III. Statistical effects for comparisons of perceptual or neural weights 
between conditions 

Time-resolved Perceptual Weights 

 Cluster # Time p-value t-value Effect Size 

AH vs AL 1 24ms to 48ms <0.0001 -13 0.5005 

 2 60ms to 108ms 0.0030 -2 0.4172 

 3 120ms to 168ms <0.0001 -3 0.5604 

 4 192ms to 276ms 0.003 -2 0.4303 

 5 312ms to 384ms 0.003 -2 0.4809 

VH vs VL 1 24ms to 192ms <0.0001 -15 0.5976 

PMC vs PRW * 1 132ms to 192ms <0.0001 6 0.5201 

 2 252ms to 408ms <0.0001 27 0.6442 

 3 420ms to 600ms 0.006 2 0.4977 

      

Neural Weights: Modality Dominance 

 Cluster # Time p-value t-value Effect Size 

AH vs VH 1 36ms to 60ms 0 3 0.5576 

 2 108ms to 120ms 0 2 0.5055 

 3 252ms to 264ms 0 -2 0.4566 

 4 504ms to 540ms 0 -4 0.5338 

AL vs VL  1 60ms to 96ms 0 11 0.5564 

 2 120ms to 336ms 0 2 0.5014 

 3 528ms to 540ms 0 -2 0.5243 

      

Neural Weights: Sensory Reliability 

 Cluster # Time p-value t-value Effect Size 

AH vs AL 1 156ms to 204ms <0.0001 -5 0.4940 

 2 264ms to 276ms 0.0070 -2 0.4731 

VH vs VL 1 84ms to 108ms <0.0001 3 0.5139 

 2 252ms to 288ms <0.0001 4 0.5406 

      

Neural Weights: Perceptual Weights 

 Cluster # Time p-value t-value Effect Size 

NW vs PRW * 1 120ms to 132ms 0.005 2 0.4674 

 2 204ms to 228ms <0.0001 3 0.5170 

Test were performed using cluster permutations statistics (see Statistics). For each significant 
effect we list cluster p-value (where p-values below 10

-3
 are abbreviated as 0), t-value (where t-

values correspond to max-size clustering technique) and effect size. T values marked with * 
reflect correlations. PMC = Psychometric Curve Weight. PRW = Perceptual Regression Weight. 
NW = Neural Weight. Condition abbreviations (AUD,VH,VL,AVH,AVL) see: Methods. 
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