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Abstract 

The immune system plays a major role in human health and disease, and 

understanding genetic causes of interindividual variability of immune responses is 

vital. We isolated monocytes from 134 genotyped individuals, stimulated the cells 

with three defined microbe-associated molecular patterns (LPS, MDP, and ppp-

dsRNA), and profiled the transcriptome at three time points. After mapping 

expression quantitative trait loci (eQTL), we identified 417 response eQTLs (reQTLs) 

with differing effect between the conditions. We characterized the dynamics of 

genetic regulation on early and late immune response, and observed an enrichment 

of reQTLs in distal cis-regulatory elements. Response eQTLs are also enriched for 

recent positive selection with an evolutionary trend towards enhanced immune 

response. Finally, we uncover novel reQTL effects in multiple GWAS loci, and show a 

stronger enrichment of response than constant eQTLs in GWAS signals of several 

autoimmune diseases. This demonstrates the importance of infectious stimuli 

modifying genetic predisposition to disease.  

 

Main Text 

An increasingly popular approach to identify genetic factors affecting 

interindividual variation in immune response is mapping expression quantitative trait 

loci (eQTLs) – variants that associate to gene expression – and to identify so-called 

response eQTLs (reQTLs) where the eQTL effect differs between immune stimuli1-6. 

Such genetic variants can impact the transcriptional response to infection, and also 

represent genetic effects that are modified by the infectious environment via gene-by-

environment interactions. In this study, we create a data set of a large number of 
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immune stimulus conditions, with monocytes activated with microbial ligands for three 

different pattern recognition receptor (PRR) families at two different time points, next 

to the baseline condition.  

To examine the time course of innate immune responses, we first profiled 

gene expression in monocytes of five individuals using Human HT-12 v4 Expression 

BeadChips (Illumina) at six time points after stimulation with three 

prototypical microbial ligands: Lipopolysaccharide (LPS) was used to activate TLR4, 

muramyl-dipeptide (MDP) to stimulate NOD2, and 5’-triphosphate RNA (RNA) to 

activate RIG-I. Hierarchical clustering revealed early differentially expressed (DE) 

genes at 45 and 90 minutes after stimulation and late DE genes between 3 and 24 

hours (Supplementary Fig. 1). For the full eQTL cohort, we analyzed primary 

monocytes isolated from 134 healthy male individuals (185 before quality control), 

which were either untreated (baseline) or stimulated with the same three pathogen-

derived stimuli, and gene expression was profiled after 90 minutes and 6 hours. All 

donors were SNP genotyped using Illumina HumanOmniExpress BeadChips (Fig. 

1a). In a previous study1 we have analyzed a subset of the data consisting of 

baseline and 90 minutes LPS-stimulated monocytes in this cohort. 

First, we studied the gene expression response to immune stimulation. 

Principal component analysis of the gene expression data identified seven distinct 

groups corresponding to each treatment and time point (Supplementary Fig. 2). 

Differential expression analysis of genes expressed in at least one of the seven 

conditions showed the highest number of DE genes under late LPS response, and 

lowest under early RNA stimulation (Supplementary Fig. 3, Supplementary Table 

1). These genes form six clusters with similar response patterns across time points 

and conditions (Fig. 1b, Supplementary Table 1), and with gene ontology (GO) 
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enrichments corresponding to relevant immunological pathways (Supplementary 

Table 1). Furthermore, immune responsive genes showed a significantly greater and 

a more diverse distribution of interindividual variance than all expressed genes 

already in the baseline condition, with a further increase upon stimulation 

(Supplementary Fig. 4). These analyses of gene expression patterns in a population 

scale provide a highly robust and comprehensive data set of innate immune 

responses and their interindividual variation upon diverse microbial ligands and 

multiple time points.  

In order to study genetic variation affecting gene expression levels, we 

performed eQTL mapping for all seven conditions, defining cis eQTLs within 1 Mb 

interval on either side of an expression probe at a false discovery rate (FDR) of 5%. 

We identified 717 to 1,653 genes with an eQTL in each condition (Fig. 2a, 

Supplementary Table 2). The eQTLs from conditions analyzed in previous studies3,4 

had a high degree of replication, demonstrating the robustness of our data set 

(Supplementary Fig. 5a; Methods). We provide a user-friendly access to our results 

via the ImmunPop QTL browser (http://immunpop.com/kim/eQTL). 

To identify eQTLs that differ between stimuli, we used a beta-comparison 

approach, comparing the regression slopes of an eQTL under baseline (βbaseline) vs. 

stimulated (e.g. βLPS90min) in a z-test, with reQTLs defined as having Bonferroni 

corrected p < 0.05 (see Methods). This approach is highly consistent with a 

previously used method where differential expression is used as the quantitative trait 

(Supplementary Fig. 5b), but provides more flexibility for comparing several 

conditions. This analysis revealed that 3-18% of our cis eQTLs in each condition are 

reQTLs (Fig. 2a, Supplementary Table 2). Genes with a reQTL showed GO 

enrichment in immune pathways (Supplementary Fig. 6a), and include key genes of 
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protein-protein interaction networks such as MAP kinases, IRF transcription factors, 

chemokines, and chemokine receptors (Supplementary Fig. 6b, c, d), 

demonstrating the relevance of genetic interindividual variation in the innate immune 

system.  

Next, to analyze treatment and time point specificity of reQTLs we performed 

pairwise comparisons of regression slopes across treatments and time points, 

respectively. This revealed that 13-51% of reQTLs were treatment-specific when 

compared to the other two stimuli of the same time point with marked differences 

depending on which stimulus-pair was tested (Fig. 2b). We also observed a large 

proportion of time point-specific reQTLs (32-64%) suggesting a highly dynamic 

genetic regulation in immune response (Fig. 2c). Of note, the number of identified 

reQTLs per condition, as well as time point- and stimulus-specific reQTLs, were 

correlated to the number of differentially expressed genes (Supplementary Fig. 7a, 

b). Thus, differential expression analysis in a small number of samples can be used 

to select the conditions that maximize novel reQTL discovery in a population-scale 

study.  

To obtain better insights into the dynamic link between reQTLs and differential 

expression upon immune stimulation, we classified reQTLs to those with early 

transient, late, and prolonged effects (see Methods). We find that active reQTLs that 

are absent under baseline and active under stimulus are more common and have 

higher effect sizes than suppressive reQTLs where a baseline eQTL is lost under 

stimulus (Fig. 2d, Supplementary Fig. 7c). Interestingly, active reQTLs are typically 

more dynamic with early transient or late effects, whereas suppressive reQTLs are 

more often prolonged, extending over both time points. Next, we analyzed whether 

the temporal dynamics of reQTLs correspond to dynamics of differential expression. 
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A highly congruent pattern would indicate a major role of genetic interindividual 

variation in reQTL genes across the gene’s temporal response to stimulus, whereas 

a divergent pattern could suggest recruitment of additional expression response 

mechanisms independent of the regulatory effect of the reQTL variant. The 

proportion of reQTL genes with congruent differential expression ranged between 30-

87% for different classes of dynamic reQTLs (Fig. 2d, Supplementary Fig. 7d, 

Methods) with significant enrichment of congruent pattern in 4 out of 6 groups (p < 

0.05 in Fisher’s exact test of each group vs all others). This indicates that reQTLs are 

relevant regulators of differential expression but additional regulatory mechanisms 

are involved in shaping the transcriptional response of reQTL genes. Altogether, our 

analysis of temporal reQTLs sheds light on mechanisms of the highly dynamic 

immune response, and the role of genetic variants in it.  

To further characterize the genetic variants underlying the total of 417 reQTLs 

across all treatment conditions, we defined a set of 677 constant eQTLs (ceQTL) that 

display no change in regression slope across all conditions (nominal p > 0.05) (Fig. 

3a, Supplementary Fig. 8a). Functional annotation enrichment and fine mapping 

analyses by fgwas7 revealed that reQTLs were more enriched in promoter flanking 

regions, CTCF binding sites and enhancer regions, while constant eQTLs were more 

common in promoter regions, 3’ and 5’UTRs, and regions downstream of TSS (Fig. 

3b, Supplementary Fig. 8b). While reQTL enrichment has been previously 

described for some transcription factors5,6, and annotations of condition-specific 

epigenomic marks and tissue-specific eQTLs have been described8,9, our results are 

to our knowledge the first demonstration of environmentally responsive eQTLs being 

enriched in distal cis-regulatory elements.  
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Given that the innate immune system is the first line of defense in early 

interaction between the host and the microbe, we asked if selective pressures that 

are exerted by microorganisms on the host genome can be detected in reQTLs. 

Consistent with previous reports5,6, we detected a signal of increased positive 

selection in eQTLs, ceQTLs, and reQTLs using the integrated haplotype score10 

(iHS; permutation test p < 10-4, Fig. 3c, left panel) and the singleton density score11 

(SDS; permutation test p < 10-4, Fig.3c, right panel), comparing each eQTL class to a 

genome-wide null set of variants matched for minor allele frequency (MAF) and 

linkage disequilibrium (LD). Next, we examined the direction of the effect of the 

derived allele, dividing reQTLs into two groups (Fig. 3d): 1) reQTLs where the 

derived allele causes an increase in response amplitude compared to the ancestral 

allele (e.g. ancestrally upregulated genes are further upregulated among derived 

allele carriers), and 2) reQTLs where the derived allele causes weakening or even 

silencing of immune response compared to the ancestral allele. Interestingly, across 

all treatments the reQTLs with stronger expression response by the derived allele 

were more common (binomial p = 0.011 across all conditions; Fig. 3e, 

Supplementary Fig. 9). This suggests an evolutionary trend towards enhanced 

immune response, which might reflect an arms race of the host immune system and 

invading pathogens. 

Given the central role of inflammation in many diseases, we examined reQTLs 

as a potential mechanism underlying genetic associations to complex diseases, 

discovered by genome-wide association studies (GWAS). First, we identified 

individual GWAS loci that are likely to share a causal variant with an reQTL in the 

same locus. We used the coloc12 method on summary statistics of 33 GWAS traits 

(Supplementary Table 3) and our reQTL data. This analysis provided four loci with 

strong evidence (PP3 + PP4 ≥ 0.90 and PP4/PP3 ≥ 3) of reQTLs sharing the same 
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causal variant with a GWAS trait (Fig. 4a,b and Supplementary Table 3). In the 

chromosome 9 locus associated with HDL13 and total cholesterol levels13, the eQTL 

effect for TTC39B can be detected at baseline levels, but the increasing effect size 

upon immune stimulation indicates a possible novel immunological component of 

TTC39B’s role in the etiology of atherosclerosis. In the IL18R1 locus associated to 

celiac disease14 (Fig. 4a) and the KLF6 locus associated to schizophrenia15 (Fig. 

4b), the eQTL effects are only present under immune stimulation and would not be 

discovered in baseline monocytes. Conversely, in the RNMD1 locus associated to 

age at menarche16, the baseline eQTL effect is diminished upon immune activation. 

As summary statistics are only available for the minority of GWAS traits, we also 

identified 29 reQTL genes where the top variant is in high LD (r2 > 0.8) with a 

disease-associated SNP listed in the GWAS catalog17 (Fig. 4c, Supplementary 

Table 4), which may indicate shared causal variants albeit with less certainty than 

coloc analysis. For ten of these reQTL genes the eQTL was absent under baseline 

condition (pbaseline > 0.01), including novel reQTL genes such as APOL2 potentially 

associated with glomerulosclerosis, PTGER4 with allergy, and PIP4K2A with acute 

lymphoblastic leukemia. These results do not exclude other possible mechanisms in 

other cell types or conditions, but the reQTL analysis discovers novel potential causal 

genes for individual GWAS loci with an effect that is potentially modified by infections.  

Finally, to quantify the role of reQTLs in the genome-wide genetic architecture 

of different complex traits, we analyzed the enrichment of reQTLs and ceQTLs in 

GWAS signals of eleven autoimmune traits (Supplementary Table 3) using fgwas 

(Fig. 4d, Supplementary Fig. 10a), confirmed by Q-Q plots (Fig. 4d, 

Supplementary Fig. 10b) analogously to Li et al.18. Interestingly, in seven out of 

eleven traits reQTLs had a significant enrichment, whereas ceQTLs were enriched in 

only three of these seven traits, and narcolepsy (NAR) was the only trait significantly 
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enriched for ceQTLs but not for reQTLs. Most notably, systemic lupus erythematosus 

(SLE) GWAS signals19 were very strongly and significantly enriched among reQTLs 

with no enrichment in ceQTLs, suggesting that innate immune response to 

pathogens may be a particularly important environmental modifier of genetic 

predisposition to SLE, while playing a smaller role in the genetic architecture of e.g. 

psoriasis and type 1 diabetes. While some non-autoimmune traits showed an eQTL 

enrichment, none were significantly enriched among reQTLs but not among ceQTLs 

(Supplementary Fig. 11, Supplementary Fig. 12). These results indicate a 

substantial, disease-specific role of environmental interactions with microbial ligands 

in genetic risk to complex autoimmune diseases. While tissue-specificity of molecular 

effects of GWAS variants is increasingly appreciated and analyzed9, our results 

suggest that innate immune stimulation is a key cellular state to consider in future 

eQTL studies as well as in targeted functional follow-up of GWAS loci.   

In this study we analyzed interindividual variability of immune response in 

activated monocytes and characterized genetic variants that influence the response 

to pathogen components. Unlike previous studies, we analyze various ligands under 

multiple time points, and provide a more comprehensive picture of the role of genetic 

variation in innate immunity. Our analysis sheds light on the dynamics of immune 

response and reQTLs, the genomic elements underlying cis eQTLs responding to 

environmental stimuli, the evolution of immune response, and the key role of immune 

activation as a modifier of genetic effects especially in autoimmune diseases. 

Several important aspects of genetic regulatory variants affecting 

transcriptional immune response remain to be addressed by other studies. RNA-

sequencing allows increased power and identification of splicing QTLs5,18,20, and 

additional epigenomic assays can provide insight into genomic mechanisms of 
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transcriptome response21. Increasing sample sizes would provide better power and 

allow exploration into rare cis-eQTL variants22,23 and comprehensive trans eQTL 

mapping. Finally, while our study includes more immune stimuli and time points than 

previous analyses, it is essential to further expand the number of conditions and cell 

types involved in innate and adaptive immunity in reQTL studies, and advance their 

joint analysis. The ImmunPop QTL browser that includes our data provides a step 

towards this direction.  

Taken together, our comprehensive characterization of reQTLs provide novel 

insights into the genetic contribution to interindividual variability and its 

consequences on immune-mediated diseases. These results support a model where 

genetic risk for disease can sometimes be driven not by static and uniform 

malfunction but rather by failure to respond properly to an environmental stimulus. 

This emphasizes the importance of context-specific genetic regulation in human 

traits.  
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Methods 

Sample collection, isolation and stimulation of CD14+ monocytes 

In total, 185 healthy male volunteers of German descent were recruited. The 

study was approved by the institutional review board of the University of Bonn. All 

volunteers were between age 18 and 35 (mean 24). Peripheral blood mononuclear 

cells (PBMC) were obtained by Ficoll-Hypaque density gradient centrifugation of 

heparinized blood. Monocytes were isolated by MACS using CD14-microbeads 

(Miltenyi Biotec) as previously described1. The purity of isolated monocytes was ≥ 

95%. RPMI 1640 (Biochrom) supplemented with 10% heat-inactivated FCS 

(Invitrogen), 1.5 mM L-glutamine, 100 U/ml penicillin, 100 µg/ml streptomycin (all 

Sigma-Aldrich) and 10 ng/ml GM-CSF (ImmunoTools) was used to culture cells in 96-

well round bottom wells at a density of 250,000 cells/well in 100 µl overnight. Cell 

viability after overnight incubation was > 85%. Cells of each volunteer were divided to 

subsets that were either untreated or treated with 200 ng/ml ultrapure LPS from 

Escherichia coli (Invivogen), 100 ng/ml L18-MDP (Invivogen) or 200 ng in vitro 

transcribed 5’-ppp-dsRNA transfected with Lipofectamine 2000. Based on the pilot 

study described in Supplementary Fig. 1 and in the Supplementary Information, cells 

were lysed in RLT reagent (Qiagen) after 90 min or 6 hours and stored at -80°C. C-

reactive protein (CRP) levels were measured to exclude samples with elevated CRP 

levels. After applying stringent quality control and clinical exclusion criteria (Non-

smoker, no infection or vaccination 4 weeks prior to blood withdrawal, CRP < 2.5 

mg/dl, monocyte purity ≥ 95%, monocyte survival > 85%), samples from 134 

individuals were further processed.  

 

RNA extraction 
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RNA was extracted from lysed cells using the AllPrep 96 DNA/RNA Kit from 

Qiagen. RNA concentrations were determined using NanoDrop (PeqLab) and a 

subset of samples was additionally checked for degradation in a Bioanalyzer (Agilent 

Technologies). 

 

Gene expression analysis 

The Illumina TotalPrep-96 RNA Amplification Kit (Life Technologies) was used 

for amplification and biotinylation of RNA. Subsequent array-based gene expression 

analysis was performed on Illumina’s Human HT-12 v4 Expression BeadChips 

(Illumina) comprising 47,231 probes. Expression profiles were quantile normalized, 

and only probes, which showed a pdetection < 0.01 in at least ten samples across all 

conditions were analyzed.	Batch effects were removed using the R packages 

ComBat24 and sva25. Probes with an interindividual standard deviation > 5 were set to 

NA. Probes that matched to multiple positions in the human genome and probes 

mapping to non-autosomal chromosomes were excluded from further analysis. 

Finally, probes were removed if SNPs within a probe showed an eQTL effect to the 

respective gene, resulting in 18,988 probes (13,207 genes) for statistical analyses.  

To determine the number of differentially expressed genes, the probe with the 

best  pdetection across all conditions was used and differential expression (log2-fold 

change > 1, FDR 0.001) was computed using the linear modeling-based approach 

implemented in the Bioconductor limma package26. Genes differentially expressed in 

at least one condition were grouped into six distinct clusters corresponding to genes 

with similar response pattern using hierarchical clustering. Over-representation of 

Gene Ontology terms in these clusters of differentially expressed genes were 

assessed using hypergeometric-based tests implemented in the R package 
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GOstats27. Genes that were expressed in our monocyte data were used as 

background set in all enrichment analyses. Only enrichments significant at FDR of 

0.05 are reported in Supplementary Table 1. 

 

DNA extraction 

Genomic DNA was extracted from 10 ml blood using Chemagic Magnetic 

Separation Module I (PerkinElmer Chemagen) according to the manufacturer’s 

instructions. DNA was quantified by NanoDrop (PeqLab). 

 

DNA genotyping and imputation 

Genotyping was conducted on the Illumina’s HumanOmniExpress BeadChips 

comprising 730,525 SNPs. After quality control (pHWE > 10–5, call rate > 98%, MAF > 

5%), a total of 579,090 SNPs were available for analysis. Samples showing potential 

admixture within the multi-dimensional scaling (MDS) analysis were removed. All 

samples showed a call rate > 99%.  

Genotypes were phased with SHAPEIT228 and imputed with IMPUTE229 in 

5Mb chunks against the 1000 genomes phase 1 v3 reference panel30. Sites with an 

information score of less than 0.8 or significant departure from Hardy-Weinberg 

equilibrium (p < 10-5) or MAF < 5% were excluded from further analysis. Genotype 

probabilities for all remaining sites were converted into dosage estimates.  

 

eQTL analysis 

As quantitative phenotypes we used absolute expression values of untreated 

(baseline), LPS-treated (LPS), ppp-dsRNA-treated (RNA) and MDP-treated (MDP) 

cells. Complete expression profiles of each of the seven conditions (baseline, 
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LPS90min, LPS6h, RNA90min, RNA6h, MDP90min, MDP6h) were available for 134 

donors. eQTL mapping was performed for SNPs located within 1Mb of the gene 

expression probe using FastQTL31. Significance of the most highly associated variant 

per gene was estimated by adaptive permutation with the setting "--permute 100 

10000". Permutation p-values obtained via beta approximation were used to access 

genome wide significance via Benjamini-Hochberg (FDR < 0.05). Downstream 

analyses were carried out in R. Network analysis of reQTL genes was performed 

using the STRING 10.0 database32 selecting only interactions that were either 

experimentally validated or originated from curated databases.  

 

Replication of eQTLs 

We compared our results with two previous reQTL studies. For quantifying 

eQTL replication with a genome-wide study of monocyte eQTLs4, we used Storey’s 

qvalue R package33. The π1 statistic considers the full distribution of association p-

values (from 0 to 1) and computes their estimated π0, the proportion of eQTLs that 

are truly null based on their distribution. Replication is reported as the quantity π1 = 1 

- π0 that estimates the lower bound of the proportion of truly alternative eQTLs.  

Lee et al.3 used a targeted approach (415-gene signature) to identify eQTLs 

after LPS, Flu or IFNβ treatment in dendritic cells. π0 could not be calculated using 

Lee et al. because less than 10% of eQTL genes in our data were represented in the 

415 targeted genes, and thus replication was assessed by the proportion of our 

eQTLs with nominal significance (p < 0.05) in Lee et al.  

 

Detecting reQTLs by eQTL β-comparison  
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In each condition, we first determined the best eQTL per gene (lead eSNP). 

Regression coefficient (β) and its variance (σ2) of these eQTLs were calculated for all 

seven conditions using the linear model function summary(lm()) in R. We then 

tested if the regression coefficient of an eQTL was significantly different between two 

conditions in a z-test: 

      

Resulting p-values were corrected for multiple testing using Bonferroni correction 

(pbeta < 0.05). Previous reQTL studies1,3,5 have used differential expression as a 

quantitative trait to identify reQTLs (pdiff). We calculated pdiff for all reQTLs identified 

by β-comparison and used Spearman correlation as a measure of similarity.   

To detect treatment specificity of reQTLs, we tested all significant reQTLs of 

one treatment (e.g. LPS90min) vs the other two treatments of the same time point 

(e.g. RNA90min and MDP90min) in two separate z-tests. A reQTL was treatment 

specific if the Bonferroni-corrected p-value in the z-test was < 0.05. To detect time 

point specificity of reQTLs, for each treatment we tested all significant reQTLs of one 

time point (e.g. LPS90min) vs the other time point (e.g. LPS6h) in a z-test. Time point 

specific reQTLs were determined using Bonferroni-corrected p-values (p < 0.05). To 

compare reQTLs with eQTLs that are constitutively active (ceQTL), we defined 

ceQTLs as eQTLs with pbeta > 0.05 when testing each of the six stimulated conditions 

with the baseline condition.  

 

Characterizing dynamics of reQTLs 

To study the dynamics of reQTLs, we encoded as a binary call whether 

reQTLs had a significant eQTL p-value at each of the three time points or not (e.g. “0-

z =
�baseline � �stimulatedp
�2
baseline + �2

stimulated
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1-0” codes for “not significant eQTL at 0 min – significant at 90 min – not significant at 

6 hours”). If a reQTL was shared between treatments, the treatment with the best p-

value was used. This resulted in following groups: Transiently active (“0-1-0”), 

transiently suppressing (“1-0-1”), late active (“0-0-1”), late suppressing (“1-1-0”), 

prolonged active (“0-1-1”) and prolonged suppressing (“1-0-0”) reQTLs. The average 

of absolute eQTL-β and distribution of reQTL among these groups are shown in Fig. 

2d (left panel). Of note, 83 reQTLs that were significant at all three time points (“1-1-

1”) but with significant changes of the eQTL effect size are not illustrated and were 

excluded from the following analysis.  

To further examine if eQTL-β and differential expression (DE) of the eQTL 

gene are congruent, DE between baseline and 90 min stimulation (Δ90min-baseline) and 

DE between 90 min and 6 h stimulation (Δ6h-90min) were calculated using limma and 

significant Δ90min-baseline (p < 0.01) was encoded in binary (0;1) whereas significant Δ6h-

90min was encoded as “not significant” (0), “significant” (1), “significant, but opposite 

direction of Δ90min-baseline” (2). To determine the proportion of reQTL genes with 

congruent DE we quantified for transiently active/suppressing reQTLs the proportion 

of reQTL genes with significant Δ90min-baseline and significant Δ6h-90min with opposite 

direction (“1-2”), for late active/suppressing reQTLs we quantified the proportion of 

reQTL genes with not significant Δ90min-baseline and significant Δ6h-90min (“0-1”) and for 

prolonged active/suppressing reQTLs we quantified the proportion of reQTL genes 

with significant Δ90min-baseline and either not significant Δ6h-90min (expression stays the 

same) or significant Δ6h-90min with same direction (fold change increases, “1-0” or “1-

1”). To test if the proportion of reQTL genes with congruent DE was significantly 

enriched in each group (e.g. 37 congruent out of 71 transiently active reQTLs) we 

quantified the proportions of the same DE code (e.g. “1-2”) in the remaining groups 
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(late active/suppressing and prolonged active/suppressing) and tested the 

proportions using Fisher’s exact test.  

 

Enrichment of functional annotations and fine mapping  

We used the fgwas7 software to investigate the extent to which reQTLs and 

ceQTLs were enriched within specific annotation categories. Annotation information 

used by fgwas was derived from CADD variant consequence annotation34 (14 

annotations) and Monocyte-specific annotations from Ensembl Regulatory build35 (6 

annotations). To identify the set of annotations that would best fit the model, we first 

tested each of the 20 annotations in a joint data set of reQTLs and ceQTLs including 

distance to TSS in the analysis. 16 annotations individually improved the model 

likelihood but as many of these annotations are correlated with one another we used 

a stepwise selection approach to identify a final best-fitting model that included 13 

annotations asterisked in Fig. 3b. We then ran fgwas including these 13 annotations 

for reQTLs and ceQTLs separately to estimate enrichment parameters and output re-

weighted summary statistics. 

For each locus that contained at least one SNP with a posterior probability of 

association (PPA) > 0.3, we considered the SNP with the highest PPA from fgwas 

and tested the overlap of functional annotation sites of reQTL vs. ceQTLs using 

Fisher’s exact test.  To increase power of reQTLs/ceQTLs overlapping functional 

annotation sites we mapped eQTLs using the mean of gene expression across all 

seven conditions. Fgwas steps were repeated as described above. Estimated 

enrichment parameters showed similar results and indicate the robustness of our 

analysis (Supplementary Fig. 8b). 
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Natural selection analysis 

We used two metrics, iHS and SDS, which detect signals of positive selection. 

The integrated haplotype score (iHS) measures the degree of extended haplotype 

homozygosity of the putatively selected allele over that of the putatively neutral 

allele10. iHS were calculated with the program selscan v1.1.0b36 with default 

parameters. We defined high iHS values as |iHS| > 1.5 in the CEU population. 

Furthermore, we used the recently published singleton density score (SDS)11, which 

detects very recent changes in allele frequencies from contemporary genome 

sequences. Publicly available SNP level SDS scores calculated from the UK10K 

Project reflect allele frequency changes during the past ~2000 to 3000 years in 

modern Britons, who are closely related to the German population37. We therefore 

applied these SDS scores to our cohort.  

For each statistic (iHS, SDS), we determined the strongest signal of selection 

of all SNPs in high LD (r2 > 0.8) with the best eQTL/ceQTL/reQTL SNP per gene. To 

assess significance, we then compared for each eQTL set the proportion of SNPs 

with |iHS| > 1.5 with the expected distribution obtained from re-sampling 10,000 sets 

of random SNPs matched for MAF and the number of SNPs in LD using the same 

parameters as described in Quach et al.6 using bins of MAF of 0.05 and LD bins of 0-

2, 3-5, 6-10, 11-20, 21-50, and > 50 SNPs with r2 > 0.8). Similarly, for SDS, we 

compared the median of SDS scores of eQTLs/ceQTLs/reQTLs, to the expected 

distribution obtained from resampling 10,000 sets of random SNPs matched for MAF 

and LD patterns.  

To determine the effect of the derived allele on the immune response, we 

tested the proportion of reQTLs where the derived allele causes an increase versus 

decrease in response amplitude compared to the ancestral allele (Fig. 3d). reQTLs 

with increased activity include both reQTLs where the derived allele amplifies the 
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induction of a gene or amplifies the suppression of a gene, whereas reQTLs with 

decreased activity will either reduce the induction of a gene or reduce the 

suppression of a gene. Overrepresentation of reQTLs with increased activity was 

evaluated using a binomial test. 

 

Colocalization analysis 

Colocalization analysis was conducted using the R package coloc12. The 

method requires summary statistics for each SNP, which were summarized in Pickrell 

et al.38 or downloaded from ImmunoBase (http://www.immunobase.org) along with 

our eQTL data. A list of GWAS traits used in this analysis is provided in 

Supplementary Table 3. Coloc uses summary data from eQTL and GWAS studies in 

a Bayesian framework to identify GWAS signals that colocalize with eQTLs. We ran 

coloc using default parameter settings and a colocalization prior p12 = 10-6. Coloc 

estimates posterior probability of association for either trait (PP0), association with 

gene expression (PP1), association with the trait (PP2), association with both 

phenotypes but distinct causal variants (PP3) and association with both phenotypes 

sharing the same causal variant (PP4). Regions with evidence for colocalization 

between gene expression and trait were defined as PP3 + PP4 ≥ 0.90 and PP4/PP3 

≥ 3 similar to what has been proposed by Guo et al.39 and are illustrated in Fig. 4a. 

As eQTL summary statistics in the coloc analysis, we used two approaches to 

maximize our discovery power. First, from each locus we used the summary statistics 

of the condition with the strongest p-value. This is expected to provide robust 

discovery even in highly condition-specific loci. Furthermore, we also ran coloc with 

eQTLs mapped using the mean of gene expression across all seven conditions, 

which is expected to improve power when the eQTL signal is present in many 
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conditions. All coloc results with PP3 + PP4 ≥ 0.90 are reported in Supplementary 

Table 3. 

 

Overlap between reQTLs and GWAS catalog� 

To assess the overlap between reQTLs and trait-associated variants, we 

downloaded the NHGRI-EBI GWAS Catalog (version 1.0.1, downloaded 2016/06/14). 

A reported GWAS SNP was considered to coincide with an reQTL if the GWAS SNP 

was in high LD (r2 >0.8) with the lead eSNP per gene. A full list of these GWAS 

reQTLs is provided in Supplementary Table 4. 

 

Estimating the relative contribution of reQTLs and ceQTLs on immune-

mediated traits� 

We used the fgwas7 software to investigate the extent to which reQTLs and 

ceQTLs were enriched in risk loci of immune-mediated traits, following the approach 

of Li et al.18. A list of GWAS traits used in this analysis is provided in Supplementary 

Table 3. Due to the limited number of 417 reQTLs and 677 ceQTLs, we loosened the 

eQTL cutoffs for reQTLs and ceQTLs. For reQTLs, we considered all reQTLs that 

were significant after Benjamini-Hochberg FDR 5% correction (instead of Bonferroni 

correction), which resulted in 1128 reQTLs. For ceQTLs, we considered all ceQTLs 

with pbeta > 0.005 when testing each of the six stimulated conditions with the baseline 

condition, which resulted in 1165 ceQTLs. For both eQTLs, all associations with p < 

10-4 were used as input, and fgwas analysis was performed for reQTLs and ceQTLs 

separately. Of note, this analysis was robust to different eQTL association p-value 

cutoffs (p < 10-4, 10-5, 10-6) suggesting that the enrichment is not simply due to the 

power of detection (Supplementary Fig. 10, Supplementary Fig. 11).  
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Data availability 

Full summary statistics of the eQTL analysis, gene expression and genotyping 

data will be available at ArrayExpress and the European Genome-phenome Archive 

[to be released at publication]. In addition to results tables for all seven conditions 

provided in Supplementary Table 2, all eQTL results are available in the ImmunPop 

QTL browser (http://immunpop.com/kim/eQTL), which provides multiple interactive 

visualization and data exploration features for eQTLs.  
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Figure 1 Overview of the study. (a) Step-wise experimental design to identify genetic 

effects on immune response in human monocytes. 1) Isolation and stimulation of 

primary monocytes from 134 individuals, 2) Transcriptome measurement of the entire 

cohort at two time points (90min and 6h) after stimulation, 3) Genotype profiling to 

map immune response eQTLs. (b) Mean mRNA profiles of differentially expressed 

genes (log2-fold change > 1, FDR 0.001) of 134 individuals between baseline and 

each of the six stimulated conditions. Genes are hierarchically clustered into six 

distinct expression patterns (see Supplementary Table 1 for a full list of the 

differential expression and enriched pathways of each cluster).   
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Figure 2 Immune response eQTL study in human monocytes. (a) Total numbers of 

cis eQTLs and proportions of reQTLs of LPS-treated (LPS), ppp-dsRNA-treated 

(RNA) and MDP-treated (MDP) monocytes at 90min and 6h after stimulation. eQTLs 

include all genes with a significant genetic association in each stimulated condition, 

and reQTLs are a subset that show a significant difference of the regression slope 

between untreated and stimulated monocytes, with violin plots shown as examples. 

The untreated condition has 1,653 eQTLs that are not shown in the barplot. (b) 

Numbers of reQTLs and proportions of treatment-specific reQTLs where the 

regression slope of the tested treatment is different from the slope of the other two 

treatments within the same time point, with violin plots shown as examples and the 

color of bar indicating the treatment that was tested. (c) Numbers of reQTLs and 

proportions of time point-specific reQTLs where the regression slope of the tested 

time point is different from the slope of the other time point within the same treatment, 

with violin plots shown as examples. (d) reQTLs were divided into six subsets 

according to their temporal activity (see Methods). Average of absolute eQTL effect 

sizes per category is shown on the left panel. The middle panel illustrates a reQTL 

example with congruent differential expression (DE) (dashed line) or non-congruent 

DE (dotted line) of the eGene. reQTL distribution to different categories is shown in 

the right panel, where the shaded portion illustrates the proportion of reQTLs with 

congruent DE of the eGene and asterisks represent the significance of enrichment of 

reQTLs with congruent DE of the eGene (Fisher’s exact test *p < 0.05). The p-values 

above the bars indicate the significance between of active and suppressive types 

(binomial test).  
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Figure 3 Functional annotations and signs of natural selection in reQTLs. (a) Total 

numbers of cis eQTLs, and proportions of reQTLs and constant eQTLs (ceQTL) that 

have similar regression slopes across all conditions. Examples of a ceQTL and 

reQTL are shown in Supplementary Fig. 8a. (b) Forest plot of enrichment estimates 

of reQTL and ceQTL signals for each functional annotation with 95% confidence 

intervals (see also Supplementary Fig. 5b). Bar plot shows the enrichment of the 

single most likely causal SNP per locus after fine mapping. The solid bars indicate 

significant enrichments after Bonferroni correction. (c) Signal of positive selection 

measured as the proportion of variants with high |iHS| (left panel), and median |SDS| 

(right panel), using the variant with the maximum value from each locus across all 

SNPs in high LD (r2 > 0.8). Genome-wide null sets of variants matched to eQTL, 

ceQTL or reQTL were generated by resampling 10,000 sets of random SNPs that 

matched for MAF and LD (white bars). Error bars indicate minimum and maximum of 

the null distribution, and asterisks indicate the significant enrichment compared to the 

null (permutation test p < 10-4). (d) Illustration of reQTLs where the derived allele 

causes an increase (left panel) or decrease (right panel) in response amplitude 

compared to the ancestral allele. The increase or decrease of the response 

amplitude can be in both directions, e.g. reQTLs that amplify the induction or amplify 

the suppression of a gene are both considered as reQTLs with “increasing activity” of 

the derived allele and reQTLs that weaken the induction or suppression of a gene are 

both considered as reQTLs with “decreasing activity” of the derived allele. (e) 

Numbers of reQTLs with increased or decreased activity across all stimulated 

conditions, with a p-value from a binomial test.   
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Figure 4 The role of reQTLs in GWAS. (a) Manhattan plots of eQTL (top panels) and 

disease (middle panels) p-values in colocalized loci. The bottom panels show the 

dynamics of corresponding eQTL effect sizes in different conditions. (b) Two 

additional GWAS loci colocalize when the mean of gene expression across all seven 

conditions is used to map eQTLs (see Methods). (c) Overlap of GWAS SNPs that are 

in high LD (r2 >0.8) with reQTLs in monocytes with disease phenotypes connected to 

reQTL genes and corresponding immune stimulations. See Supplementary Table 4 

for trait abbreviations. (d) Genome-wide enrichment of reQTL and ceQTL 

associations in autoimmune GWAS with 95% confidence intervals (left panel), and 

Quantile-quantile (Q-Q) plots for SLE (middle panel) and Celiac disease (right panel). 

See Supplementary Fig. 10b for additional Q-Q plots, and Supplementary Fig. 11 and 

Supplementary Fig. 12 for results of non-autoimmune traits.   
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