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Abstract 

Background: 

Genomic selection (GS) promises to accelerate genetic gain in plant breeding programs            

especially for long cycle crops like cassava. To practically implement GS in cassava breeding,              

it is useful to evaluate different GS models and to develop suitable models for an optimized                

breeding pipeline. 

Methods: 

We compared prediction accuracies from a single-trait (uT) and a multi-trait (MT) mixed model              

for single environment genetic evaluation (Scenario 1) while for multi-environment evaluation           

accounting for genotype-by-environment interaction (Scenario 2) we compared accuracies         

from a univariate (uE) and a multivariate (ME) multi-environment mixed model. We used             

sixteen years of data for six target cassava traits for these analyses. All models for Scenario 1                 

and Scenario 2 were based on the one-step approach. A 5-fold cross validation scheme with               

10-repeat cycles were used to assess model prediction accuracies. 

Results: 

In Scenario 1, the MT models had higher prediction accuracies than the uT models for most                

traits and locations analyzed amounting to 32 percent better prediction accuracy on average.             

However for Scenario 2, we observed that the ME model had on average (across all locations                

and traits) 12 percent better predictive power than the uE model. 

Conclusion: 

We recommend the use of multivariate mixed models (MT and ME) for cassava genetic              

evaluation. These models may be useful for other plant species. 
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Background: 

Cassava ( ​Manihot esculenta ​Crantz)[1] is a staple food for over 700 million people in Africa,               

South America and Asia [2]. Cassava also has immense industrial potential. Pure white             

cassava starch is easy to extract and contains low levels of fat (about 1.5%), protein (about                

0.6%) and phosphorus (about 4%), which are desirable attributes for the food industry [3,4].              

Given the issues of climate change and rapid population growth in countries that rely heavily               

on cassava, rapid genetic improvement of cassava is critically needed. To enable rapid             

genetic improvement of cassava, genetic evaluation protocols hinged on Best Linear           

Unbiased Prediction (BLUP) analysis [5,6] and selection on a merit index [7,8] has been              

recommended [9] to maximize gain from selection.  

 

G​enomic selection (GS) [10] offers crops like cassava tremendous opportunity ​for           

accelerated genetic gains [11] by making use of whole genome SNP markers ​accessible with              

methods like the genotyping-by-sequencing (GBS) ​[12]. These whole genome SNP markers           

could be dense enough to be in linkage disequilibrium with most quantitative trait loci (QTL)               

affecting traits of interest. Using GS, selection is imposed at these QTL without actually              

identifying the QTL or the functional polymorphisms [10]. Also these markers will help to              

better track relatedness due to mendelian sampling [24] in a breeding population especially             

where pedigree records are not fully available thus yielding an improvement in selection             

accuracies [25]. 

GS models for plant genetic evaluation: 

Genetic evaluation [9] starts with accurately estimating the genetic value of an            

individual for a wide range of traits using its own performance records, progeny performance              
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records or records from relatives or a combination of the three [13]. This has usually been                

carried out using single trait (uT) BLUP methodology ​[14] ​for obtaining estimated breeding             

values (EBVs) for one trait at a time. In plant and animal breeding, breeders usually select on                 

the basis of multiple traits that are often genetically correlated although these correlations             

may range from very weak to very strong. The uT model for traits measured in a single                 

environment assumes zero genetic and residual covariances between these traits such that            

information from other traits are not utilized when obtaining EBVs of the evaluated individuals              

for the traits in the analysis. However, the optimal estimation procedure to combine             

information from multiple trait records and obtain EBVs is the multi-trait BLUP methodology             

(MT) [15,16]. The MT model does not assume zero genetic and residual covariances but              

rather provides an estimate for these and also uses this information when obtaining individual              

EBVs for the traits in the analysis. T​he MT model has several advantages over the uT model                 

including​: 

■ Improved prediction accuracies for individual traits in the model because of more            

information (direct or indirect), better connectedness of the data [17], and exploitation            

of genetic and residual correlations in the model especially when traits with varying             

heritabilities are analyzed jointly.  

■ Simplified index selection because optimal weight factors for the total merit index are             

the economic weights [17].  

■ Efficient procedures for obtaining genetic and residual covariances and EBVs across           

location, country or region evaluations on information from same or related individuals            

[18, 19]. 

■ Better selection accuracies by accounting for selection bias when all target traits under             
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selection are included in the model [20] in addition to the use of all individuals (selected                

or not) in the relationship matrix. 

 

In most plant breeding programs, selected individuals are evaluated in          

multi-environment trials (METs). The goal is to sample the influence on selection candidates             

of the range of environments for which varieties will be targeted. Addressing the problem of               

the analysis of METs brings into focus another potential use for MT models [30]. Here,               

phenotypes of the same trait, but measured at different locations are parameterized as             

different traits in the MT model [31], producing what we call a multi-environment BLUP (ME)               

model. Like the MT model, the ME model estimates genetic covariances between a single              

trait measured at multiple environments which may lead to more accurate estimates of             

individual EBVs for the trait at all the environments where data has been recorded. For ME                

models used for modelling MET data, residual covariances are set to zero reflecting the              

assumption that no mechanism generates error covariances between a trait measured in            

different environments [18]. In contrast, the typical univariate BLUP model for modelling METs             

data, termed the univariate multi-environment model (uE), fits a multikernel mixed model with             

the genotypic effect as one kernel and the genotype-by-environment (GxE) effect as the             

second kernel and maybe environment as third kernel [26]. This model yields a GxE variance               

for a MET and individuals can be ranked on their performance at different locations. It is                

expected that for traits with high correlation between environments, the uE model should offer              

more accurate EBVs, while EBV accuracies for traits with lower correlation between            

environments will benefit more from the ME model. Different variants of the ME model have               

been used for modeling environment covariance structures in plant [32-35] and in animal             
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breeding ​[36,37] ​. Genetic covariances from the ME model offer a convenient tool for             

assessing the impact of GxE on a trait. The genetic covariances relate directly to the extent of                 

GxE at all locations in the analysis. A low genetic correlation of the EBVs between a trait at                  

different locations from the ME model indicate GxE impact on that trait [9,38-41].  

 

Selecting the GS model to be employed in a practical cassava breeding program is not               

trivial hence the need to compare different GS models that will be useful in the different                

stages of cassava breeding with METs data. Finally, fitting multivariate BLUP models is not              

trivial. Even with software that can in principle fit these models, model convergence is not               

guaranteed and may require several attempts [21-23] and hence univariate models may be             

more practical if benefits of the multivariate models are not substantial. 

 

The objectives of this paper are to: 

■ Compare multi-trait (MT) and single trait (uT) mixed models for METs data using             

cross-validated prediction accuracies. 

■ Compare the multivariate multi-environment (ME) model to a single-trait         

multi-environment (uE) model using cross-validated prediction accuracies while        

assessing GxE impact on analyzed traits via genetic covariances from the ME model             

fit. 
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METHODS AND MATERIALS: 

Cassava phenotype data: 

We used historical phenotype data from different trials conducted by the cassava breeding             

program at the Institute of Tropical Agriculture (IITA), Ibadan, Nigeria in our analysis. The              

Genetic Gain population represents a collection of clones selected from the 1970s to 2007 by               

the cassava breeding program at the IITA [48,49]. Some of these clones are West African               

landraces and some are of East African origin. Clones in the Genetic Gain population have               

gone through advanced stages of the cassava breeding process up to on farm variety testing               

trials. The data used in our analysis comprises data collected on clonal evaluation trials              

(CETs) which are augmented design trials with about 2 known checks and unreplicated plots              

with 5 plant stands per clone. ​These data were collected from three target locations in               

Nigeria: Ibadan (7.40° N, 3.90° E), Mokwa (9.3° N, 5.0° E), and Ubiaja (6.66° N, 6.38° E).                 

These locations represent regions which encompass about 35 percent of the cassava            

production base in Nigeria. Data sets were collected from 2000 to 2015 and included trials               

with most of the 764 clones of the Genetic Gain population. Six target agronomic traits were                

used in the analysis including seedling vigor (VIGOR), Number of storage roots per hectare at               

harvest (RTNO), Fresh weight of harvested roots expressed in tons per hectares (T/ha) per              

plant (FYLD), Percentage dry matter (DM) of storage roots, which measures root dry weight              

as the percentage of the root fresh weight, plot mean cassava mosaic disease severity              

(MCMDS), rated on a scale from 1 (no symptoms) to 5 (extremely severe), and plot mean                

cassava green mite (MCGM) severity, rated on a scale from 1 (no symptoms) to 5 (extremely                

severe). Cassava mosaic disease is caused by a ​Begomovirus that belongs to the             

Geminiviridae family, and is carried and transmitted by the whitefly ​Bemisia tabaci​. The             
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cassava green mite is ​Mononychellus tanajoa ​[50]​. ​These traits are target traits used in the               

selection index for selection decisions in the IITA cassava breeding program. Phenotype data             

metrics are shown in Table 1. 

 

Cassava genotype data: 

DNA was extracted using DNeasy Plant Mini Kits (Qiagen) from 739 clones from the 2013               

Genetic Gain trial at IITA and was quantified using PicoGreen. Genotyping-by-sequencing           

(GBS) was used for genotyping [12] these clones. Six 95-plex and one 75-plex ​Ape​KI libraries               

were constructed and sequenced on Illumina HiSeq, one lane per library. Single nucleotide             

polymorphisms (SNPs) were called from the sequence data using the TASSEL pipeline            

version 4.0 [51], using an alignment to the ​Manihot esculenta version 6 reference genome              

[52]. Individuals with greater than 80% missing SNP calls and markers with more than 60%               

missing were removed. The marker data was converted to dosage format (0, 1, 2) and               

missing genotypic data were imputed using a LASSO regression method (Ariel Chan,            

personal communication, 2014) implemented using the R glmnet package [53]. The final data             

set consisted of 183,201 SNPs scored in 764 clones. 

 

Statistical analysis: 

We restructured the cassava phenotype data described above into two types of data common              

in most plant breeding programs. The first set was achieved by pooling data from multiple               

years in all locations (multi-environment trials data - METs). We termed this scenario the              

single environment genetic evaluation (Scenario 1). This resulting predictive power from this            

data were assessed for our three locations Ubiaja, Mokwa and Ibadan. The second scenario              
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was achieved by using same METs data but in this case extracting location specific              

information by attempting to model GxE interaction. We termed this scenario the            

multi-environment genetic evaluation (Scenario 2). The goal of the latter data is to access the               

value of evaluate the impact of GxE and check if this yields better predictive value of the                 

breeding value of a clone. 

 

Pseudo-true genetic values for model accuracy computations: 

For validating the models in this study, we define first a univariate single trait mixed model for                 

each trait at each location separately (to preserve the variation embedded in each location)              

using an identity covariance matrix among clone effects, which assumes no relationship            

among all clones. The univariate mixed model was as follows: 

y = Xb+Zu+e; u ~ N(0, σ ​2​u​I);      e ~ N(0, σ​2​I)  ​(A) 

 σ  I )Z  V (y b) û = ( 2
u u  

T −1 − X ˆ  

where ​y is a vector of observations, ​b is a vector of fixed effects with design matrix ​X (relating                   

observations to fixed effects in this case including grand mean and a nested effect of               

Trial-within-Year-within-Location and the ratio of plants harvested to number planted); ​u is a             

vector of clonal genetic effects with design matrix ​Z ​(relating observations to clones). This              

model was fit using the ​lmer function in the R lme4 package [55] and resulting BLUP values (                 

), which we refer to as Estimated Genotypic Values (EGVs), were used as pseudo-trueû               

genetic effects for prediction accuracy computations. 
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GS models for Scenario 1: 

We define two mixed models fitted here as follows: 

The single trait mixed model (uT): 

y = Xβ+Zu+e (1) 

where ; (y , , , ... , y )y =  ′
a y′

b y′
c   ′

z
′   (e , , , ..., e )e =  ′

a e′
b e′

c   ′
z

′  

u ~ N(0,σ​2​u ​K); e ~ N(0, σ​2​I)  

var(y) = V = Z(σ​2​u ​K)Z​T​ +  σ​2​I;     K)Z  V (y Xb)û = (σ2
u

T −1 −  ˆ  

where ​y is the response vector of a trait at locations ​a, b.. z ​, ​β is the vector of fixed effects                     

with design matrix ​X (relating observations to fixed effects namely the grand mean, nesting of               

Trial-within-Year-within-Location and ratio of plants harvested to number planted); ​u is the            

vector of random additive genomic effects with design matrix Z (relating trait values to clones)               

and ​K is the additive genomic relationship matrix generated from SNP markers as in              

VanRaden, 2008 [63] method two. Estimation of the parameters in model (1) were performed              

using Restricted Maximum Likelihood (REML) procedure implemented in the ​airemlf90          

FORTRAN program of the ​blupf90 package [62] which estimates (co)variance parameters           

and then obtains best linear unbiased estimates (BLUEs) of fixed effects and BLUPs of              

random effects by solving the mixed model equations (MME) [5,6].  

 

The multitrait Mixed Model: 

y = Xβ+Zu+e (2) 

where ;         ; (y , , , y , y  ..., y )y =  ′
1a y′

2a y′
3a  ′

1b  ′
2b  ′

dz
′  (u , , ..., )u =  ′

1 u′
2   u′

d
′  

 (e , , , e , e  ..., e )e =  ′
1a e′

2a e′
3a  ′

1b  ′
2b  ′

dz
′  

where ​y is a long vector of ​d traits in locations ​a, b … z​, recorded for ​n clones, ​X and ​Z design                       
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matrices are block diagonal matrices represented as ​diag​(X​a​, X​b​,..., X​z​) and ​diag​(Z​a​, Z​b​,..., Z​z​)              

respectively allowing for missing clones and observations. ​X is a design matrix for fixed              

effects ​β (with components as in model 1 above for every location and trait) and ​Z is a design                   

matrix for random genetic effects ​u ​. Following a multivariate normal distribution ( ​N​m​), the             

marginal density of ​y​ is given as: 

y | β, R, G) (Xβ, V )(   ~ Nm  (3) 

; Z(G )Z  I )V =  ⊗ K T +  d ⊗ R   G⨂ K)Z V (y β)  û = ( T −1 − X ˆ  

where ​d is number of traits being analyzed, G and R are ​d × d symmetric genomic and error                   

covariance matrices respectively, ​K remains the additive genomic relationship matrix for ​n            

clones generated from SNP markers as in VanRaden, 2008 [63] method two, ​I is a ​d​-traits                

identity matrix and u are the genomic estimated breeding values (GEBVs) the clones and for               

the traits in the analysis. Estimation of the parameters in model (3) were also performed using                

REML procedure implemented in the ​airemlf90 program [62] from which BLUEs of fixed             

effects and BLUPs of random effects were also obtained by solving the mixed model              

equations (MME) [5,6].  

GS models for Scenario 2: 

We also defined two mixed models here with the aim of modeling genotype-by-environment             

interaction effects and these are as follows: 

The univariate multi-environment model (uE): 

y = Xβ + Z​1​u + Z​2​w +e (4) 

where ; (y , , , ... , y )y =  ′
a y′

b y′
c   ′

z
′   (e , , , ..., e )e =  ′

a e′
b e′

c   ′
z

′  

u ~ N(0,σ​2​u ​K); w ~ N(0,σ ​2​w ​K​w​) e ~ N(0, σ​2​I)  

var(y) = V = Z​1​(σ​2​u ​K)Z​1​T​ + Z​2​(σ​2​w ​K​w​)Z​2​T​ + σ​2​I;     K)Z  V (y Xβ)û = (σ2
u 1

T −1 −  ˆ  
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 σ  K )Z  V (y b) ŵ = ( 2
w w 2

T −1 − X ˆ  

where ​y is a long vector of trait values for all locations, ​β is the vector of fixed effects with                    

design matrix ​X (relating observations to fixed effects namely the grand mean, nested             

Trial-within-Year-within-Location and ratio of plants harvested to number planted); ​u is the            

vector of random additive genomic effects with design matrix ​Z​1 (relating trait values to              

clones), ​w is the vector of random marker-based clone-by-location interaction effects with            

design matrix ​Z​2 (relating trait values to clones-location combinations) and ​K is the additive              

genomic relationship matrix generated from SNP markers as in VanRaden, 2008 [63] method             

two, ​K ​w is a block diagonal covariance matrix represented as ​diag(K​a​, K ​b​, K ​c​,…, K ​z​) ​with the ​K                 

matrices in this block being genomic relationship matrices calculated as in VanRaden, 2008             

[63] method two for clones in locations ​a,b...z ​. In this model, the genomic value of a clone                 

were estimated as + . We also fit model(4) using the ​airemlf90 ​tool of the blupf90   û   ŵ             

package [62] with a custom R-script for a 5-fold cross validation procedure with 10 repeat               

runs using the ​airemlf90 ​function. 

The multivariate multi-environment (ME) model: 

We fit the ME model in a single step procedure using the following model: 

y = Xβ+Zu+e (5) 

where ;         ; (y , ,  ..., y )y =  ′
a y′

b y′
c  ′

z
′  (u , , ..., )u =  ′

a u′
b   u′

z
′   (e , , , ..., e )e =  ′

a e′
b e′

c   ′
z

′  

where ​y is a long vector of same trait in locations ​a, b … z​, recorded for ​n clones, ​X and ​Z                      

design matrices are block diagonal matrices represented as ​diag​(X​a​, X​b​,..., X​z​) and ​diag​(Z​a​,             

Z​b​,..., Z​z​) respectively allowing for missing clones and observations. ​X is a design matrix for               

fixed effects ​β (with components as the grand mean and year effect) and ​Z is a design matrix                  

for random genomic effects ​u ​. Following a multivariate normal distribution ( ​N​m​), the marginal             
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density of ​y​ is given as: 

y | b, R, G) (Xβ, V )(   ~ Nm  (6) 

; Z(G )Z  I )V =  ⊗ K T +  d ⊗ R   K⨂ G)Z V (y β)  û = ( T −1 − X ˆ  

where ​d is number of traits being analyzed, G and R are ​d × d symmetric genomic and error                   

covariance matrices respectively, ​K remains the additive genomic relationship matrix for ​n            

clones generated from SNP markers as in VanRaden, 2008 [63] method two, ​I is a ​d​-traits                

identity matrix and ​u are the genomic estimated breeding values (GEBVs) the clones and for               

the traits in the analysis. Estimation of the parameters in model (6) were also performed using                

REML procedure implemented in the ​airemlf90 program [62] from which BLUEs of fixed             

effects and BLUPs of random effects were also obtained by solving the mixed model              

equations (MME) [5,6]. In this model, the error covariance matrix R is a diagonal matrix               

allowing heterogeneous variances of a trait for different locations but the covariances are             

restricted to zero following the assumption that no mechanism generates errors between a             

trait at multiple locations. 

 

 

Comparison of prediction accuracies: 

We used a 5-fold cross validation scheme with 10 repeats for comparisons between             

the univariate and and multivariate models. The same folds were used for the models in each                

scenario. We hereafter refer to predicted BLUPs or genomic effects from these models as              

Genomic EBVs (GEBVs). Prediction accuracies were calculated as a correlation of the            

validation fold GEBVs to their corresponding EGVs.  
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Results: 

Scenario 1: MT vs uT models: 

In Scenario 1, we observed that the prediction accuracies of the MT model were higher than                

those from the uT models for most traits and locations in our analysis (Table 2). On average                 

(across traits and locations), the MT model had 35 percent better predictive power for VIGOR,               

34 percent for RTNO, 19 percent for DM, 33 percent for MCMDS, 54 percent for FYLD and 15                  

percent for MCGM compared to the uT model. The MT models had 32 percent higher               

predictive power than the uT models for all traits and locations in the model. 

 

 

Scenario 2: ME vs uE models: 

In Scenario 2 , we observed different patterns of prediction accuracies of the uE and ME                

models. The ME model had higher prediction accuracies for DM and MCMDS at all locations.               

On average (across locations), the uE model had 2 percent better predictive power for VIGOR               

and 1 percent for RTNO while the ME model had 32 percent better predictive power for DM,                 

24 percent for MCMDS, 5 percent for FYLD and lastly 4 percent for MCGM. The ME models                 

had 12 percent higher predictive power than the uE model for all traits and locations in the                 

model. 
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Discussion:  

Scenario 1: MT vs uT model: 

Few comparisons between MT and uT models have previously been reported in simulation             

studies and also real data sets [57-59]. Guo et al., 2014 [59] and Calus et al., 2011 [58] in                   

their studies with simulated data sets reported similar accuracies with small differences            

between their MT and uT models where accuracies for the MT models for low heritability traits                

were slightly higher when genomic correlations between the traits increased. VanRaden et al.,             

2014 [57] in Table 10 of their paper (using Holstein and Jersey breed datasets from the US                 

Dairy National evaluation program) also reported similar accuracies with small differences           

between their MT and uT models for all the traits in their analysis. In several traits, their uT                  

model accuracies were slightly higher than those of their MT model. Accuracies from the MT               

model will not be clearly better than those from the uT model for traits with high heritability                 

and for traits whose complete phenotypic data are available [59]. Improvement in prediction             

accuracies for the MT model is accrued mostly for low heritability traits analysed jointly with               

high heritability traits that have medium to high genomic correlations and low residual             

correlations [58, 59]. Our results were consistent with other studies [58,59] where our MT              

model had higher accuracies for most traits and locations in our analysis as a result of joint                 

analysis of low heritability traits with other traits of higher heritabilities. We also observed from               

pooling data that more efforts on a trial design that replicates lines across multiple locations               

may improve the predictive power of these models. For parental selections in specific             

locations, we recommend the use of MT models. However, for varietal selections where             

non-additive genomic effects are useful, further analysis will have to be performed using data              
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from fully replicated trials at multiple locations (termed uniform yield trials in cassava             

breeding) to inform this decision. Further studies on the selection gains based on these              

models are also recommended to facilitate a more accurate decision.  

 

Scenario 2: ME vs uE model: 

Again few comparisons of the ME and uE models have been done in plant breeding literature.                

However, ​Burgueno et al ​., 2012 [35] conducted extensive modeling for multi-environment           

trials using pedigree and genomic markers and incorporated many covariance structures           

including diagonal, factor analytic (FA), identity and unstructured covariances for both the            

genomic and error components in their models. They observed higher prediction accuracies            

for their genomic ME model with a diagonal genomic covariance structure and a diagonal              

error covariance structure (ME ​D-D​) compared to their genomic ME model with a FA genomic              

covariance structure and diagonal error covariance (ME ​FA-D​) for most of the locations in their              

analysis based on their cross-validation scheme (CV1) [35]. This ME​D-D can be likened to our               

one-step uE model which combined data for a trait measured at multiple locations together              

and assumes same genomic and error variances for this trait at all locations analyzed and               

treating multiple location data as just replicates. Our results were in line with this study for the                 

traits VIGOR and RTNO at all our locations where the uE model had higher prediction               

accuracies than the ME models and differed from this study for the traits DM and MCGM at all                  

locations, FYLD at Ubiaja and Ibadan where the ME models had higher prediction accuracies              

than those of the uE model. Interestingly on average across locations, the ME models had               

better predictive power for the most valuable traits in cassava (a combination of DM and               

FYLD; so called dry yield). Like in other crops, there is need to genetically improve these                
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production (yield) traits in order to drive the economies of the regions that rely on cassava                

production. Genetic improvement can be made on these cassava target traits using a genetic              

evaluation system based on multivariate mixed models. The ME model exploits the positive             

genomic and residual correlations captured in the their ​G and ​R matrices for prediction. The               

differences between the prediction accuracies of these models (ME and uE) were mainly due              

to the the estimation of these covariances since their genomic variances were very similar. In               

addition, the genomic covariances for the ME models are a reflection of GxE interactions of               

the trait of interest.  

 

Given these genomic covariances from the ME model’s G matrix, we observed             

differing degrees of GxE ( observing the genomic correlations which were less than 0.9) at the                

locations Ubiaja, Mokwa and Ibadan (Table 3B). Interestingly, the performance of clones for             

the traits VIGOR, DM and CMD were most similar between Ubiaja and Ibadan while for the                

production traits RTNO and FYLD clonal performances were most similar between the            

locations Ubiaja and Mokwa. Lastly for the performance of clones for MCGM, Ibadan and              

Mokwa were most similar. A very naive implication of this is that there are no defined clusters                 

for regional breeding by trait and regions as genomic correlations from the ME model              

partitioned these traits into different categories with different location pairs (Table 3B). From             

these estimates, improvement for RTNO and FYLD at Ubiaja may translate to about 50              

percent stability for these traits at Mokwa but at Ibadan these may translate to about 35                

percent. This makes a case for decentralized breeding especially for these yield component             

traits. These also revealed that cassava DM and MCMDS were highly repeatable across the              

locations in our study suggesting that more progress can easily be made from selection on               
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these traits and that genotypes selected for these traits will perform appreciably similar across              

the locations in our analysis and other very closely related locations not in our analysis.               

However for RTNO, FYLD, VIGOR and MCGM, their GxE profiles reveal that the environment              

exacts more influence on these traits making their improvement more challenging. Breeding            

for good varieties which combine these core traits may be targeted towards regional or              

environment clusters with specific genotypes selected for these clusters. We could also obtain             

from the GEBVs of the ME model fits a typical reflection of how the clones in our model                  

interacted with the different locations analyzed trait by trait. However, ME GEBVs lack             

information from trait-trait covariances which has been a difficult hurdle to cross when             

selecting for multiple traits simultaneously using MET data.  

 

Parameter estimates and implications for cassava breeding: 

The estimates of genomic correlations and heritabilities shown in Table 3A have interesting             

implications for cassava genetic improvement. Most of the target cassava traits (VIGOR,            

RTNO, FYLD and MCGM) have low heritabilities and hence should benefit from joint analysis              

with traits of higher heritabilities (DM and MCMDS) in an MT model. The genomic correlations               

for the core production traits including DM, RTNO and FYLD indicates a promising horizon              

for improvement. RTNO and FYLD have high positive genomic correlation (0.69) as well as a               

medium correlation for RTNO and DM (0.17) while that for FYLD and DM is rather weak or                 

almost neutral (-0.02). This indicates that these traits can be improved concurrently with             

efforts towards fully replicated trials and more accurate parental selections given the low             

heritabilities for FYLD and RTNO. VIGOR can also be improved concurrently with these             

production traits as it is also positively correlated with these (Table 3A). The disease trait               
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(MCMDS) shows strong negative genomic correlations with VIGOR and the production traits            

which raises legitimate concerns towards cassava breeding in Africa where the cassava            

mosaic disease (CMD) pressure is high. Good progress have been made to fix genes for               

CMD resistance [64] but a good question to answer is whether this is bringing about negative                

results and limitations for other traits especially the production traits. This leads to the effort               

for searching for more quantitative resistance for the diseases CMD and the pest CGM which               

may better allow for improvement of the traits VIGOR, RTNO, DM and FYLD. Here, the merit                

index from MT breeding values will offer a good alternative towards a balanced selection goal               

because it takes into account the genomic correlations of these traits. 

 

Conclusion: 

The effectiveness and success of a breeding program is generally evaluated by its             

impact in its locale mainly on its ability to provide highly adapted and productive varieties to                

the farming community it serves. This is a huge task to a breeder who will try to fulfil this                   

mandate by making subtle and accurate evaluations of the performance of all the genotypes              

in his breeding program and subsequently making critical selection decisions based on these             

evaluations. In our case at the Cassava breeding program at IITA, we are scouting for highly                

predictive models for use in accurate evaluations of the performance of all our genotypes and               

hence efficient implementation of GS in our program. In this paper, we have compared              

methods utilized for this process (in Scenario 1) and compared the efficiencies of these              

models using prediction accuracies, an indispensable parameter for prediction of selection           

gains. We also compared models accounting for GxE for genotype evaluations at multiple             

environments in Scenario 2. We have done these using sixteen years data measured on core               
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or target cassava traits. ​Genetic evaluation which consists of accurate estimation of breeding             

values for all individuals in a population for the desired traits of interest and subsequently               

combination of these breeding values in a total merit index is the crux of genetic               

improvement. However, the models implemented for estimation of breeding values affect the            

total merit index and subsequently response to selection. We have shown here that there is               

value in accounting for covariances using multivariate mixed models for METs data. This             

value will translate into superior total merit index and hence more selection gain when              

compared to univariate mixed models. We have also shown that the genomic covariance             

matrix for ME models can show the effects of GxE for all the traits in the analysis thus helping                   

the breeder to make better decisions. More importantly, we have shown that the MT model               

has on average 32 percent better predictive power than the uT model while offering more               

accurate breeding or genetic values for use in total merit indices. We therefore recommend              

the use of multivariate models (MT and ME) for genetic evaluation in the breeding program               

where ME is used to assess GxE interactions and MT breeding or genetic values used to set                 

up total merit indices for selection purposes. 
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Table 1: Cassava phenotype data metrics showing number of records, number of 

observed clones and mean of traits for 3 locations Ubiaja, Mokwa and Ibadan.  

  Ubiaja Mokwa Ibadan 

No. of records 7806 5345 6010 

No. of Clones 739 573 691 

VIGOR 6.51 6.52 6.11 

RTNO 31.71 64.05 52.74 

FYLD 12.61 16.51 15.84 

DM 31.95 29.01 35.8 

MCMDS 1.59 1.21 1.93 

MCGM 3.56 2.99 3 
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 ​Table 2: Cross validation prediction accuracies for GS models in scenarios 1 and 2.  

Table 2 shows prediction accuracies for MT and uT models (GS scenario 1) and for ME and                 

uE models (GS scenario 2). 

GS Scenario 1 

Single trait single env. model (uT) Multi-trait models (MT) 

  Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan 

VIGOR 0.25 ± 0.01 0.11 ± 0.01 0.38 ± 0.02 0.39 ± 0.02 0.09 ± 0.03 0.52 ± 0.03 

RTNO 0.27 ± 0.01 0.19 ± 0.01 0.31 ± 0.01 0.39 ± 0.02 0.21 ± 0.03 0.43 ± 0.02 

DM 0.59 ± 0.01 0.33 ± 0.01 0.49 ± 0.01 0.69 ± 0.01 0.39 ± 0.02 0.60 ± 0.02 

MCMDS 0.49 ± 0.01 0.43 ± 0.01 0.56 ± 0.02 0.68 ± 0.02 0.58 ± 0.04 0.71 ± 0.01 

FYLD 0.32 ± 0.01 0.13 ± 0.02 0.29 ± 0.01 0.46 ± 0.01 0.26 ± 0.03 0.42 ± 0.03 

MCGM 0.36 ± 0.01 0.50 ± 0.01 0.56 ± 0.01 0.44 ± 0.02 0.54 ± 0.01 0.65 ± 0.01 

GS Scenario 2 

Single trait multi-env. model (uE) Multi-env model (ME) 

  Ubiaja Mokwa Ibadan Ubiaja Mokwa Ibadan 

VIGOR 0.22 ± 0.01 0.10 ± 
0.01 

0.37 ± 0.01 0.24 ± 0.01 0.12 ± 0.02 0.32 ± 0.01 

RTNO 0.29 ± 0.01 0.11 ± 
0.01 

0.34 ± 0.01 0.27 ± 0.02 0.13 ± 0.01 0.34 ± 0.02 

DM 0.49 ± 0.01 0.20 ± 
0.02 

0.40 ± 0.01 0.60 ± 0.01 0.35 ± 0.01 0.50 ± 0.01 

MCMDS 0.40 ± 0.01 0.23 ± 
0.01 

0.53 ± 0.01 0.48 ± 0.01 0.39 ± 0.02 0.57 ± 0.01 

FYLD 0.38 ± 0.01 0.10 ± 
0.02 

0.35 ± 0.01 0.37 ± 0.01 0.12 ± 0.03 0.36 ± 0.02 

MCGM 0.31 ± 0.01 0.48 ± 
0.01 

0.56 ± 0.01 0.38 ± 0.02 0.47 ± 0.01 0.55 ± 0.01 

  

 

34 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 16, 2017. ; https://doi.org/10.1101/116301doi: bioRxiv preprint 

https://doi.org/10.1101/116301
http://creativecommons.org/licenses/by/4.0/


 

 

 

Table 3A: Genetic correlations and heritabilities for analyzed traits​. 

Table 3A shows plot-based heritabilities for six cassava traits on diagonals respectively,            

genetic correlations from the MT model as lower triangular values. 

VIGOR RTNO DM MCMDS FYLD MCGM 

VIGOR 0.16       

RTNO 0.53 0.15      

DM 0.22 0.17 0.40     

  MCMDS -0.64 -0.56 -0.17 0.64   

FYLD 0.52 0.69 -0.02 -0.47 0.16  

MCGM -0.07 -0.037 -0.08 0.13 -0.05 0.12 
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Table 3B: Genetic correlations from the multi-environment analysis ​. Table 3B show           

genetic correlations from the ME model for six core cassava traits. 

VIGOR  Ubiaja Mokwa 

 Ubiaja   

 Mokwa 0.39  

 Ibadan 0.66 0.21 

RTNO    

 Ubiaja   

 Mokwa 0.54  

 Ibadan 0.36 0.38 

DM    

 Ubiaja   

 Mokwa 0.57  

 Ibadan 0.81 0.77 

MCMDS    

 Ubiaja   

 Mokwa 0.8  

 Ibadan 0.87 0.68 

FYLD    

 Ubiaja   

 Mokwa 0.52  

 Ibadan 0.31 0.33 

MCGM    

 Ubiaja   

 Mokwa 0.34  

 Ibadan 0.24 0.53 
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