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Abstract

Genome scale molecular datasets are often highly structured, with many correlated
measurements. This general phenomenon can be related to the underlying data gener-
ating process. In assays of mixed cell populations, such as blood, variation in cell-type
proportion induces a complex correlation structure at the gene-level. Likewise, groups
of genes can be co-regulated/co-expressed through shared transcription factors and sig-
naling pathways. Many applications of gene expression analysis rely on their ability to
reflect these unobserved biological processes in order to draw mechanistic conclusions.
On the other hand, correlated patterns of expression may also reflect nuisance factors,
such as batch effects, which interfere with correct biological interpretation. The choice of
analysis method is heavily dependent on which of these factors (nuisance or interesting-
biological) is believed to account for more variation and the optimal variance analysis
strategy remains an open question.

In this study we describe a method to infer a biologically grounded data generat-
ing model that provides estimates of underlying biological processes, including explicitly
identified pathway-level and cell-type proportion effects. Specifically, we formulate a
new matrix decomposition framework, PLIER (Pathway-level Information ExtractoR),
that explicitly incorporates prior biological knowledge. Using simulations, we demon-
strate the superiority of our method in recovering the true data generating model. Us-
ing real data, we show that our approach is able to recover interpretable biological
variables, reproduce previous findings in a simplified framework, distinguish biological
and technical variation, and provide additional biological insight. The PLIER method
and auxiliary functions and data are compiled in the PLIER R package available at
https://github.com/wgmao/PLIER.
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1 Introduction
One salient feature of high dimensional
molecular data is the presence of groups of
correlated measurements, i.e. data struc-
ture. In gene expression datasets correlation
among genes may be the result of coordinated
transcriptional regulation. In such cases, un-
derstanding the underlying pathway-level ef-
fects can improve statistical power and inter-
pretation. On the other hand, a variety of
technical factors, often referred to as “batch
effects”, are also reflected in the data struc-
ture (see Leek et al. [2010] for review). Thus,
common variation in gene expression can be
a nuisance that interferes with differential ex-
pression analysis but may also represent im-
portant biological processes. Methods to ad-
dress these sources of variation have to bal-
ance decreasing noise against removing bio-
logical signals.

To take an illustrative example we consider
the problem of transcriptional profiling in hu-
man blood, which is a complex and highly
variable mixture of at minimum 20 transcrip-
tionally unique cell-types [Novershtern et al.,
2011]. In a typical blood dataset the first
few principal components (PCs) produced by
Principal Component Analysis (PCA) cap-
ture most cell-type composition and techni-
cal variation. However, cell-type composi-
tion heterogeneity in blood can itself be of
interest, complicating the decisions regard-
ing which variation should be removed. For
example, in a recent study [Battle et al.,
2014] of blood eQTLs, two different nor-
malizations, with different numbers of latent
components, were applied to optimize cis and
trans eQTL discovery. This was motivated
by the observation that biological variation in
the dataset, such as cell-type proportion vari-
ation, yields significant trans-eQTL effects.
However, these same effects become a nui-

sance variable when assessing cis-eQTLs.

Ideally, it should be possible to cleanly sep-
arate variation that is due to technical factors
from that which has a biological origin, while
also attributing the latter to specific biologi-
cal processes. For example, in a recent paper
we proposed a strategy that extracts latent
variables that have a one-to-one correspon-
dence to variation in specific cell-types. This
allows for composition variation to first be an-
alyzed directly and then statistically removed
to identify transcriptionally mediated effects,
thus retaining all biologically relevant signals.
However, this kind of analysis is difficult to
automate and our approach relied heavily on
some intuition about which cell-types are de-
tectable in specific datasets, which depends
critically on the size of the dataset, sample
preparation, and biological perturbation.

The problem of finding the correct data
generating model has received considerable
attention. The widely recognized drawback
of PCA is that it produces necessarily orthog-
onal components that are linear combinations
of all original variables. Thus the PCs do not
in general align with the true latent variables
that drive common variation. One approach
is to partition the variation into biological
and technical in a supervised fashion, that
is based on additional information about the
samples, such as the contrast of interest, or
known technical factors (see Leek and Storey
[2007], Stegle et al. [2010], Listgarten et al.
[2010], Kang et al. [2008] and Mostafavi et al.
[2013], which formulates a general framework
for the variation partition approach). How-
ever, while these approaches can dramatically
improve statistical power by removing techni-
cal variation, they do not provide a generative
model for remaining biological variation and
heavily depend on the availability and quality
of the auxiliary sample data.
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An alternative approach is to seek an en-
tirely unsupervised model by imposing ad-
ditional constraints on the matrix decompo-
sition problem in order to identify biologi-
cally meaningful variance components [Ma-
honey et al., 2009, Srebro, 2004, Gillis, 2014].
For example, non-negative matrix factoriza-
tion (NMF) is a popular choice for gene ex-
pression analysis [Brunet et al., 2004, Wang
et al., 2013, Gillis, 2014]. Another approach is
to introduce sparsity constraints so that only
some genes have non-zero loadings (often re-
ferred to as sparse PCA) [Zou et al., 2006,
Witten et al., 2009]. By lifting the highly
restrictive orthogonality requirement and im-
posing biologically motivated structure (such
as sparsity or positivity in the gene loadings),
these methods will often naturally groups bio-
logically related genes together producing la-
tent components that align well with known
biological factors (such as disease subtype).
However, as there is no explicit requirement
for the genes associated with each component
be biologically related, this outcome is not in
general guaranteed.

Importantly, while methods such as NMF
and sparse PCA are indeed automated un-
supervised approaches (that attempt to find
a data generating model without any expert
knowledge about the dataset) they are also
completely general and can be applied to any
high dimensional dataset. On the other hand,
an approach specifically designed for gene ex-
pression does not have to be completely ag-
nostic; it can incorporate information about
gene identities as long as this information is
generic and not dataset specific.

In this work, we formulate a alternative
matrix decomposition method that explicitly
relates the data structure to prior informa-
tion in the form of pathways and biolog-
ically related genesets representing biologi-

cal pathways (e.g. Kanehisa et al. [2016]),
sets of tissue- or cell-type specific markers
(e.g. [Abbas et al., 2009]), and coordinated
transcriptional responses observed in genome
wide experiments (e.g. [Subramanian et al.,
2005]). Besides the matrix decomposition,
our method returns information that indi-
cates if and how each variance component is
associated with the prior information, thus
providing an additional dimension of biologi-
cal interpretability without any further anal-
ysis.

Using simulations and real data we demon-
strate that our approach can effectively use
prior information to achieve superior per-
formance at recovering the data generat-
ing model and providing biological insight.
Our method is computationally efficient, run-
ning in just a few minutes on large clinical
datasets, is robust to technical noise, and is
readily applicable to other high-dimensional
datasets.

2 Methods

Problem Setting
Given a gene expression profile Y ∈ Rn×p,
where n is the number of genes and p is the
number of samples, we state the original PCA
as a matrix approximation problem. Suppose
n > k, p > k. We wish to find Z,B minimiz-
ing

||Y − ZB||2F (1)

subject to rank(Z) = k, rank(B) = k.

Since gene expression measurements are
highly correlated, it is reasonable to expect
that the data Y can be efficiently represented
in this low dimensional space. Without im-
posing additional constraints on Z and B, an
optimal solution can be obtained from the
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singular value decomposition (SVD) of Y . In
an SVD based decomposition rows of B are
referred to as principle components (PCs).
Since PCs are necessarily orthogonal, which
we do not require, we will use the term latent
variables (LVs).

In order to improve the interpretability of
the low dimensional representation, we im-
pose additional constraints on the matrix
Z. Our aim is to encourage the loadings
(columns of Z) to align as much as possible
with existing prior knowledge. In the most
general case such prior knowledge can be ex-
pressed as a series of genesets representing bi-
ological pathways, sets of tissue- or cell-type
specific markers, and coordinated transcrip-
tional responses observed in genome wide ex-
periments.

Given n genes and m genesets we represent
the prior knowledge as a matrix C ∈ 0, 1n×m,
so that Cij = 1 indicates that gene i is part
of the jth geneset.

Using the same notations above, we form
the updated decomposition problem based on
the original formulation. We wish to find
U,Z,B minimizing

||Y−ZB||2F +λ1||Z−CU ||2F +λ2||B||2F +λ3||U ||L1

(2)
subject to U > 0, Z > 0.

The first term of the optimization is the
same and minimizes the overall reconstruc-
tion error. The second term specifies that
Z should be “close to” sparse combinations
of genesets represented by C and the third
terms introduce an L2 penalty on B while
the fourth term is an L1 penalty on U (ap-
plied column-wise) which ensures that only a
small number of genesets represent each LV.

The parameter λ1 keeps a balance between
the proportion of prior knowledge we include
and the degree to which we reconstruct the
gene expression profile. We also restrict U

and Z to be positive, which enforces that
genes belonging to a single geneset are pos-
itively correlated with each other and the
loadings are positively correlated with the
prior information.

We solve the optimization problem by us-
ing block coordinate minimization, which it-
eratively minimizes the error on Z, U , and B.
The complete method starts by initializing Z
and B from the SVD decomposition and re-
peats the following steps until B converges.

while stopping criterion has not been reached
Z(l+1) ← (Y B(l)T + λ1CU

(l+1))(B(l)B(l)T + λ1I)−1

Set the negative part of Z(l+1) to be zero
Solve the convex problem
U (l+1) ← argminU ||Z(l) − CU ||2F + λ3||U ||L1

Subject to U > 0
B(l+1) ← (Z(l)TZ(l) + λ2I)−1Z(l)TY

The stopping criterion is defined as a rela-
tive change in B < 5× 10−6, or a leveling off
in the decrease of the relative change in B.
While there are no convergence guarantees,
in practice this algorithm converges in under
a few hundred iterations.

Optimization constants

The optimization has 4 free parameters λ1,
λ2, λ3, and k and internal cross validation
cannot be used to optimize them as the re-
construction error ||Y −ZB||2F is always min-
imized when λ1 = 0. However, based on
extensive testing with simulations and real
data we can set several default parameters
that perform well in a range of situations.
For example, we find that k should be set
to the number of statistically significant PCs.
We provide a function num.pc in our package
that determines the correct k based on per-
mutation following the approach proposed in
[Leek et al., 2007]. A good choice for λ1 and
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λ2 can be derived from the observation that
if we consider the SVD decomposition of Y
as UDV t we should have that Z ≈ UD1/2

and B ≈ D1/2V T . Therefore the diagonal
elements of ZTZ and BBT are well approx-
imated by D which thus gives the correct
range for the relevant constants. By default
we set λ2 = dk and λ1 = dk/2 with the fac-
tor of 2 coming from the positivity threshold-
ing on Z. It is also possible to optimize λ1
along with λ2 around its default value rela-
tive to some external validation source. For
example, we can check how well the LVs re-
covered in B correlate with an independent
dataset such as clinical variables, genotype,
or another set of molecular measurements.

The optimum value of constant that con-
trols the sparsity of U is highly dataset de-
pendent; however we found that we can set
it heuristically so that the fraction of latent
components that have a non-zero U coeffi-
cients is approximately controlled. To do this
we solve the the ridge regression problem

argminU ||Z(0) − CU ||2F + 5||U ||F

at the first iteration and set λ3 to the me-
dian of the maximum values taken column-
wise. This approach is motivated by the
observation that the lasso problems can be
solved by iteratively thresholding ridge re-
gression coefficients. In our experiments with
real data this approach indeed resulted in ap-
proximately half of the latent variables be-
ing associated with prior information. We
use these heuristics for all the analysis in the
manuscript and set them as the default be-
havior for our method.

Pseudo cross validation

It is natural to ask to what extent the non-
zero coefficients of U represent non-random
associations between loadings (columns of Z)

and prior information. In order to quantify
this we design a pseudo cross validation pro-
cedure that proceeds as follows: we create
a new loadings matrix Z ′ that represents a
4/5 of the genes and recompute new latent
variables B′. We then use B′ to compute the
loadings for the held-out 1/5 of the genes. Af-
ter completing this for the entire set of genes
we can compute the AUC (and the p-value)
for each non-zero element of U . While it is
also possible to perform true cross validation
by running PLIER on a subsets of the raw
data this has a significant computational cost
and we find that the pseudo cross validation
procedure is in good agreement with the true
cross validation results. Pseudo cross vali-
dation results are provided by default in the
output.

Comparison with similar meth-
ods

There are several methods that can take
prior information about genesets into account
in order to a biologically meaningful low
dimensional representation. Examples, in-
clude Bayesian Factor Analysis [Bunte et al.,
2016] that extracts pathway-level latent vari-
ables and our previously proposed method
CellCODE [Chikina et al., 2015] that esti-
mates cell proportion variation from cell-type
marker genesets. However, these methods re-
quire that the genesets be specified a pri-
ori and that gene genes can be partitioned
into these sets (though some overlap is al-
lowed). In contrast, in our method the path-
ways themselves are subject to optimization
and our method is designed to effectively
choose just a few relevant genesets from thou-
sands of available ones.

As our goal is to force gene loading to
be represented by biologically coherent gene-
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sets it is natural to seek a solution based
on group lasso regularization, which can per-
form variable selection at the group level.
However, given that the biological genesets
are highly redundant and overlapping, group
lasso, which requires non-overlapping groups,
is unsuitable. While it is possible to de-
fine more complex norms that accommodate
group overlaps these have drawbacks. For ex-
ample, a related method termed structured
sparse PCA [Jenatton et al., 2009] has been
developed for image analysis. This method
implements a direct optimization of the col-
umn support, but can only constrain the
support to be the complement of a union
of predefined groups, which corresponds to
rectangle-bounded regions for images, but is
not interpretable for genesets. Another re-
lated method that considers biological gene-
sets explicitly is the Overlap Group Lasso
which employs an alternative norm that
enforces the biologically desirable union-of-
groups support [Obozinski et al., 2011]. How-
ever, the implementation is computationally
expensive and in its current form only applies
to regression without being readily adaptable
to matrix decomposition.

Data
The Depression Genen Networks (DGN)
dataset is not available for public release but
can be requested from National Institute of
Mental Health (NIMH) following instructions
in the original publication [Mostafavi et al.,
2014]. The NIMH database contains several
normalized versions of this data and for our
study we used “trans” normalized data as de-
scribed in [Battle et al., 2014].

The generic blood cell-type marker dataset
was derived from the IRIS (Immune Response
In Silico) [Abbas et al., 2009] and DMAP
(Differentiation Map) datasets [Novershtern

et al., 2011] datasets. Many canonical marker
genes (such as CD19, CD3E, CD8A) have a
multimodal distribution with on high expres-
sor group and one or more low/medium ex-
pressor ones. The highest expression group
typically does not overlap with lower expres-
sion distributions and we base our marker
selection metric on this observation. Genes
were considered to be markers if they could
be partitioned into high and medium/low ex-
pression so that the difference between mini-
mum and maximum values respectively (the
gap between these distributions) exceeds a
threshold (we used 2 for IRIS and 0.7 for
DMAP). This procedure results in highly
overlapping sets of markers for related cell-
types however our method is flexible and can
easily handle redundancy. We also included
cell-type markers from a recent publication
Newman et al. [2015] which covers fewer cell-
types but with highly optimized marker sets.
The complete prior information dataset used
for DGN analysis includes cell-type markers,
“canonical” pathways from mSigDB, and a
set of transcriptional signatures relevant to
immune signaling described in [Filiano et al.,
2016]. The entire prior information dataset
with 1513 pathways is included in the PLIER
package.

3 Results

Simulation
Since in a real dataset the true data gener-
ating model is unknown and is likely more
complex than what can be captured with a di-
mensionality reducing matrix decomposition,
we use a simulation to evaluate the operating
characteristics of our method. We hypothe-
size that our method is able to more accu-
rately recover the “correct” LVs by rotating
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the matrix decomposition to align with prior
knowledge.

We simulate data with 5000 genes, 300
samples, and 30 latent variable according to
the NMF model.

Y = ZB + E. (3)

With both Z and B > 0. B is drawn from
Beta distribution and each column sums to
one by design. The columns of Z are drawn
from Gamma distribution Γ(5, 1). The ma-
trix E ∈ N (0, 1) represents random noise.
We also generate a prior knowledge matrix C.
For each column of Z, we randomly pick up
a threshold value on the percentage of genes
which belong to a hypothetical prior knowl-
edge geneset. The threshold value varies from
0.01 to 0.1 with a step size 0.01, which is in
consistent with that of real biological gene-
sets. With the threshold value, we select the
corresponding fraction of genes which come
with top values in the column of Z to con-
struct the prior knowledge geneset. Also
we generate additional uninformative gene-
sets by randomly picking genes. For the pur-
pose of applying PLIER and SPC the final
data is z-scored.

Our basic evaluation strategy is based on
computing the maximal correlations between
simulated and recovered latent variables, for
the purpose of comparisons with other meth-
ods we use the absolute value so as to allow
factors with reversed sign. Figure 1 depicts
the results of multiple simulation runs process
with four decomposition methods: PLIER,
PLIER with no prior information (which can
be accomplished by setting λ3 to a high
value), NMF[Brunet et al., 2004] and SPC
[Witten et al., 2009]. NMF is a popular de-
composition method that is free of hyperpa-
rameters (though different matrix norms can
be used) however it requires positive data
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Figure 1: Data is simulated according to the NMF model (see
text for details). Boxplots of the correlation between simu-
lated LVs and those recovered by various decomposition meth-
ods. We compare PLIER against two other methods, NMF
[Brunet et al., 2004] and SPC [Witten et al., 2009], as well as
PLIER run without using any prior information. In this sim-
ulation we provide PLIER with 1000 pathways of which only
30 are correct and vary the size of the prior information path-
ways provided to PLIER. We find that the best performance is
achieved by PLIER specifically when prior information is used
with a notable improvement when prior information pathways
are larger.

as input. SPC is another popular method
that can enforce sparsity and positivity, it
has one hyperparameter that we set by cross-
validation as described in the original paper
[Witten et al., 2009]. Among these methods
only PLIER is able to reliably produce high
correlations with the simulated latent vari-
ables and only when using prior information.
Importantly, we emphasize that the simula-
tion is not based on a PLIER model where we
assume that loadings of genes in the pathway
and outside the pathway differ by a constant
factor but is rather based on the NMF model.
Nevertheless the PLIER approach is effective
even in the case where the model design dif-
fers from the underlying assumptions.

We also investigate how adding noise to
the prior information affects performance, hy-
pothesizing that as more irrelevant geneset
are included in our prior knowledge matrix
C, the advantage of using prior information
will be reduced. Repeating the experiment
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Figure 2: Data is simulated the same as in 1 except that the
number of genes per pathway is kept at 300 and the number
of uninformative pathways is varied. As the prior informa-
tion gets noisy PLIER performance approaches that of other
constrained decomposition methods

above with varying sets of non-informative
pathways we find that the performance in-
deed drops off as the total number of path-
ways is increased to 10,000 though even at
that level of prior information noise PLIER
outperforms other methods (Figure 2).

Real Data Examples
Analysis of large whole blood dataset

To demonstrate the utility of our approach
on real data we apply it to the Depression
Gene Network (DGN) dataset which consists
of 922 whole blood gene expression profiles
quantified by RNAseq. One of the goals of
the DGN study was to identify gene expres-
sion quantitative trait loci (eQTLs). Two
groups of eQTLs are typically distinguished:
locally acting cis-eQTLs that affect a nearby
gene, and trans-eQTLs that affect gene lo-
cated far from the polymorphism, possibly
on a different chromosome. By definition
cis-eQTLs affect only a few genes, typically
just one, by altering a nearby regulatory se-
quence while trans-eQTLs may be mediated
at the pathway-level. The basic model for

Table 1: The trans-eQTL “success rate” (defined as the num-
ber of eQTLs found significant at an adjusted p-value of 0.05
multiplied by the number of SNPs (651,075)) among different
sets of quantitative traits. We consider single gene expression,
PLIER latent variables, and a set of latent variables restricted
to those that used some prior information.

QT num
eQTLs

num
QTs

success rate

PLIER (“with prior”
LVs only)

40 62 0.65

PLIER (all LVs) 47 108 0.43
gene-level 1005 15231 0.066

such pathway-level effects is that a locally
acting cis-eQTL alters the expression for a
gene with a regulatory role (such as a tran-
scription factor) which in turn alters the ex-
pression of downstream targets, giving rise
to several trans-eQTLS. Empirically, many
SNPs that affect gene expression in trans af-
fect multiple genes and in many cases a single
cis effect, which presumably affects the up-
stream regulatory factor, can also be found.
The converse is not true, however: most cis-
eQTLs do not give rise to trans-eQTLs and
indeed trans-eQTLs are orders of magnitude
less frequent.

Blood datasets are particularly challeng-
ing as blood composition varies dramati-
cally across individuals and the composition
effect can be considered a nuisance or an
interesting-biological variables depending on
the question asked. Some cell-type variation
has a genetic basis which may manifest as
trans-eQTLs of cell-type specific genes but
the same variation becomes a nuisance vari-
able when evaluating cis-eQTLs. The initial
analysis of this datasets [Battle et al., 2014]
in fact applied two different normalizations,
with different numbers of latent components,
in order to maximize cis and trans -eQTLs
discovery.

While a dimensionality reducing decompo-
sition cannot capture cis-eQTLs it can in
principle be used to improve the discovery
of pathway-level trans-eQTLs if it succeeds
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at effectively isolating specific pathway-level
effects. In the context of a PLIER decom-
position we hypothesize that it is possible
to identify trans-eQTLs by testing the rela-
tionship between genotype and PLIER latent
variables. In essence, we simply define a new
quantitative trait, instead of using the expres-
sion of single genes directly we use the esti-
mated pathway-level effect.

We apply PLIER decomposition to the
DGN dataset using a set of prior informa-
tion genesets that includes cell-type mark-
ers, “canonical” pathways from mSigDB, and
a set of transcriptional signatures relevant
to immune signaling described in [Filiano
et al., 2016] (see Methods). We produce a
108 dimensional decomposition (see Methods
for choosing the decomposition dimension) of
which 62 used some prior information. Over-
all 163 pathways out of 1513 were associated
with some LV.

Using these decomposition results we ob-
serve that indeed many LVs have a signifi-
cant association with genotype. For those
LVs that have a genotype association and also
a high confidence pathway association we vi-
sualize the corresponding entries in the de-
composition matrix U (which specify how the
LVs and prior information genesets are re-
lated) in Figure 3. In fact, we find that if
LVs are used directly as quantitative traits we
can greatly increase the frequency of eQTLs
that pass the significance threshold (see Ta-
ble 1). We note that our approach to mul-
tiple hypothesis testing is to apply Bonefr-
roni correction to each quantitative trait, the
same approach used in the original study, and
therefore the “success rates” of gene-level and
pathway-level eQTLs are directly comparable
since the correction does not depended on the
number of traits.

Besides improving the rate of eQTL discov-

ery the PLIER decomposition can be used
to infer the biological nature of the latent
variable which in many cases leads to im-
proved interpretation. For example we can
deduce the that the one SNP that yields
the largest number of significant trans-eQTLs
in a gene-level analysis is in-fact associated
with a single latent variable, that we infer
to represent megakaryocyte/platelet lineage
cell-type variation (megakaryocytes are the
precursors to platelets). The SNP in ques-
tion, rs1354034, has been previously asso-
ciated with platelet volume [Gieger et al.,
2011].

We also detect several new associations
that were not found in the gene-level analysis.
One example of particular interest is a signif-
icant association between rs3184504 and an
Interferon gamma transcriptional signature.
The genes with the highest loadings for this
latent variable include canonical interferon-
gamma regulated genes (GBP1, STAT1, and
TAP1 are among the top 10). This asso-
ciated SNP is a missense variant in SH2B3
which is a known regulator of the Interferon-
gamma pathway [Mori et al., 2014]. While
recent genome-wide association studies have
revealed a link between polymorphism in
this gene and autoimmune diseases, including
type 1 diabetes and celiac disease [Hunt et al.,
2008, Smyth et al., 2008], to our knowledge
a direct link to interferon gamma in human
blood is a novel finding.

Technical variation invariance

A key motivation for PLIER is to tease apart
technical and biological variation and the hy-
pothesis is that those LVs that use prior in-
formation are indeed of biological origin. If
that is the case we expect that PLIER re-
sults are relatively insensitive to normaliza-
tion for technical factors and we test this
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0.75 (see Methods for cross validation approach). Bottom A
new significant eQTL that affects the interferon gamma path-
way extracted as latent variable LV44.

hypothesis by applying PLIER to differently
normalized data. In the preceding section
we had used a dataset that was normalized
for 20 technical variables which reflected in-
formation about data collection and RNAseq
quality control. We can also apply PLIER to
the “naive-normalized” version of data repre-
sented by logged counts normalized by quan-
tile normalization. Obtaining two different
decompositions we find that many LVs are
indeed in one-to-one correspondence and that
these are biased towards LVs that made use
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Figure 4: Heatmap of the correlations among LVs from de-
compositions performed on two different versions of the same
data, one normalized for all technical variables and another
normalized with quantile normalization. The heatmap shows
all pairwise correlations for the top 20 best matched LVs named
with their corresponding prior information (if any). Note that
the prior information used is almost identical across the two
decompositions.

of prior information (Figure 5). When the
matching LVs use prior information we find
that the corresponding genesets are likewise
either the same or closely related (Figure 4).

4 Discussion
We present a new method Pathway-level In-
formation ExtractoR, PLIER, which incorpo-
rates prior information into matrix decompo-
sition of molecular data, yielding a biologi-
cally grounded data model. The method can
improve the interpretability of gene expres-
sion datasets by providing a correspondence
between data structure and biologically co-
herent gene groups. Evaluating the method
on real data we show that it is able to find
biological latent variables, reproduce previ-
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Figure 5: Correlation distributions across all best matched
pairs of LVs. LVs that use prior information are more robust
to normalization procedure as they are more consistent across
differently normalized datasets.

ous findings by recasting trans-eQTLs in a
latent variable framework and provide credi-
ble novel predictions.

References
Alexander R Abbas et al. Deconvolution of blood mi-

croarray data identifies cellular activation patterns
in systemic lupus erythematosus. PLoS One, 4(7):
e6098, 2009. doi: 10.1371/journal.pone.0006098. URL
http://dx.doi.org/10.1371/journal.pone.0006098.

Alexis Battle et al. Characterizing the genetic basis
of transcriptome diversity through rna-sequencing
of 922 individuals. Genome Res, 24(1):14–24,
Jan 2014. doi: 10.1101/gr.155192.113. URL
http://dx.doi.org/10.1101/gr.155192.113.

Jean-Philippe Brunet et al. Metagenes and molecular pattern dis-
covery using matrix factorization. Proc Natl Acad Sci U S A,
101(12):4164–4169, Mar 2004. doi: 10.1073/pnas.0308531101.
URL http://dx.doi.org/10.1073/pnas.0308531101.
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