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Phenotypes related to well-being (life satisfaction, positive affect, neuroticism, and depressive 

symptoms), are genetically highly correlated (| rg | > .75). Multivariate genome-wide analyses (Nobs = 

958,149) of these traits, collectively referred to as the well-being spectrum, reveals 63 significant 

independent signals, of which 29 were not previously identified. Transcriptome and epigenome 

analyses implicate variation in gene expression at 8 additional loci and CpG methylation at 6 

additional loci in the etiology of well-being. We leverage an anatomically comprehensive survey of 

gene expression in the brain to annotate our findings, showing that SNPs within genes excessively 

expressed in the cortex and part of the hippocampal formation are enriched in their effect on well-

being.  

Well-being plays an important role in psychology and medicine, as well as in economics1,2. Well-being 

owes its interdisciplinary prominence to its associations with physical and mental health, and its role as a 

desired socio-economic outcome and index of economic development3. Most existing research on the 

genetics of well-being is characterized by a focus on individual phenotypes, despite the strong correlations 

between related traits. The high genetic correlations (| rg | > .75)4 between life satisfaction, positive affect, 

neuroticism, and depressive symptoms suggests common underlying biology, or a partially shared genetic 

etiology. Acknowledging this overlap, we performed a multivariate genome-wide meta-analysis 

(multivariate GWAMA) (Nobs= 958,149) of these four phenotypes to increase the power to identify 

associated genetic variants (Supplementary Table 1).  

Our analyses leveraged published univariate GWAMA of life satisfaction4,5 (Nobs = 80,852), positive 

affect4,5 (Nobs = 189,028), neuroticism4–6 (Nobs = 238,315), and depressive symptoms4,5,7,8 (Nobs = 449,954). 

For the purpose of the multivariate GWAMA, we reversed the estimated SNP effects on neuroticism and 

depressive symptoms to ensure a positive correlation with life satisfaction and positive affect. The 

dependence between effect sizes (error correlation) induced by sample overlap was estimated from the 

genome-wide summary statistics obtained from the univariate GWAMA analyses using LD score 

regression (see online methods). Knowledge of the error correlation between univariate meta-analyses 

allowed dependent samples to be meta-analyzed, providing a gain in power while guarding against 

inflated type I error rates (see online methods).  

We recognize that the measures included in the well-being spectrum are not necessarily interchangeable. 

Therefore, we performed two types of multivariate GWAMA; 1) N-weighted multivariate GWAMA, 

which assumes a single underlying construct (see online methods); 2) model averaging GWAMA, where 

we relaxed the assumption of a unitary effect of the SNP on all traits. For the latter analyses, we performed 

eight model-based GWAMA´s, capturing various combinations of SNP effects (see online methods). To 

account for within and between model variability, we took a weighted average of the effect size and 

standard error for each SNP across the eight models. For each of the eight models we computed an AICc 

weight to ensure that all models were weighted properly9.  
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In our N-weighted multivariate GWAMA, we identified 58 independent signals at 51 genomic loci (Fig. 

1A, Supplementary Table 2 ). Our model averaging GWAMA detected five additional signals, bringing 

the total independent signals associated with the well-being spectrum to 63 (Fig 1B-E, Supplementary 

Table 3-7). Of these 63 signals, 29 were not identified in univariate analyses. In contrast, univariate 

analyses identified 53 unique signals, 18 were not significant in either the N-weighted multivariate 

GWAMA or the model averaging GWAMA (Supplementary Fig. 1A-D). Heterogeneity in terms of 

genome-wide significant signal may reflect imperfect genetic correlations, or reflect that the dichotomy 

between significant and not significant is arbitrary (e.g. 16 out of the 18 signals detected only in univariate 

analyses had a p-value below 10e-5 in our multivariate analyses). For both multivariate strategies we 

observed, in comparison to univariate GWAMA, higher median test statistics (N-weighted λGC = 1.533, 

average model-based λGC = 1.489, univariate GWAMA λGC = 1.407), but no increase in LD score intercept 

(N-weighted =1.003, average model-based = 0.934). The low LD score intercept confirmed that the 

inflation in test statistics was due to an increase in signal, rather than population stratification or inaccurate 

accounting for sample overlap (see online methods, Supplementary Table 8, Supplementary Fig. 2-3).  

To confirm the gain in power of our multivariate GWAMA, we performed polygenic risk score prediction 

(PRS) in two independent samples (combined sample size > 16,000; online methods)5,10. We predicted the 

phenotypes in the well-being spectrum (life satisfaction, positive affect, neuroticism, and depressive 

symptoms). The PRS based on the N-weighted GWAMA improved prediction with an average increase in 

R2 of 0.39 (1.51-fold change), where the increase in R2 ranged from 0.15 to 0.67 (i.e., a 1.13 to 4.60-fold 

change in R2). PRS based on model-average GWAMA revealed an average increase in R2 of 0.36 (i.e., a 

1.48-fold change), which ranged from -0.01 to 0.67 (i.e., 0.99 to 4.60-fold change in R2, Supplementary 

Fig. 4, Supplementary Table 9).  

Both flavors of multivariate GWAMA aggregated the effect of a single SNP across multiple traits, 

informed by prior knowledge of the genetic correlation between these traits. In a similar fashion, we 

proceeded to aggregate the effect across multiple SNPs based on prior knowledge that some of these SNPs 

collectively influence the expression level of a gene transcript or the methylation level at a CpG site. 

Aggregation of SNP effects, which have a common effect on gene expression or CpG methylation lowers 

the multiple testing burden, strengthens the signal, and identifies specific gene transcripts or CpG 

methylation sites. In this procedure, known as summary-based transcriptome-wide and methylome-wide 

association analyses (TWAS and MWAS)11,12, we imputed the effect of changes in gene expression or CpG 

site methylation on the well-being spectrum. Information on the relation between SNP and CpG 

methylation or gene expression were obtained from the summarized results of cis-expression (e)QTL and 

cis-methylation (m)QTL studies in whole blood13,14. Since there is evidence that cis-regulation of gene 
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expression is highly consistent across tissues (genetic correlation brain-blood = .66)15, we used eQTL 

results obtained based on gene expression measure in blood as a proxy for expression in brain tissue. 

Given the equal performance of both multivariate GWAMAs and to avoid multiple testing, we used the 

results of the N-weighted GWAMA. We uncovered 34 transcript-trait associations, of which 8 are not 

identified in the GWAMA and are located more than 250kb from a significant GWAMA locus. We found 

115 CpG methylation-trait associations mapping to 6 distinct loci (> 250kb from GWAMA loci) at a 

Bonferroni corrected significance level. When considering TWAS and MWAS loci significant at a 

Benjamini-Hockberg adjusted (FDR) p-value < 0.0516, we uncovered 121 transcript-trait associations, of 

which 105 are distinct (>250kb) and 859 CpG methylation sites associated with the well-being spectrum, 

mapping to 218 distinct novel loci more than 250kb from a significant GWAMA locus (Supplementary 

Table 10-11).  

We performed further biological annotation using stratified LD score regression. We used 220 genomic 

annotations (33 brain and 187 non-brain annotations), which reflect four histone marks (H3K4me1, 

H3K4me3, H3K27ac, or H3K9ac) in 54 tissues. Our analyses revealed significant enrichment in 45 

regions of the genome characterized by 30 histone marks in 10 brain tissues. Among these brain tissues 

are: mid frontal and inferior temporal lobe, fetal brain, cingulate and angular gyrus, germinal matrix (a 

highly cellular and highly vascularized region in the brain from which cells migrate out during brain 

development), hippocampus anterior caudate, substantia nigra, and the neurosphere (Supplementary 

Table 12, Supplementary Fig. 5). We found enrichment of SNP effects in a single endocrine tissue, the 

thymus. Note that other endocrine tissues, which are more frequently implicated in depression (e.g., the 

thyroid and pituitary gland) were not available for testing. We also found enrichment in 14 non-brain 

tissues (Supplementary Fig. 5). Further analyses using LD score regression, where the LD scores are 

based on evolutionary markers17, revealed that SNPs of very recent origin (i.e. a low allelic age) explained 

substantially more variation than ancient SNPs (Supplementary Table 13 and Supplementary Fig. 6). 

These findings indicate the presence of negative selection shaping variation in well-being through recent 

evolution (see online methods). 

In order to more accurately pinpoint brain regions where genes relevant to the well-being spectrum are 

differentially expressed, we computed stratified LD scores based on differential gene expression in an 

anatomically comprehensive set of 210 brain regions, based on 3707 measurement in 6 human brains18. 

For each brain region, genes were selected that showed higher expression compared to all other regions, 

inclusion is determined based on a t-statistic of the difference test. For each region we selected the top 

10% most strongly expressed genes. The LD scores were significantly enriched at FDR < 0.05 at multiple 

gyri in the cortex (e.g. fusiform gyrus, parahippocampal gyrus and precentral gyrus) as well as the 
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precuneus, planum polare, temporal pole and the superior -and paracentral lobule (Supplementary Table 

14, Supplementary Fig. 7-13). Differential gene expression appeared driven mainly by transcriptional 

differences between gross anatomical regions in the brain (cortex, sub-cortical structures, brainstem, and 

cerebellum). To reveal regions related to the well-being spectrum within these regions, we computed 

differential brain expression only within the cortex, sub-cortical structures, brainstem and cerebellum and 

identified enrichment of genes specifically expressed in the subiculum (Z = 3.60, p < 0.001; Fig. 2, 

Supplementary Table 15). The subiculum is considered part of the hippocampal formation and plays a 

key role in hippocampal-cortical interaction19 in the inhibition of the Hypothalamic-Pituitary-Adrenal-axis 

and the human response to stress20. As a negative control, we considered the enrichment of genes 

differentially expressed in all brain regions using height GWAMA summary statistics: no region was 

significantly enriched, both when considering either global or local differential expression (all p > 0.05). 

To test whether the signal observed in the subiculum was specific to the well-being spectrum, we repeated 

LD score regression analyses of genes differentially expressed in the subiculum for educational 

attainment21 and schizophrenia GWAMA summary statistics22 . We found no enrichment of effect on 

educational attainment (Z = .11, p = .38) but did find an enrichment of effect on schizophrenia (Z = 3.22, p 

< 0.0007) for genes differentially expressed in the subiculum. All results of the differential gene 

expression analysis were mapped to the MNI coordinates at which the tissue samples were obtained, 

allowing for future integration of our findings and other neuroimaging modalities (Supplementary Table 

16).  

Gene expression LD scores driven biological annotations are based on empirical regional gene expression 

differences across the brain. The results therefore, by necessity, describes a mix of inter and intracellular 

processes that cannot be attributed to specific brain functions at the level of a cell or gene. To annotate 

individual genes identified in G/T/M-WAS loci, we performed a look-up off all genes in significant (187 

genes) and suggestive loci (1512 genes) in the HGRI-EBI catalog23 of published genome-wide association 

studies. We found abundant evidence for possible pleiotropic effects (e.g. 56 genes shared with 

schizophrenia, 9 genes shared with educational attainment), but also genes that have not previously been 

associated with any trait (Supplementary Table 17-19). To shed light on cellular processes, we cross 

referenced the KEGG database24 and our genome-wide signals to previously suggested neurotransmission 

processes across the synaptic cleft (Supplementary Table 20). Three of the genome-wide significant loci 

contain genes involved in glutamatergic neurotransmission (GNAO1, BRIK3, GRM5) while another 8 

genes, at suggestive associated loci (p < 10e-5 for GWAMA loci, FDR < 0.05 for T/M-WAS loci), are also 

involved in glutamatergic neurotransmission processes. Among these suggestive loci are SLC1A7 and 

SLC38A, genes involved in the reuptake of glutamate from the synaptic cleft into the presynaptic terminals 

and glial cells. Several other genes are involved in post synaptic response to glutamate. We further found 2 
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genes at genome-wide significantly loci (DDR2 and GNAO1) and another 10 genes at suggestive loci 

involved in dopaminergic neuro-transmission. Suggestive genes in the dopaminergic synapse pathway 

include DRD2 and DRD5 receptors. GNAO1 is further involved with GABAergic and serotonergic 

neurotransmission, as are another 11 and 9 genes respectively in suggestive loci. Among the suggestive 

serotonin related genes are the HTR1E, HTR1D HTR3A and HTR3B receptors, but not 5-HTT or HTR2A, 

which have frequently been implicated in the etiology of depression and other psychiatric traits25,26. 

Among the suggestive signals in the GABAnergic synapse is the GABBR1 gene which encodes for a 

gamma-aminobutric acid auto receptor involved in the inhibition of neurotransmitter release. When 

considering these genes in the context of synaptic neurotransmission, it is important to realize that many, 

if not all, of these genes serve functions in other pathways and biological mechanisms as well, and their 

primary effect on the well-being spectrum not necessarily arises from their effect on neurotransmission.  

Another locus of particular interest was found within the major histocompatibility complex. Recent work 

has identified 3 individual signals related to schizophrenia in the MHC region, one of which is linked to 

complement 4 (C4A) gene expression and synapse elimination during puberty27. The genome-wide 

significant signal for the well-being spectrum in the MHC region is not in strong LD with lead eQTL’s for 

C4A gene expression. Rather a second independent signal tagged by rs13194504 is associated with both 

schizophrenia and well-being. TWAS and MWAS results for the MHC region implicate the expression of 

ZKSCAN4 and methylation of cg08798685 in the etiology of well-being (Supplementary Fig. 14).  

In summary, while previous univariate analyses of phenotypes in the well-being spectrum were 

moderately successful, we gained power by use of multivariate analysis. Our work shows definitive 

progress in the genetics of well-being. Model averaging GWAMA identified additional loci, associated 

with some but not all traits in the well-being spectrum, and provided flexibility in terms of model 

specification. Model averaging can in fact incorporate any multivariate GWAMA or GWAS model for 

which the per SNP model fit can be expressed in terms of an AICc fit statistic. The averaging procedure is 

done per locus, allowing for heterogeneity across phenotype and loci. Additionally, we found that TWAS 

and MWAS can yet further increase the pool of loci related to variation in complex traits, like well-being. 

We accompany our multivariate analyses with genomic driven neuroimaging. By leveraging the genome-

wide results, LD score regression, and an atlas of brain gene expression we were able to pinpoint brain 

regions where region specific gene expression exists for genes enriched in their effect on well-being, and 

we report evidence for enrichment of genes differentially expressed in several cortical regions, as well as 

in the subiculum. Our analyses are limited in the following ways: we consider regional brain expression, 

though the cause of regional differences in gene expression across the brain can reflect a host of 

underlying regional differences. Gene expression is known to vary systematically between cell-types 
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within the brain28 (e.g neurons, microglia, astrocytes) and developmental phases29 (prenatally, childhood, 

adulthood and old age), and likely even between sub-types of a single cell type. Differences in gene 

expression across or within cell types may induce differences between regions as cell type composition 

may differ between regions. This limitation applies especially to the global enrichment of genes expressed 

in many cortical regions when compared to all other brain structures. However, the aforementioned 

limitations will be addressed in the future, as several efforts are underway to categorize gene expression 

across the human brain at increased (single cell) resolution. Single cell sequencing (e.g. drop-seq based 

anatomically comprehensive survey of the brain), based on donors deceased at different ages, could 

disentangle cell type specific from region specific differential gene expression as well as age specific gene 

expression30. Our study maps the results of a GWAMA of well-being to brain regions based on a 

coordinate system shared with multiple other neuroscientific measurements, facilitating future integration 

between the genetic study of - and neuroscientific research on the well-being spectrum.  
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Online Methods 

 N-weighted multivariate GWAMA. 

We obtained summary statistics from previous published studies4–8 , where multiple cohorts contributed to 

the univariate GWAMAs of life satisfaction, positive affect, neuroticism and depressive symptoms 

http://www.thessgac.org/. To quantify the dependence between the univariate GWAMAs, we estimated the 

cross trait LD score intercept (CTI)31,32. 

 

𝐶𝑇𝐼 =  
𝑁𝑠 ∗  𝑟𝑝

√𝑁1𝑁2

 

 

Where Ns equals the sample overlap, N1 the sample size for trait one and N2 the sample size for trait two, 

𝑟𝑝 equals the phenotypic correlation between trait one and two. The CTI is approximately equal to the 

covariance between the test statistics obtained in a GWAMA of trait 1 and trait 2. We assume the estimated 

CTI is equal to the true CTI, though note the uncertainty in the estimated CTI is generally low. Given the 

estimated covariance between effect sizes we can meta-analyse the four dependent GWAMAs and obtain a 

multivariate test statistic per SNP: 

Ζ𝑘 =  
∑ 𝑤𝑖𝑘 ∗ 𝑍𝑖𝑘

4
𝑖=1

√∑ 𝑤𝑖𝑘 ∗ 𝑉𝑖𝑘
4
𝑖=1 + ∑ ∑ √𝑤𝑖𝑘 ∗ 𝑤𝑗𝑘 ∗ 𝐶𝑖,𝑗,𝑘 (𝑗 ≠ 𝑖)4

𝑗=1
4
𝑖=1  

 

 

Where wik is the square root of the sample size for SNP k in the GWAMA of trait i, Zik is the test statistics 

of SNP k in the GWAMA of trait i; Vik is the variance of the test statistic for SNP k in the GWAMA of trait 

i (i.e 1 given that Z is a standardized test statistic) and Ci,j,k is the covariance between test statistics for 

SNP k between GWAMA of trait i and trait j (where C equals CTI obtained from cross trait LD score 

regression between trait i and trait j). The multivariate test statistic Ζ𝑘, is a standardized sum of tests 

statistics all of which follow a normal distribution under their respective null distributions, the statistic Ζ𝑘 

follows a standard normal distribution under the null hypothesis of no effect. 
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Model averaging GWAMA 

Consider the following model: 

 

𝛽 = 𝑀𝑉𝑁(𝛾𝑋 + 𝑒, 𝑉) 

 

Where 𝛽 (1xn) is a multivariate normal vector of effect sizes obtained from the regression of n 

standardized phenotypes on a standardized genotype (SNP). The matrix V (nxn) is the variance-covariance 

matrix of effect sizes, matrix X a design matrix (pxn), and 𝛾 the corresponding vector of parameters (1xp). 

The indexed p denotes the number of variables included in the means model of the response vector 𝛽. 

In this context, a regular GWAMA restricts the design matrix X to a unit vector (i.e. we model a single 

genetic effect, which is assumed identical across cohorts, and any observed variation is attributed to 

sample fluctuation). Generally, matrix V is diagonal, and contains the squared standard errors of elements 

in 𝛽. A regular GWAMA is the most restricted model one can consider. However, when considering 

multivariate GWAMA (i.e. the elements in β reflect SNP effects on separate yet correlated phenotypes) 

this model might be too restrictive even when traits have a substantial genetic correlation, not all genetic 

effects need to be shared between traits or be identical in magnitude. The least restrictive model is to 

consider the SNP effects in 𝛽 independent (i.e. run univariate GWAMA of the correlated phenotypes). In 

between the most restrictive and least restrictive model, a manifold of models can be specified, equating 

the effects in y across combinations of traits, while allowing it to differ between other combinations of 

traits. These models can be specified by ways of the design matrix X.  

One could consider a manifold (z) of models (m), each with a different design matrix X. 

 

𝛽1 = 𝑀𝑉𝑁(𝛾1𝑋1 + 𝑒, 𝑉) 

𝛽2 = 𝑀𝑉𝑁(𝛾2𝑋2 + 𝑒, 𝑉) 

… 

𝛽𝑧 = 𝑀𝑉𝑁(𝛾𝑧𝑋𝑧 + 𝑒, 𝑉) 
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When considering i correlated phenotypes, a simple expansion of X is to allow for 2 vectors (p =2), a unit 

vector and a second vector which is coded dichotomously (0,1) where the coding varies over each of the m 

models. Other codings, based on analysis of the genetic correlation between traits (i.e. PCA or Cholesky 

decomposition), can be applied to summary statistics and included in the average. Practically, this allows 

for the existence of 2 distinct genetic effect. This procedure results in . 5 ∗ 𝑘2 models. The 1df model with 

a unit vector for X and . 5 ∗ 𝑘2 −  1 2-df models with a unit vector and a second vector which codes for all 

possible combinations of pairs of k traits. However, simply considering m models for all SNPs across the 

genome results in a prohibitive increase of the already substantial multiple testing burden. Given m 

possible models, each of which predict a different vector 𝛾, and uncertainty for the predicted elements in 

𝛾, a possible way forward is to average the model predictions. The models are weighted by the relative 

proportion of evidence for each model. Specifically, the weights can be based on the AICc33 information 

criteria. The AICc for model m equals: 

 

𝐴𝐼𝐶𝑐𝑚 =  − ln(𝐿𝑜𝑔𝐿𝑖𝑘𝑚) +  2𝑘𝑚 +  
2𝑘𝑚(𝑘𝑚 + 1)

𝑛 − 𝑘𝑚 − 1
 

 

For each AICc we compute the delta (Δm) to the best (i.e lowest) AICc value, and from these we compute 

the model weights (g) for the k models as: 

 

𝑔𝑚 =
exp (− 

1
2

Δm)

∑ exp (− 
1
2

Δm)𝑧
𝑚=1

  

 

We predict the vector β using each of the models 

𝛽̂𝑚 =  𝛾𝑚𝑋𝑚  

 

One can aggregate the prediction over all models as:  
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𝛽𝑎 =  ∑
𝛽̂𝑚 ∗ 𝑔𝑚

∑ 𝑔𝑚
𝑧
𝑚=1

𝑧

𝑚=1

 

 

And we aggregate the uncertainty within and between models to obtain 𝑣𝑎𝑟 (𝛽𝑎): 

𝑣𝑎𝑟(𝛽𝑎) =  [ ∑ gm√var(𝛽̂𝑚) +  (𝛽̂𝑚 −  𝛽̂̅)2

z

m=1

]

2

 

 

The resulting vector 𝛽𝑎contains the model averaged effect sizes for the effect of a particular SNP on the 

phenotypes subjected to multivariate analysis. Note how the variance estimate contains a variance 

component which reflects within model variability (var(𝛽̂𝑚)) which equals the square of the standard 

error, and a variance component between model variability ((𝛽̂𝑚 −  𝛽̂̅)2) in estimate, which ensures no 

overfitting occurs.  

Our procedure boosts power if the SNP effect is concordant between traits, while retaining strongly 

discordant SNP effects if the model favors these. Model averaging offers several avenues for extension. 

One can constrain the SNP effects across multiple SNPs based on biological knowledge of the relation 

between the SNPs and gene expression, or CpG methylation (analog to TWAS). Alternative it might be 

beneficial to average the AICc weights across regions of the genome. Model averaging can in principle 

accommodate any model for which the AICc information criterion can be expressed. These models should 

result in a vector of SNPS effects (𝛽) and an asymptotic variance for the SNP effects. In the current 

application, models per SNP are estimated in R using the “metafor” package and models are averaged 

using the “AICcmodavg” package34,35.  

Polygenic Risk Prediction 

To confirm the gain in power of our multivariate GWAMA results, we perform polygenic risk score 

prediction (PRS) in two independent samples; 1) the Netherlands Twin Register (NTR)1010,36 and 2) 

Understanding Society (UKHLS)5. We predict the phenotypes in the well-being spectrum (life satisfaction, 

positive affect, neuroticism, and depressive symptoms). In NTR, LS and PA data are available in 9,143 

and 6,836 genotyped participants, respectively. LS is measured longitudinally using the Satisfaction with 

Life Scale consisting of five items (e.g., “My life is going more or less as I wanted”) with responses given 

on a seven-point scale, resulting in a minimum score of five and a maximum score of 3537. PA is also 
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measured longitudinally using four questions that were adapted from the Subjective Happiness Scale38 

(e.g., “On the whole, I am a happy person”) with responses on a seven-point scale, resulting in a minimum 

score of four and a maximum score of 28. Neuroticism data are available for 8,527 genotyped participants. 

The Big Five personality traits (including neuroticism) were measured by using the NEO-FFI39, a sixty-

item personality questionnaire consisting of five subscales: neuroticism, extraversion, openness, 

agreeableness and conscientiousness. The responses were given on a five-point scale (0-4). Subscale 

scores are constructed for each time point by taking the sum across the twelve subscale-specific items 

(after recoding opposite-stated items), and are set to missing if ten or more items of the total scale are 

unanswered. When subjects have fewer than ten missing items, missing items are scored at two (which is 

neutral given the 0-4 scale). Depressive symptoms are obtained from the DSM-oriented Depression 

subscale of the age-appropriate survey from the ASEBA taxonomy40 and are available in 7,898 

participants. To measure depressive symptoms, fourteen questions are used (e.g., “Enjoys little ”) and 

responses were given on a three-point scale ranging from zero (“not true”) to two (“very true”). The DSM-

oriented subscale is constructed for each time point by taking the sum across the fourteen subscale-

specific items and is set to missing if more than twenty percent of the total survey items were unanswered. 

When less than twenty percent of items are missing for a participant, the missing items are replaced by the 

participant’s mean score.  

In UKHLS data is available in 9,944 participants. LS was measured longitudinally (waves 1-6). 

Participants were asked how satisfied they were “with life overall” with responses given on a seven-point 

scale, resulting in a minimum score of one and a maximum score of seven. PA is also measured 

longitudinally (waves 1 and 4 only) using The Warwick-Edinburgh Mental well-being scale (WEMWBS). 

SWEMWBS is a shortened version of WEMWBS. This 7-item short version (see Tennant et al., 2007) is 

scored on a 5-point Likert scale, from “none of the time” to “all of the time”, and summed to give a total 

score, ranging from 7 to 35 Neuroticism data are available for 8,198 genotyped participants from wave 3. 

The Big Five personality traits (including neuroticism) were measured using The Big Five Inventory 

(BFI), a 44-item personality questionnaire consisting of five subscales: neuroticism, extraversion, 

openness, agreeableness and conscientiousness. The responses were given on a seven-point scale (1-7). 

The neuroticism score combines three items on the neuroticism subdomain. Component scores were 

calculated as the average item response if no more than one of the three input responses was missing. 

Depressive symptoms (DS) were measured longitudinally (waves 1-6) and obtained from The General 

Health Questionnaire (GHQ) available in 9,203 participants. The 12 question GHQ was used containing 

questions relating to concentration, loss of sleep and general happiness. The 12 questions are scored on a 

four-point scale (1-4). Valid answers to the 12 questions of the GHQ-12 were converted to a single scale 
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by recoding 1 and 2 values on individual variables to 0, and 3 and 4 values to 1, and then summing, giving 

a scale running from 0 (the least distressed) to 12 (the most distressed).  

The weights used for the polygenic scores are based on our two flavors of multivariate GWAMAs as well 

as the four univariate GWAMAs. Scores are based on the intersection of SNPs available in any of these 

GWAMAs. In the NTR, SNPs were imputed to a common reference SNPs with MAF < 0.005, Hardy-

Weinberg Equilibrium (HWE) with p < 10-12 and call rate < 0.95 were removed. Individuals are excluded 

from the analyses if the genotyping call rate is < 0.90, the inbreeding coefficient as computed in PLINK48 

(F) was < -0.075 or > 0.075), if the Affymetrix Contrast QC metric is< .40, if the Mendelian error rate is > 

5 standard deviations (SDs) from the mean, or if the gender and Identity-by-State (IBS) status does not 

agree with known relationship status and genotypic assessment. In UKHLS, SNPs were imputed to a 

common reference (1000 Genomes project March 2012 version 3). SNPs with MAF < 0.01, HWE p < 10-4 

and call rate < 0.98 were removed, individuals with A B and C were removed In NTR 1,224,793 SNPs 

passed QC and were used to construct polygenic scores and in UKHLS 955,441 SNPs passed QC and 

were used to construct polygenic scores. The phenotypes were regressed on sex and age as well as 

principal components which were included to correct for ancestry and the polygenic scores. Results can be 

found in Supplemental Table 9. 

Summary-Based transcriptome wide (TWAS) and methylome wide (MWAS) association studies 

We used the tool DIST41 to impute the HapMap reference based results for the N-weighted GWAMA to 

the 1000Genomes Phase1 reference. We aggregate SNP effects informed by their common effect on 

expression level of gene or CpG methylation, as was proposed by Gusev et al.11 We used the BIOS eQTL 

resource as eQTL reference set to build imputation models to predict gene expression using multiple 

eQTL SNPs13. Models are built per gene (gene models) by identifying independent eQTL SNPs based on 

stepwise conditional regression.13 The z-score for each eQTL SNP is used in TWAS as a weight (q).The 

eQTLs used are available at http://genenetwork.nl/biosqtlbrowser/. Based on the gene models, N-weighted 

GWAMA summary statistics and LD based on the GONL reference42, TWAS is performed. That is, for 

each gene- prediction-model containing eQTLs S1- SN with weights q=q1,q2,...,qn, the corresponding 

GWAMA z-scores z=z1,z2,...,zn and LD is an n-by-n correlation matrix for eQTLs S1- SN, were used to 

construct a test statistic: 

 

𝑍𝑡𝑤𝑎𝑠 =  
∑ qizi

n
i=1 

√q ∗ LD ∗ q  
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 MWAS was performed following the same procedure to build imputation models to predict CpG site 

methylation of the DNA strand using multiple mQTL SNPs. The methylation site specific weights were 

obtained from the BIOS mQTL study14.  

Stratified LD score regression 

To determine whether specific genomic regions are enriched for genetic effects on the well-being 

spectrum phenotypes, we used LD Score regression31,32. We are specifically interested in regions of the 

genome which are histone modified in a specific tissue. For example, regions of the genome which are 

histone modified in the prefrontal cortex, can be transcribed more frequently in prefrontal tissue. The 

enrichment of these genomic regions in their effect on well-being suggest the involvement of processes in 

the prefrontal cortex in the etiology of wellbeing. 

 LD Score regression is based on the relationship between the observed chi-square of a SNP and the 

degree of LD between a SNP and its neighbor. SNPs in strong LD are more likely to tag causal effects on 

complex traits and therefore have a higher expected chi-square. The procedure can be extended to 

stratified LD score regression where multiple LD scores are created, each of which captures the LD for a 

SNP with other SNPs of a specific category of interest, for example SNPs in a histone modified region of 

the genome. 

We follow the exact procedure described by Finucane et al.43 We estimated stratified LD Score regression 

for the “baseline” model, which contains 53 categories. The model consists of a category containing all 

SNPs, 24 categories corresponding to main annotations of interest, 24 categories corresponding to 500-bp 

windows around the main annotations, and categories corresponding to 100-bp windows around ChIP-seq 

peaks (i.e. regions that are Sensitive to DNase1 or associated with histones bearing the modification marks 

H3K4me1, H3K4me3, H3K27ac or H3K9ac). In addition to the analysis of the baseline model, we 

performed analyses using cell type-specific annotations for the four histone marks, which correspond to 

specific chemical modifications to the histone protein, which in turn package and orders the DNA 

molecule. Epigenetic modifications of histones, specifically histones bearing the marks H3K4me1, 

H3K4me3, H3K27ac or H3K9ac, all of which are associated with increased transcription of DNA into 

RNA. Each cell type-specific annotation corresponds to a histone mark in a specific cell obtained from 

distinct human tissue, for example H3K27ac in Fetal Brain cells, generating 220 combinations of histone 

modification by tissue. When generating estimates of enrichment for the 220 Histone mark by tissue 

annotations, we control for overlap with the functional categories in the full baseline model, but not for 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/115915doi: bioRxiv preprint 

https://doi.org/10.1101/115915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

15 
 

overlap with the 219 other cell type specific annotations. Then for our well-being phenotype, we ran LD 

Score regression on each of the 220 models (one for each histone by tissue combination) and ranked the 

histone by tissue annotations by P-value derived from the Z-values of the coefficient. Results are 

displayed in Supplementary Table 12. 

Stratified LD score regression to detect negative selection 

Using LD score regression, where the LD scores are based on evolutionary markers, we test whether 

negative selection is present in shaping variation in the well-being spectrum through recent evolution. We 

use the same procedure as extensively described by Gazal et al.17 and report the proportion of heritability 

for each LD-related annotation of the baseline model subdivided in 5 quantiles ranging from 20% 

common SNPs with youngest allelic age to 20% of common SNPs with oldest allelic age. These 

proportions are computed based on a joint fit of the baseline-LD model, but measure the heritability 

explained by each quantile of each annotation while including the effect of other annotations. Results are 

displayed in Supplementary Table 13. The effect of nucleotide diversity, recombination rate, background 

selection, CpG-content predicted allelic age, and levels of LD in Africa all are consistent with those found 

in Gazal et al., in which Gazal et al show by ways of forward simulation to be consistent with the presence 

of negative selection17. 

Stratified LD score regression of local gene expression across the human brain. 

We downloaded the normalized and QC’ed gene expression measured in an anatomically comprehensive 

set of brain regions from http://www.brain-map.org/. The data contains 3707 measurements across 6 adult 

human brains. The procedures used to measure gene expression and standardize these measures across the 

brains are described in Hawrylycz et al18. Based on these data we compute differential gene expression for 

48154 probes which map to 20724 unique genes (probes which did not map to genes were omitted). We 

considered differential gene expression across 210 regions for which at least 3 measurements are 

available. As Hawrylycz et al.18 found little evidence for lateral difference in gene expression, regions in 

the left and right hemisphere are collapsed into a single region. For each gene in each region a t-test is 

performed, testing the difference in standardized expression between the region in question and all other 

brain regions. Top 10% of probes ranked in terms of t-statistic per region a were retained. The unique 

genes mapped to this set of probes was extracted (mapping ~2900-3500 genes to each region). The 

correlation between t-statistics for the 48154 probes revealed fairly strong differential expression between 

the cortex, brainstem and cerebellum and clustering of differential expression within these regions. 

A partitioned LD score with respect to the genomic regions spanned by these genes (using gencode v19 as 

a reference), and a 100 kilobase window around each gene, is computed. The heritability of well-being is 
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partitioned across the 54 baseline annotations developed by Finucane et al43 and each of the 210 brain 

regions, the regions are considered separately. The substantial differences in gene expression between 

gross anatomical brain regions (cerebellum, cortex, sub-cortical regions and brainstem) dominate the 

results (Supplemental Fig. 7-13, Supplementary Table 14). We therefore proceed to compute differential 

gene expression within the cerebellum, cortex, sub cortical regions and brainstem. In this analysis we omit 

the fibre bundles as these are anatomically distinct from both the cortex and the sub cortical regions, yet 

not measured densely enough to warrant the computation of differential expression within the fibre bundle 

tissues. The procedure to compute differentially expressed genes is identical to the procedure used to 

compute differential expression across the whole brain, but considers the gross anatomical regions 

separately. New LD scores are computed based on the local differential gene expression analysis and the 

resulting enrichment is visualized in Figure 2 (Supplementary Table 15). All analyses were repeated 

using height as a negative control phenotype. The genomic regions spanning genes differentially 

expressed in these 210 brain regions are not significantly enriched with SNP effects on height.  

GWAS Catalog lookup 

We search the NHGI GWAS catalog23 to determine which of our genome-wide significant GWAMA, 

MWAS, and TWAS signals have been previously reported (database searched on 03-04-2017). We apply 

two strategies; 1) for our GWAMA analyses, we identify genes that are within a 250kb distance from a 

genome wide significant SNPs For our TWAS and MWAS analyses the focus is specifically on markers 

that were not significant in GWAMA analyses. Therefore, we rule out any genes that we identify in 

TWAS or near MWAS hits that are within 250kb distance from a GWAMA lead SNP. Gene transcripts 

and genes near CpG sites which conform to the criteria outlined above are looked up in the GWAS 

catalog. Results can be found in Supplementary Table 17-19. 

Intersection between genome wide signals and synaptic pathways. 

Using the KEGG database24, all genes in the four synaptic pathways; (1) serotonergic synapse (2) 

dopaminergic synapse (3) glutamatergic synapse and (4) GABAergic synapse, we extracted. The four 

resulting gene sets where intersected with genes residing in the 77 genome wide significant loci. Similary, 

we looked at the intersection between the four synaptic pathways and suggestive loci (SNPs associated 

with our multivariate GWAMA at p < 5 * 10-5 and FDR < 0.05 for T/M-WAS loci, Supplementary Table 

20). 
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Fig. 1. Manhattan plots of N-weighted and model averaging GWAMA. (a) N-weighted GWAMA and model averaging GWAMA of (b) life 

satisfaction, (c) positive affect, (d) neuroticism, (e) depressive symptoms. All plots in all panels are based on the same set of SNPs. The x-axis 

represents the chromosomal position, and the y-axis represents the significance on a –log10 scale. Each approximately independent genome-wide 

significant association (“lead SNP”) is marked by Δ. 
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Fig. 2. Local differential gene expression between subcortical structures identifies enrichment of 

genes specifically expressed in the subiculum (Z = 3.60, p < 0.001), in their effect on well-being. (a) 

coronial view (b) sagittal view (c) axial view. The sample location for brain tissues which were used to 

measured gene expression by Hawrylycz et al. (2012) is available and were projected to a standard MNI 

template brain (“Colin27”). The figure is centered on the averaged MNI coordinates of brains samples 

which are part of the annotation “left Subiculum” (x = 77, y = 90 and z = 60). 
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Figure legends 

Supplementary Figure 1. Manhattan plots of univariate GWAMA. (a) life satisfaction, (b) positive 

affect, (c) neuroticism, (d) depressive symptoms. The x-axis represents the chromosomal position, and the 

y-axis represents the significance on a –log10 scale. Each approximately independent genome-wide 

significant association (“lead SNP”) is marked by Δ. 

Supplementary Figure 2. Quantile-quantile plots for the N-weighted and 4 average GWAMAs. (a) is the 

N-weighted GWAMA. (b) is model-average life satisfaction, (c) model average positive affect, (d) model 

average neuroticism (e) model average depressive symptoms  

 

Supplementary Figure 3. Quantile-quantile plots for the four univariate GWAMAs. (a) life satisfaction, 

(b) average positive affect, (c) neuroticism (d) depressive symptoms  

 

Supplementary Figure 4. The result of polygenic risk prediction based on univariate discovery 

GWAMA, N-weighted discovery GWAMA or model averaging discovery GWAMA. The unit on the Y-

axis is the R-squared in percentage, obtained from a regression of the trait on the PRS, age, sex and 10 

principle components. (a) displays the combined N-weighted polygenic score results. (b) displays the 

polygenic prediction results from the Netherlands Twin Register and (c) displays the polygenic results 

from Understanding Society. LS is life satisfaction. PA is positive affect. NEU is neuroticism. DEP is 

depressive symptoms. 

 

Supplementary Figure 5. 220 Cell specific histone modified region enrichment. The bar plot is reflecting 

the FDR adjusted p-value for tissue specific histone modified regions of the genome, as estimated using 

partitioned LD-score regression. Blue bars represent brain regions, black bars represent non-brain regions. 

Supplementary Figure 6. Proportion of heritability explained by quintiles of each LD-related annotation. 

The red line indicates the proportion of heritability when there is no enrichment (20% of SNPs explain 

20% of heritability. 

Supplementary Figure 7. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) cingulate gyrus, inferior, (2) cingulate gyrus, 

superior, (3) angular gyrus, superior, (4) fusiform gyrus, bank of cos, (5) fusiform gyrus, bank of the its 

and (6) fusiform gyrus, lateral bank of the gyrus. For all structures, the Z -and p-values for the differential 

gene expression as well as the MNI coordinates are provided. To determine the MNI coordinates, we 

averaged the mni xyz coordinates of the left brain structures separately. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/115915doi: bioRxiv preprint 

https://doi.org/10.1101/115915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

24 
 

Supplementary Figure 8. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) Heschl’s gyrus, (2) inferior temporal gyrus, bank of 

the its, (3) inferior temporal gyrus, lateral bank of the gyrus, (4) inferior temporal gyrus, bank of mts, (5) 

long insular gyri and (6) Lingual gyrus. For all structures, the Z -and p-values for the differential gene 

expression as well as the MNI coordinates are provided. To determine the MNI coordinates, we averaged 

the mni xyz coordinates of the left brain structures separately. 

Supplementary Figure 9. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) middle frontal gyrus, inferior, (2) middle frontal 

gyrus, superior, (3) medial orbital gyrus, (4) middle temporal gyrus, inferior, (5) middle temporal gyrus, 

superior and (6) Occipito-tempral gyrus, superior. For all structures, the Z -and p-values for the differential 

gene expression as well as the MNI coordinates are provided. To determine the MNI coordinates, we 

averaged the mni xyz coordinates of the left brain structures separately. 

Supplementary Figure 10. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) Paracentral lobule, anterior part, (2) Precuneus, 

inferior, (3) Precuneus, superior, (4) Parahippocampal gyrus, bank of cos, (5) Parahippocampal gyrus, 

lateral bank of the gyrus and (6) Planum polare. For all structures, the Z -and p-values for the differential 

gene expression as well as the MNI coordinates are provided. To determine the MNI coordinates, we 

averaged the mni xyz coordinates of the left brain structures separately. To determine the MNI 

coordinates, we averaged the mni xyz coordinates of the left brain structures separately. 

Supplementary Figure 11. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) Postcentral gyrus, central sulcus, (2) Postcentral 

gyrus, posterior of the central sulcus, (3) Precentral gyrus, central sulcus, (4) Precentral sulcus, inferior 

lateral aspect of the sulcus, (5) Precentral gyrus, bank of the precentral sulcus and (6) Superior frontal 

gyrus. For all structures, the Z -and p-values for the differential gene expression as well as the MNI 

coordinates are provided. To determine the MNI coordinates, we averaged the mni xyz coordinates of the 

left brain structures separately. 

Supplementary Figure 12. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) Superior frontal gyrus, medial bank, (2) 

Supramarginal gyrus, inferior, (3) Supramarginal gyrus, superior, (4) Superior occipital gyrus, (5) Superior 

parietal lobule and (6) Superior temporal gyrus. For all structures, the Z -and p-values for the differential 

gene expression as well as the MNI coordinates are provided. To determine the MNI coordinates, we 

averaged the mni xyz coordinates of the left brain structures separately. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 19, 2017. ; https://doi.org/10.1101/115915doi: bioRxiv preprint 

https://doi.org/10.1101/115915
http://creativecommons.org/licenses/by-nc-nd/4.0/


   

25 
 

Supplementary Figure 13. Global differential gene expression in all 210 cortical structures identifies 

enrichment of genes specifically expressed in the (1) Transverse gyri, (2) Temporal pole, inferior and (3) 

Temporal pole, superior. For all structures, the Z -and p-values for the differential gene expression as well 

as the MNI coordinates are provided. To determine the MNI coordinates, we averaged the mni xyz 

coordinates of the left brain structures separately. 

Supplementary Figure 14. Local association in the MHC region. (a) provides a local Manhattan plot for 

the MHC region with interposed on top the LD with a strong eQTL for the C4 gene linked to neuronal 

pruning in adolescence and schizophrenia by Sekar et al27. (b) is a scatter plot for the –log10(p) against the 

R2 with the C4 eQTL. (c) provides a local Manhattan plot for the MHC region with interposed on top the 

LD with SNP rs13194504, the strongest MHC signal found for schizophrenia. (d) is a scatter plot of the –

log10(p) against the R2 with rs13194504. Round symbols represent SNPs, square symbols represent gene 

transcripts and triangle symbols represent CpG sites. 
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