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ABSTRACT: 27 

Breast cancer is a complex disease and studying DNA methylation (DNAm) in tumors is 28 

complicated by disease heterogeneity. We compared DNAm in breast tumors with 29 

normal-adjacent breast samples from The Cancer Genome Atlas (TCGA). We 30 

constructed models stratified by tumor stage and PAM50 molecular subtype and 31 

performed cell-type reference-free deconvolution on each model. We identified nineteen 32 

differentially methylated gene regions (DMGRs) in early stage tumors across eleven 33 

genes (AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, 34 

PLEKHN1, SAMD11, WASH5P). These regions were consistently differentially 35 

methylated in every subtype and all implicated genes are localized on chromosome 36 

1p36.3. We also validated seventeen DMGRs in an independent data set. Identification 37 

and validation of shared DNAm alterations across tumor subtypes in early stage tumors 38 

advances our understanding of common biology underlying breast carcinogenesis and 39 

may contribute to biomarker development. We also provide evidence on the importance 40 

and potential function of 1p36 in cancer.  41 
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INTRODUCTION: 42 

Invasive breast cancer is a complex disease characterized by diverse etiologic 43 

factors1. Key genetic and epigenetic alterations are recognized to drive tumorigenesis and 44 

serve as gate-keeping events for disease progression2. Early DNA methylation (DNAm) 45 

events have been shown to contribute to breast cancer development3. Importantly, DNAm 46 

alterations have been implicated in the transition from normal tissue to neoplasia4,5 and 47 

from neoplasia to metastasis6. Furthermore, patterns of DNAm are known to differ across 48 

molecular subtypes of breast cancer7 - Luminal A (LumA), Luminal B (LumB), Her2-49 

enriched and Basal-like – identified based on the prediction analysis of microarray 50 (PAM50) 50 

classification8. However, while DNAm differences across breast cancer subtypes have 51 

been explored, similarities across subtypes are less clear9. Such similarities found in early 52 

stage tumors can inform shared biology underpinning breast carcinogenesis and – as 53 

similarities would be agnostic to subtype – potentially contribute to biomarkers for early 54 

detection.  55 

Studying DNAm in bulk tumors is complicated by disease heterogeneity. 56 

Heterogeneity is driven by many aspects of cancer biology including variable cell-type 57 

proportions found in the substrate used for molecular profiling10. Different proportions of 58 

stromal, tumor, and infiltrating immune cells may confound molecular profile 59 

classification when comparing samples11 because cell types have distinct DNAm 60 

patterns12–14. The potential for cell–type confounding prompted the development of 61 

statistical methods to adjust for variation in cell-type proportions in blood15 and solid 62 

tissue16. One such method, RefFreeEWAS, is a reference-free deconvolution method and 63 

does not require a reference population of cells with known methylation patterns and is 64 

agnostic to genomic location when performing deconvolution17. Instead, the unsupervised 65 
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method infers underlying cell-specific methylation profiles through constrained non-66 

negative matrix factorization (NMF) to separate cell-specific methylation differences 67 

from actual aberrant methylation profiles observed in disease states. This method has 68 

previously been shown to effectively determine the cell of origin in breast tumor 69 

phenotypes18.  70 

We applied RefFreeEWAS to TCGA breast cancer DNAm data and estimated cell 71 

proportions across the set. We compared tumor DNAm with adjacent normal tissue 72 

stratified by tumor subtype9 and identified common early methylation alterations across 73 

molecular subtypes that are independent of cell type composition. We identified a 74 

specific chromosomal location, 1p36.3, that harbors all 19 of the differentially methylated 75 

regions that are in common to early stage breast cancer subtypes. 1p36 is a well-studied 76 

and important region in many different cancer types, but there remain questions about 77 

how it may impact carcinogenesis and disease progression19. Our study provides evidence 78 

that methylation in this region may provide important clues about early events in breast 79 

cancer. We also performed RefFreeEWAS on an independent validation set (GSE61805) 80 

and confirmed these results20.  81 

 82 

RESULTS: 83 

DNA methylation deconvolution 84 

 Subject age and tumor characteristic data stratified by PAM50 subtype and stage 85 

is provided in Table 1 for the 523 TCGA tumors analyzed. TCGA breast tumor sample 86 

purity, estimated by pathologists from histological slides, was consistent across PAM50 87 

subtypes and stages indicating that observed methylation differences are not 88 
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predominantly a result of large differences in tumor purity (Supplementary Fig. S1). To 89 

correct for cell-proportion differences across tumor samples, we estimated the number of 90 

cellular methylation profiles contributing to the mixture differences by applying NMF to 91 

the matrix of beta values, which resulted in model specific dimensionality estimates 92 

indicating diverse cellular methylation profiles (Supplementary Table S1). The reference-93 

free deconvolution altered the number and extent of significant differentially methylated 94 

CpGs across all models that compared breast tumor methylation with adjacent normal 95 

samples (Supplementary Fig. S2). 96 

Table 1. Sample information stratified by PAM50 subtype  

  Basal-like Her2 Luminal A Luminal B 
Total with 

Assignment 

TCGA tumors 86 31 279 127 523 

Age, mean (SD) 56.8 (12.8) 60 (12.8) 58 (13.5) 57.1 (12.6) 57.8 (13.1) 

Stage*, n (%)  -- -- -- -- -- 

    Early (I/II) 70 (81%) 20 (65%) 207 (74%) 84 (66%) 381 (73%) 

    Late (III/IV) 14 (16%) 10 (32%) 69 (25%) 42 (33%) 135 (26%) 

Missing 2 (2%) 1 (3%) 3 (1%) 1 (1%) 7 (1%) 

*AJCC characterized stage, provided by TCGA 

 97 

Subtype specific methylation patterns 98 

In early stage tumors, we identified a set of nineteen DMGRs shared among 99 

Luminal A, Luminal B, Her2, and Basal-like subtypes (DMGRs Q < 0.01, Figure 1A). In 100 

the late stage tumors, we identified 31,931 DMGRs in common across subtypes (Figure 101 

1B).   102 
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 103 

Figure 1. Numbers of overlapping differentially methylated gene regions in (A) early 104 

stage tumors (n = 76,847) and (B) late stage tumors (n = 70,759) stratified by Basal-like, 105 

Her2, Luminal A, and Luminal B PAM50 subtypes with a Q-value cutoff of 0.01.  106 

 107 

Subtype specific methylation patterns in early stage tumors were most divergent for 108 

Basal-like tumors versus other types, while in late stage tumors methylation alterations in 109 

Luminal B tumors were most divergent (Supplementary Table S2). To test if collapsing 110 

by genomic region had an appreciable effect on detecting DMGRs, we compared DMGR 111 

results to results derived from regions defined by CpG island status (i.e. CpG island, 112 

Shore, Shelf, Open Sea). Using CpG island context designations indicated similar results 113 

(Supplementary Fig S3), though a lower number of common DMGRs were observed. 114 
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Therefore, downstream analyses used DMGRs identified based on probe position in 115 

relation to TSS. 116 

We identified nineteen DMGRs with common methylation alterations among 117 

tumor subtypes in comparison with normal tissues that were annotated to eleven genes: 118 

AGRN, C1orf170, FAM41C, FLJ39609, HES4, ISG15, KLHL17, NOC2L, PLEKNH1, 119 

SAMD11, and WASH5P (Supplementary Table S3).  120 

Dependent upon tumor subtype, some gene regions had a different directional 121 

change in tumor methylation compared to normal tissue (e.g. C1orf170, HES4, and 122 

ISG15). Additionally, of the eleven genes identified, we observed differential methylation 123 

in different regions including gene body, promoter (TSS1500, and TSS200), and 3’UTR 124 

(Table 2 and Supplementary Table S3). All nineteen DMGRs also had differential 125 

methylation in at least one late stage tumor subtype, and thirteen of the nineteen DMGRs 126 

were significantly differentially methylated across all tumor subtypes in late stage tumors 127 

(Table 2 and Supplementary Table S4). A heatmap of the unadjusted beta values for 128 

individual CpGs from the nineteen DMGRs demonstrated grouping of most of the Basal-129 

like tumors separate from a group of mixed Luminal and Her2 tumors (Figure 2).  130 
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Table 2. Nineteen differentially methylated gene regions in common to early stage tumors.        

DMGR 
Alternate 
Gene Name 

Basal 
Med Q 

Her2 
Med Q 

Lum A 
Med Q 

Lum B 
Med Q 

*Any late 
stage 

*Alll late 
stage  

Present in  
validation 

Validation 
Median Q 

AGRN Body AGNR 2.44E-06 1.68E-04 1.82E-07 1.29E-06 Y -- Y 7.80E-21 

C1orf170 Body PERM1 4.03E-11 1.68E-05 5.46E-09 9.69E-04 Y Y Y 1.31E-08 

C1orf170 TSS1500 PERM1 5.40E-04 6.52E-03 7.82E-06 6.82E-05 Y -- Y 9.23E-03 

FAM41C Body FAM41C 4.13E-03 4.20E-08 1.18E-20 3.43E-03 Y Y Y 8.25E-10 

FAM41C TSS1500 FAM41C 3.27E-04 1.11E-04 8.38E-05 1.04E-34 Y Y Y 1.75E-24 

FLJ39609 TSS200 LOC100130417 1.30E-04 6.02E-05 2.92E-06 3.67E-04 Y Y Y 5.24E-06 

HES4 TSS1500 HES4 3.06E-03 5.15E-04 7.84E-05 2.20E-04 Y -- Y 5.06E-04 

ISG15 Body ISG15 3.14E-07 2.40E-04 1.18E-05 3.58E-04 Y Y -- 1.03E-01 

KLHL17 3'UTR KLHL17 3.14E-05 5.51E-07 3.83E-16 2.27E-03 Y Y Y 3.99E-08 

KLHL17 Body KLHL17 5.90E-06 1.10E-04 7.85E-04 7.24E-05 Y -- Y 1.60E-06 

NOC2L Body NOC2L 3.15E-04 6.15E-04 6.56E-05 2.40E-06 Y Y Y 4.90E-11 

PLEKHN1 3'UTR PLEKHN1 5.17E-16 4.73E-06 3.10E-07 7.74E-06 Y -- Y 9.83E-09 

PLEKHN1 Body PLEKHN1 8.94E-10 2.71E-09 7.58E-29 1.73E-30 Y Y Y 5.87E-18 

PLEKHN1 TSS1500 PLEKHN1 3.14E-05 5.51E-07 2.59E-06 3.63E-07 Y Y Y 3.99E-08 

PLEKHN1 TSS200 PLEKHN1 1.56E-18 5.77E-10 1.42E-03 1.22E-03 Y Y Y 2.93E-10 

SAMD11 5'UTR SAMD11 3.58E-03 7.23E-12 1.01E-09 2.21E-08 Y Y Y 4.59E-11 

SAMD11 Body SAMD11 7.13E-08 2.47E-08 8.49E-06 2.04E-04 Y Y Y 3.26E-23 

SAMD11 TSS1500 SAMD11 2.38E-03 6.14E-04 8.56E-04 1.02E-03 Y Y Y 2.02E-05 

WASH5P Body WASH7P 2.93E-03 9.84E-03 1.64E-03 1.25E-05 Y -- -- 7.01E-02 

*Reference to any or all breast cancer subtypes in late stage tumors           

131 
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 132 

Figure 2. Raw beta value (unadjusted for cellular composition) heatmap of the 133 

significantly differentially methylated CpG sites mapping to the common early stage 134 

differentially methylated gene regions. The genomic context is given in the vertical color 135 

bar and the PAM50 subtype and tumor information (stage and subtype) are given in the 136 

horizontal bars. Yellow indicates low methylation and blue indicates high methylation 137 

beta values. 138 

 139 

DMGRs cluster on chromosome 1p36 and on gene bodies 140 

Of the nineteen DMGRs identified, all of them are in eleven genes located on the 141 

p36.3 cytoband of chromosome 1 (Supplementary Figure S4). Chromosome 1p36.3 is the 142 

start section of chromosome 1 and of the eleven genes identified, one (WASH5P) is 143 
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located near the very start of the chromosome (chr1:14,362 - 29,370) and the other ten 144 

genes are located end-to-end between chr1:868,071 - 1,056,116 (Supplementary Figure 145 

S4). 146 

Most of the DMGRs tracked to gene body regions: AGRN, C1orf170, FAM41C, 147 

ISG15, KLHL17, NOC2L, PLEKHN1, SAMD11, and WASH5P all had gene body 148 

methylation differences. Gene body regions were enriched among early stage tumor 149 

DMGRs compared to all other regions (Fisher’s Exact Test OR = 4.15, 95% CI = 1.04 – 150 

23.83, P = 0.04). All differentially methylated CpG probe IDs are given in 151 

Supplementary Table S5. DAVID pathway analysis applied to the top 400 most 152 

aberrantly methylated genes in common to the four PAM50 subtypes identified the GO 153 

term for the regulation of hormone levels to be significantly enriched (GO:0010817, FDR 154 

= 0.035, Supplementary Table S6). 155 

 156 

Breast cancer copy number alterations in 1p36 157 

Among these 523 tumors, the prevalence of 1p36.3 copy number alteration was 158 

only 1.2% (n=6), all were amplifications that affected ten of the eleven genes most distal 159 

to the chromosome end. Among the six tumors with 1p36.3 amplification three were 160 

Basal-like, two were Her2-enriched, and one was Luminal A. Exclusive of tumors with 161 

copy number alterations, there was one tumor (Her2-enriched), with a truncating 162 

mutation in KLHL17, and one tumor with a missense mutation in PLEKHN1 (Basal-like). 163 

 164 

 165 

 166 
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DMGRs impact gene expression 167 

We identified CpG sites with significant correlation of methylation with gene 168 

expression for five genes (AGRN, PLEKHN1, KLHL17, SAMD11, and FAM41C), 169 

associated with eight DMGRs (Supplementary Table S7 and Supplementary Figures S6-170 

9).  171 

 172 

Validating DMGR hits in an independent dataset 173 

 We validated our findings in an independent 450K methylation data set from 186 174 

tumors and 46 normal tissues described in Fleischer et al. (GSE60185). Seventeen of 175 

nineteen DMGRs were significantly differentially methylated between tumor and normal 176 

tissues in the replication set (all DMGRs at Q < 0.01; Table 2), and CpGs in these 177 

DMGRs had similar patterns of beta value distributions (Supplemental Figure S10). The 178 

remaining two gene regions were also highly ranked in the q value distribution (WASH5P 179 

body: Q = 0.07; ISG15 Body: Q = 0.10).  180 

 181 

Reproducibility 182 

All TCGA and validation data is publicly available.  We also provide software 183 

under an open source license for analysis reproducibility and to build upon our work21. 184 

 185 

DISCUSSION: 186 

 We were interested in identifying common biology underlying breast cancer 187 

independent of molecular subtype and cell-type proportion. After applying a reference-188 

free deconvolution algorithm, we observed that early stage tumors harbor differentially 189 
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methylated gene regions localized entirely to a small region on 1p36.3 shared across four 190 

major subtypes. Although DNA methylation alterations are widespread in early stage 191 

tumors and prior work has demonstrated alterations that differ among breast tumor 192 

subtypes9,22 we observed only 19 DMGRs that overlapped molecular subtypes. All 193 

DMGRs tracking to the same region on 1p36.3 suggests that altered regulation of this 194 

region contributes to breast carcinogenesis irrespective of disease subtype.  195 

Previously, alterations on chromosome 1 have been observed in breast cancer cell 196 

lines and tumors23. Additionally, copy number deletions in this region have been shown 197 

to be an important precursor in DCIS tumors 24 and in follicular lymphomas 25.  However, 198 

the most prevalent copy number alterations on chromosome 1 are gains on the q arm and 199 

losses on the p arm that do not typically fully encompass our implicated genes on 200 

1p36.323,26,27.  The region is also well-studied and significantly altered in neuroblastoma – 201 

the most common solid tissue tumor of childhood28–31. The biological underpinnings of 202 

this region remain elusive19,32 but a systematic understanding of how these specific 203 

DMGRs may impact early cancer development may be important for other cancer types 204 

and not just breast cancer. 205 

Of the nineteen DMGRs identified, eighteen of them replicated in either one or 206 

both late stage and independent validation sets. The one DMGR that did not replicate was 207 

the WASH5P body. This region is located more than 830,000 base pairs (bp) away from 208 

the much tighter region spanned by the remaining eighteen DMGRs (~188,000 bp), 209 

suggesting a loose association between WASH5P and the other ten genes. 210 

There is also additional evidence implicating the potential importance of the 211 

identified genes assigned to the differentially methylated regions. For example, in a study 212 
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of mutational profiles in metastatic breast cancers, AGRN was more frequently mutated in 213 

metastatic cancers compared with early breast cancers33.  Similarly, expression of the 214 

HES4 Notch gene is known to be significantly correlated with the presence of activating 215 

mutations in multiple breast cancer cell lines, and is associated with poor patient 216 

outcomes34. In addition, ISG15 has been implicated as a key player in breast 217 

carcinogenesis35, though there is conflicting evidence36. However, the conflicting 218 

evidence to date may be related to our observation of ISG15 hypomethylation in Basal-219 

Like, Her2, and LumB tumors, and hypermethylation in LumA tumors (Supplementary 220 

Table S3). Opposing methylation states among tumor subtypes relative to normal tissue 221 

may contribute to subtype-specific roles of ISG15 dysregulation in breast carcinogenesis. 222 

Additionally, the NOC2L gene has been identified as a member of a group of prognostic 223 

genes derived from an integrated microarray of breast cancer studies37. We also identified 224 

three DMGRs –  TSS1500, Body, & 5’UTR – in the SAMD11 gene, which has 225 

significantly reduced expression in breast cancer cells compared to normal tissues38,  226 

consistent with our findings of SAMD11 hypermethylation across all four breast cancer 227 

subtypes. As DNAm changes were observed consistently and robustly across subtypes, it 228 

is likely that several of the other identified genes are cancer initiation factors that require 229 

additional study. 230 

Importantly, we validated the identified DMGRs in an independent set of invasive 231 

breast tumors and normal tissues. Our validation is strengthened by the lack of molecular 232 

subtype assignments in the validation set. The validation of DMGRs in a setting agnostic 233 

to intrinsic subtype indicates that differential magnitude or direction of methylation 234 

alterations that may be present in different subtypes did not limit our ability to identify 235 
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significant alterations. A limitation of the validation set is a lack of gene expression data 236 

to further investigate relationships between expression and methylation for each gene 237 

region. Nevertheless, additional targeted studies on this set of validated genes and gene 238 

regions can enhance the understanding of methylation alterations at these DMGRs in 239 

breast carcinogenesis. 240 

Caution should be exercised in interpreting the results of the adjusted beta 241 

coefficients from the reference-free algorithm. It is unclear if specific disease states are a 242 

result of aberrant methylation profiles in specific cell types which then cause changes to 243 

cell mixtures, or if the disease state is a result of cell-type proportion differences. 244 

Additionally, the unsupervised clustering heatmaps plot unadjusted methylation beta 245 

values and do not account for cell type adjustment. Lastly, the DMGR analysis drops 246 

CpGs that do not track to gene regions, which may reduce detection of non-genic regions 247 

related with breast carcinogenesis.  248 

We identified and validated DMGRs in early stage breast tumors across PAM50 249 

subtypes that are located on chromosome 1p36.3. The observed differential methylation 250 

suggests that this region may contribute to the initiation or progression to invasive breast 251 

cancer. Additional work is needed to investigate the scope of necessary and sufficient 252 

alterations to 1p36.3 for transformation and to more clearly understand the implications 253 

of 1p36.3 methylation alterations to gene regulation. Further investigation of DNAm 254 

changes to 1p36.3 may identify opportunities for early identification of breast cancer or 255 

risk assessment. Lastly, the reference-free approach we used could be applied to 256 

methylation datasets from other tumor types to identify potential drivers of 257 

carcinogenesis common across histologic or intrinsic molecular subtypes. 258 
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 259 

PATIENTS & METHODS: 260 

Data Processing 261 

We accessed breast invasive carcinoma Level 1 Illumina HumanMethylation450 262 

(450K) DNAm data (n = 870) from the TCGA data access portal and downloaded all 263 

sample intensity data (IDAT) files. We processed the IDAT files with the R package 264 

minfi using the “Funnorm” normalization method on the full dataset 39. We filtered CpGs 265 

with a detection P-value > 1.0E-05 in more than 25% of samples, CpGs with high 266 

frequency SNP(s) in the probe, probes previously described to be potentially cross-267 

hybridizing, and sex-specific probes 40,41. We filtered samples that did not have full 268 

covariate data (PAM50 subtype, pathologic stage42,12) and full demographic data (age and 269 

sex). All tumor adjacent normal samples were included regardless of missing data (n = 270 

97, Table 1).  271 

From an original set of 485,512 measured CpG sites on the Illumina 450K array, 272 

our filtering steps removed 2,932 probes exceeding the detection P-value limit, and 273 

93,801 probes that were SNP-associated, cross-hybridizing, or sex-specific resulting in a 274 

final analytic set of 388,779 CpGs. From 870 TCGA breast tumors, we restricted to 275 

primary tumors with available PAM50 intrinsic subtype assignments of Basal-like (n = 276 

86), Her2 (n = 31), Luminal A (n = 279), and Luminal B (n = 127), excluding Normal-277 

like tumors due to limited sample size (n = 18). Lastly, we restricted the final total tumor 278 

set to only those with stage assignments resulting in a final analytic sample size of n = 279 

523.  280 

 281 
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Reference-free cell type adjustment modeling 282 

We stratified samples by PAM50 subtype (Basal-like, Luminal A, Luminal B, 283 

Her2) and then by tumor stage dichotomizing as early (stage I and II tumors) and late 284 

(stage III and IV tumors)42, resulting in eight distinct models. To analyze DNAm 285 

differences between tumor and normal tissue and to adjust for effects of cellular 286 

heterogeneity across samples, we applied the reference-free deconvolution algorithm 287 

from the RefFreeEWAS R package to each model adjusting for age16. The method 288 

estimates the number of underlying tissue-specific cell methylation states contributing to 289 

methylation heterogeneity through a constrained variant of NMF43. Briefly, the method 290 

assumes the sample methylome is composed of a linear combination of the constituent 291 

methylomes. It decomposes the matrix of sample methylation values (𝑌) into two 292 

matrices (𝑌 = 𝑀Ω𝑇), where M is an 𝑚 𝑥 𝐾 matrix of m CpG-specific methylations states 293 

for K cell types and Ω is a 𝑛 𝑥 𝐾 matrix of subject-specific cell-types. K is selected via 294 

bootstrapping K = 2…10 and choosing the optimal K that minimizes the bootstrapped 295 

deviance. To correct for multiple comparisons, we converted all extracted P-values to Q-296 

values using the R package qvalue44. 297 

 298 

Identifying differentially methylated gene regions 299 

To understand the genomic regions with common DNAm alterations we grouped 300 

CpGs by gene and region relative to genomic location (transcription start site 1500 301 

(TSS1500), TSS200, 3’ untranslated region (3’UTR), 5’UTR, 1st exon, and gene body). 302 

We used this gene-region taxonomy to collapse differentially methylated CpGs, as 303 

defined by our Q-value cutoff, into specific differentially methylated gene regions 304 
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(DMGRs). This extended the Illumina 450K CpG annotation file to allow for a given 305 

CpG to be associated with up to two genes depending on the proximity of the CpG site to 306 

neighboring genes (Figure 3). 307 

 308 

Figure 3. Diagram of CpG sites relative to gene regions (Transcription start sites 309 

(TSS1500 & TSS200), Untranslated regions (5’UTR & 3’UTR), and the gene body). Dark 310 

circles indicate methylated sites and empty circles indicate unmethylated sites. 311 

 312 

We defined a differentially methylated CpG as one with a Q-value < 0.01 following cell-313 

type adjustment in a specific subtype model compared to normal tissue. To identify 314 

DMGR sets for each stage and subtype, we analyzed all eight models independently.  315 

 316 

 Pathway Analysis 317 

 We performed a DAVID (the database for annotation, visualization and integrated 318 

discovery) analysis45,46 for the 400 genes with the lowest median CpG Q-values that are 319 

in common to all early stage tumors regardless of PAM50 subtype, and extracted 320 

enriched Gene Ontology (GO)47 and Kyoto Encyclopedia of Genes and Genomes 321 

(KEGG)48 terms. We selected the top 400 genes based on recommended gene list sizes49.  322 
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 323 

Copy number, gene expression, and genomic location 324 

 We downloaded TCGA Breast Invasive Carcinoma CNV data9 and normalized 325 

RNAseq using cBioPortal50. For the DMGRs we identified, we analyzed the prevalence 326 

of copy number alterations and mutations in each gene across all samples, stratified by 327 

molecular subtype. Similarly, to determine whether these DMGRs affect gene expression 328 

of their target gene, we calculated Spearman correlations of DNAm beta values in 329 

significant CpGs (Q < 0.01) to matched sample Illumina HiSeq gene expression data. We 330 

used a Bonferroni correction to determine significant expression differences, resulting in 331 

an acceptance alpha value of 9.36E-5. 332 

 333 

Validation 334 

 To confirm the identified early stage DMGRs in common among intrinsic 335 

molecular subtypes we applied the analysis workflow to TCGA late stage tumors and an 336 

independent validation set (GSE60185)20. The validation set includes samples of ductal 337 

carcinoma in situ (DCIS), mixed, invasive, and normal histology collected from Akershus 338 

University Hospital and from the Norwegian Radium Hospital. We analyzed only the 339 

invasive samples compared to normal samples using the same bioinformatics pipeline of 340 

quality control CpG filtering steps and normalization procedures. However, we did not 341 

have complete age information or intrinsic subtype assignments for the validation set and 342 

the models are not adjusted for age or stratified by subtype. This resulted in a single 343 

model comparing 186 invasive tumors with 46 normal controls measured across 390,253 344 

CpGs. 345 
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SUPPLAMENTAL FIGURES: 548 

 549 

Supplementary Figure S1. Box plots show the distribution of tumor purity across all 550 

subtypes for both early and late stages of the TCGA dataset. The measurements estimated 551 

by TCGA are based on histology slides and indicate the estimated distribution of the 552 

number of tumor cells, stromal cells, and normal cells in each sample. See the NCI CDE 553 

Browser for more details. 554 

 555 
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 556 

Supplementary Figure S2. Volcano plots from the eight models. The left most panel in 557 

each model indicates unadjusted P values and the right panel indicates RefFree adjusted 558 

P values. Each point represents a CpG considered in the model and the color of the 559 

points represents the change in the beta coefficient following adjustment (delta value). 560 

The red lines indicate a Q value cutoff of 0.01 and the black lines indicate a Q value 561 

cutoff of 0.05. 562 

 563 
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 564 

Supplementary Figure S3. Venn diagram depicting overlapping Illumina annotation file 565 

UCSC regions between (A) early and (B) late stage tumors stratified by subtype. The 566 

regions consist of mappings relative to CpG island definitions (e.g. <Gene Name> 567 

N_Shore).  568 
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 570 

Supplementary Figure S4. Diagram of chromosome 1. (A) The entire chromosome 1 571 

with regions annotated. (B) A zoomed in view of chromosome 1p36.3 with each identified 572 

gene annotated on a track and highlighted in red boxes indicating a gene cluster between 573 

base pairs 868,071 - 1,056,116. (C) The negative log of the median Q-value for all CpG 574 

sites within each DMGR, stratified by PAM50 subtype and arranged along the x-axis 575 

according to genomic position reflected in panel B. (D) The negative log of the median 576 

Q-value for all CpG sites within each DMGR in the ten gene cluster (without WASH5P), 577 

stratified by PAM50 subtype and arranged along the x-axis according to genomic 578 

position reflected in panel B. 579 
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 581 

Supplementary Figure S5.  The relationship between differentially methylated CpG sites 582 

and FAM41C gene expression in early stage tumors and normal tissue with matched 583 

RNAseq samples stratified by PAM50 subtype. All tumors (orange), all normal tissue 584 

(black), Luminal A (blue), Luminal B (green), Her2 (purple), and Basal-like (red) are 585 

given in the different facets of the figure.  586 

 587 
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 589 

Supplementary Figure S6. The relationship between differentially methylated CpG sites 590 

and AGRN gene expression in early stage tumors and normal tissue with matched 591 

RNAseq samples stratified by PAM50 subtype. All tumors (orange), all normal tissue 592 

(black), Luminal A (blue), Luminal B (green), Her2 (purple), and Basal-like (red) are 593 

given in the different facets of the figure.  594 
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 596 

Supplementary Figure S7. The relationship between differentially methylated CpG sites 597 

and PLEKHN1 gene expression in early stage tumors and normal tissue with matched 598 

RNAseq samples stratified by PAM50 subtype. All tumors (orange), all normal tissue 599 

(black), Luminal A (blue), Luminal B (green), Her2 (purple), and Basal-like (red) are 600 

given in the different facets of the figure.  601 
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 603 

Supplementary Figure S8. The relationship between differentially methylated CpG sites 604 

and KLHL17 gene expression in early stage tumors and normal tissue with matched 605 

RNAseq samples stratified by PAM50 subtype. All tumors (orange), all normal tissue 606 

(black), Luminal A (blue), Luminal B (green), Her2 (purple), and Basal-like (red) are 607 

given in the different facets of the figure.  608 
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 610 

Supplementary Figure S9. The relationship between differentially methylated CpG sites 611 

and SAMD11 gene expression in early stage tumors and normal tissue with matched 612 

RNAseq samples stratified by PAM50 subtype. All tumors (orange), all normal tissue 613 

(black), Luminal A (blue), Luminal B (green), Her2 (purple), and Basal-like (red) are 614 

given in the different facets of the figure.  615 
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 617 

Supplementary Figure S10. Results from the validation set (Fleischer et al 2014; 618 

GSE60185). Validation set raw (unadjusted) beta value heatmap of the significantly 619 

differentially methylated CpG sites in the common early stage differentially methylated 620 

gene regions (DMGRs) identified in the initial analysis. The genomic context is given in 621 

the vertical color bar (blue = gene body, dark pink = TSS200, light pink = TSS1500) and 622 

tumor vs. normal status is given in the horizontal color bar (black = tumor, white = 623 

normal tissue). In the heatmap, yellow indicates low methylation and blue indicates high 624 

methylation. 625 
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