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Abstract

Co-expression networks have long been used as a tool for investigating the molecular
circuitry governing biological systems. However, most algorithms for constructing
co-expression networks were developed in the microarray era, before high-throughput
sequencing—with its unique statistical properties—became the norm for expression
measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses
Bayesian reasoning about expression levels to account for the differing levels of
uncertainty in expression measurements between highly- and lowly-expressed entities,
and between samples with different sequencing depths. It combines data from groups of
samples (e.g., replicates) to estimate group expression levels and confidence ranges. It
then computes uncertainty-moderated estimates of cross-group correlations between
entities, and uses permutation testing to assess their statistical significance. Using large
scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update
of the classical Relevance Networks algorithm provides improved reproducibility in
co-expression estimates and lower false discovery rates in the resulting co-expression
networks. Software is available at www.perkinslab.ca/Software.html.

Introduction 1

Co-expression of genes, microRNAs, long non-coding RNAs and other transcribed 2

entities is a key biological property with multiple implications [7, 26,37]. On the one 3

hand, co-expression can indicate co-regulation at the transcriptional level thereby 4

revealing how gene expression is controlled [4, 30,37] while, on the other hand, 5

co-expression can be the result of coordinated epigenetic mechanisms [28,31]. In yet 6

other instances, co-expression of certain genes can serve as biomarkers in diseases such 7

as cancer [11,20] and mental disorders [31], or aid in defining distinct cell populations 8

and subpopulations [25]. 9

One of the earliest, and still widely used, tools for estimating and exploring networks 10

of co-expression is the Relevance Networks algorithm of Butte et al. [10]. The algorithm 11

has four main steps. First, entities (e.g., genes) with low estimated entropy are removed, 12
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as correlations between them may result from one or a few outlier samples. Second, 13

Pearson correlations are computed between all pairs of remaining entities. Third, 14

permutation testing is used to establish a null distribution for the correlations. Fourth 15

and finally, a co-expression network is created by connecting any pair of entities whose 16

correlation exceeds a statistical significance threshold set by the user (in conjuction with 17

the estimated null distribution). The Relevance Networks algorithm has been used 18

successfully in numerous studies to uncover significant co-expression relationships 19

(e.g., [13, 17,23,27]). 20

Many elaborations and alternatives to the original Relevance Networks algorithm 21

have been proposed over the years [1, 8, 9, 14, 34, 42]. These include improvements aimed 22

at detecting non-linear relationships between the expression of different entities by using 23

mutual information criteria [8, 9], or discriminating co-expression more likely to result 24

from direct rather than indirect interactions [8, 14]. As replicate data became more 25

common, algorithms were developed to accomodate co-expression analysis of data with 26

replicates [1, 42]. Other work has focussed on robustly estimating correlations when the 27

number of samples is much smaller than the number of entities [34]—although 28

interestingly, we are finally emerging from that conundrum. For instance, the dataset 29

we analyze in this paper describes 2,456 miRNAs measured over 10,999 samples. 30

While these algorithms included important new ideas and methods, they were all 31

developed in the era of microarray-based expression measurements. The recent past has 32

seen a fundamental shift in the technology used for expression measurement from 33

microarray-based to sequencing-based platforms [2, 16]. Sequencing-based approaches 34

produce measurement values with very different error properties, dynamic ranges, and 35

signal-to-noise ratios than microarrays. In particular, the relative precisions of 36

low-expression measurements are much worse compared to those of high-expression 37

measurements. Furthermore, precision differs between samples, at the very least due to 38

differences in sequencing depth, if not other factors [3]. Owing to all these reasons, the 39

established body of algorithms for co-expression network construction may not be 40

optimal for sequencing-based expression measurements, and hence there is a strong need 41

to adapt these methods to the realities of this new type of data. 42

Here, we develop a Bayesian version of the classical algorithm of Butte et al. [10], 43

which we call the Bayesian Relevance Networks algorithm. It builds on our recent work 44

where we proposed a Bayesian correlation scheme to analyze sequence count data [33]. 45

We employ Bayesian statistics both for estimating the expression levels and for 46

quantifying the uncertainties in those estimates. From those beliefs, we construct 47

estimates of mean expression levels and their uncertainties in groups of samples. This 48

allows us to study cross-group correlations in studies with replicates or other natural 49

sample groups (e.g., patients with the same disease). We describe how to perform 50

permutation testing to estimate a null distribution for grouped Bayesian correlations. 51

This enables the computation of p-values for the statistical significance of observed 52

correlations, and allows us to estimate rates of true and false positive links in a 53

Bayesian Relevance Network. 54

Throughout the paper, we evaluate our approach on a large-scale public microRNA 55

(miRNA) expression dataset from The Cancer Genome Atlas project (TCGA) [41]. In a 56

series of cross-validation studies, we find that Bayesian co-expression estimates are more 57

reproducible than the Pearson co-expression estimates used by the original Relevance 58

Networks algorithm. We find that Bayesian Relevance Networks are less prone to false 59

positive links and have lower false discovery rates than classical Relevance Networks. 60

Finally, we find that entropy filtering to remove “spurious” correlations improves both 61

classical and Bayesian Relevance Networks. At the end of the Results section, we 62

present a Bayesian Relevance Network based on the full datasets, where we demonstrate 63

several interesting cancer type-specific clusters of co-expressed miRNAs. 64
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Materials and Methods 65

Problem Formulation 66

The algorithm we propose is for computing a co-expression network among m possible 67

entities (genes, miRNAs, etc.) measured across a set of samples organized into n groups. 68

The groups may represent replicates of a condition, patients with a common disease, etc. 69

Group g has ng samples in it. 70

We observe Rigs reads for entity i in group g sample s. The total number of reads 71

for that sample is Rgs =
∑
iRigs. We assume that the Rigs, i = 1 . . .m, are 72

multinomially distributed. 73

Pr(R1gs, R2gs, . . . , Rmgs) = Multinom(Rgs, p1gs, p2gs, . . . , pmgs) , (1)

where the pigs are unknown. Each pigs represents the idealized fraction of the sample s 74

in group g that comes from entity i. We can also think of it as what Rigs/Rgs should 75

converge to in the limit of infinite sequencing depth (Rgs →∞). We define the group 76

mean idealized fractions as pig = 1
ng

∑ng

s=1 pigs, and the grand mean idealized fraction 77

as pi = 1
n

∑n
g=1 pig. 78

We take the pigs to be our definition of the expression level. Other common 79

definitions include reads per million (RPM), or fragments per kilobase per million 80

(FPKM). Both of these normalize for sequencing depth in a given sample and are 81

proportional to pigs. As correlations are independent of scale, working with the pigs is 82

equivalent to working with RPM or FPKM. Other normalization schemes could be 83

accomodated, as long as the expression level can be written as an affine function of the 84

pigs. However, so as not to overly complicate our notation, we leave this to the reader. 85

For any two entities i and j the cross-group Pearson correlation of their expression 86

values is 87

rPij =
covg(pig, pjg)√

varg(pig)varg(pjg)
. (2)

Ideally, we would like to connect entities i and j in a co-expression network if their 88

cross-group correlation is statistically significantly large. The problem, of course, is that 89

the pig are unknown, so we must estimate them. 90

The Bayesian Relevance Networks Algorithm 91

In principle, one could construct a Bayesian belief about the unknown Pearson 92

correlation itself. However, this is not computationally convenient. Instead, we use 93

Bayesian methods to construct estimates of the expression levels, pigs, and then 94

estimate their correlations. The algorithm we propose has four steps, which are detailed 95

in the following subsections. 96

1. Remove low entropy entities from consideration (optional). 97

2. Compute Bayesian estimates of the cross-group correlations of expression between 98

every (remaining) pair of entities 99

3. Use permutation computations to estimate a null distribution for the Bayesian 100

cross-group correlations 101

4. Create a network by linking entities whose Bayesian correlations are statistically 102

significant 103
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Entropy filtering 104

This step is optional. We include it for the same reason it was included in the original 105

Relevance Networks algorithm—that correlations may arise spuriously due to outliers. 106

For instance, suppose two entities are generally expressed at constant levels, but in one 107

sample both of their levels are much higher or lower than normal. These two entities 108

will thus appear to have highly correlated expression levels. In some cases this may be 109

genuinely true, although we may not be comfortable about the robustness of a 110

correlation that depends on a single sample being present in the dataset. The same 111

phenomenon might also arise for more mundane reasons, such as sample mishandling, 112

contamination, poor sequencing depth, etc. Thus, it may make sense to remove entities 113

with such expression profiles from consideration. 114

To allow for direct comparison between our Bayesian approach and the classic 115

Relevance Networks algorithm, we use the exact same entropy filtering procedure. For 116

each entity i, we compute the maximum likelihood expression estimates, 117

p̂igs = Rigs/Rgs. We then compute the minimum, A = mings p̂igs, and maximum, 118

B = maxgs p̂igs, expression levels across all samples in all groups. If A = B then we 119

estimate the entropy of entity i’s expression as Hi = 0. Otherwise, we divide the 120

interval [A,B] into 10 equal-sized bins. We determine the empirical fraction of the p̂igs 121

that fall into each of those 10 bins, calling them fi1 . . . fi10. We then estimate the 122

entropy of entity i’s expression as Hi = −
∑10
j=1 fij log2 fij . Entities with estimated 123

entropies in the lowest Hthresh% are discarded, where Hthresh is chosen by the user. 124

Bayesian estimation of pairwise correlations 125

The essence of our Bayesian approach is to first construct beliefs over the true 126

expression levels of all the entities. We then propose that the Pearson correlation 127

between two entities be replaced by what we call the Bayesian correlation. We compute 128

variances and covariances across groups and also with respect to our uncertainty about 129

the true expression levels. Using u to denote our uncertainty informally—and we will 130

become formal very shortly—the Bayesian correlation can be written as 131

rBij =
covg,u(pig, pjg)√

varg,u(pig)varg,u(pjg)
(3)

Intuitively, high uncertainty in expression levels may influence the covariance term, but 132

it will definitely inflate the variance terms in the denominator, leading to lower 133

estimates of correlation. (More precisely, estimates moderated towards zero.) 134

We adopt a standard Bayesian approach to estimate the idealized fractions pigs. For 135

each group g and sample s, we employ a Dirichlet distribution to model our uncertainty 136

about the pigs. We assume the Dirichlet beliefs for different samples are independent. 137

Thus, for sample s and group g we adopt a prior belief, 138

Pr(p1gs, p2gs, . . . , pmgs) = Dirichlet(α0
1gs, α

0
2gs, . . . , α

0
mgs) (4)

=
Γ(
∑m
i=1 α

0
igs)∏m

i=1 Γ(α0
igs)

m∏
i=1

p
α0

igs

igs . (5)

The posterior distribution is 139

Pr(p1gs, p2gs, . . . , pmgs|R1gs, R2gs, . . . , Rmgs) (6)

= Dirichlet(α1gs, α2gs, . . . , αmgs) (7)

= Dirichlet(α0
1gs +R1gs, α

0
2gs +R2gs, . . . , α

0
mgs +Rmgs) . (8)

The prior parameters α0
igs may be chosen however one likes. We previously showed 140

that poor choice of priors can lead to highly biased estimates of correlation [33], and 141
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thus some care should be taken with the choice. We employ αigs = 1/m, which has 142

provably low bias for low expression entities represented by few read counts [33]. For 143

entities with high read counts, the prior makes little difference, as the posterior is 144

determined almost entirely by the data. With these assumptions, and defining 145

αgs =
∑m
i=1 αigs, the mean of the marginal posterior distribution for pigs with respect 146

to our beliefs (which we denote by u for “uncertainty”) is 147

Eu pigs =
αigs
αgs

. (9)

The variance of that marginal posterior is 148

varu pigs =
αigs(αgs − αigs)
α2
gs(αgs + 1)

. (10)

The covariance of our beliefs about the expression of two different entities, i and j 6= i, 149

within the same sample s of group g is 150

covu(pigs, pjgs) =
−αigsαjgs
α2
gs(αgs + 1)

. (11)

This covariance is nonzero because of the implicit requirement that
∑m
i=1 pigs = 1. 151

Intuitively, if we believe that i’s expression is larger, we must believe that the expression 152

of other entities is smaller. 153

From these, we can readily compute the within-group means, variances and 154

covariances between entities, accounting for our uncertainty. Recalling that by 155

definition, pig is the average of pigs across samples s, we have the following. 156

Eu pig = Eu

ng∑
s=1

1

ng
pigs (12)

=

ng∑
s=1

1

ng

αigs
αgs

. (13)

157

varu pig = varu

ng∑
s=1

1

ng
pigs (14)

=
1

n2g

ng∑
s=1

varu pigs (15)

=
1

n2g

ng∑
s=1

αigs(αgs − αigs)
α2
gs(αgs + 1)

. (16)

Eq 15 follows because our estimates for different samples are statistically independent, 158
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so the variance of the sum is the sum of the variances. 159

covu(pig, pjg) = covu

(
ng∑
s=1

1

ng
pigs ,

ng∑
s′=1

1

ng
pjgs′

)
(17)

=
1

n2g
covu

(
ng∑
s=1

pigs ,

ng∑
s′=1

pjgs′

)
(18)

=
1

n2g

ng∑
s=1

ng∑
s′=1

covu(pigs, pjgs′) (19)

=
1

n2g

ng∑
s=1

covu(pigs, pjgs) (20)

=
1

n2g

ng∑
s=1

−αigsαjgs
α2
gs(αgs + 1)

. (21)

Eq 20 follows because our beliefs are independent for different samples, hence there is 160

no covariance when s 6= s′. We can then define the total variance across groups and 161

uncertainty, for entity i, as 162

varg,u pig = vargEu pig + Egvaru pig (22)

=
n∑
g=1

1

n
(Eu pig − Eu pi)2 +

n∑
g=1

1

n
varu pig . (23)

Similarly, we define the total covariance across groups and uncertainty, for entities i and 163

j, as 164

covg,u(pig, pjg) = covg(Eu pig, Eu pjg) + Eg covu(pig, pjg) (24)

=

n∑
g=1

1

n
(Eu pig − Eu pi)(Eu pjg − Eu pj) +

n∑
g=1

1

n
covu(pig, pjg) (25)

Eqs 23 and 25 can be substituted back into Eq 3 to completely specify the definition 165

and computation of the Bayesian correlation. One step of this substitution and 166

expansion is displayed below, as it will be relevant to our discussion of permutations in 167

the next section. 168

rBij =
covg,u(pig, pjg)√

varg,u(pig)varg,u(pjg)

=
covg(Eu pig, Eu pjg) + Eg covu(pig, pjg)√

(vargEu pig + Egvaru pig)(vargEu pjg + Egvaru pjg)
. (26)

A Permutation Scheme for Assessing Statistical Significance 169

Permutation testing is a common approach to assessing significance of associations 170

between variables. However, in our context, this is not entirely straightforward. It is not 171

sufficient to simply permute the read counts Rigs for each entity i and recompute 172

Bayesian correlations. Recall that the estimated expression levels of entity i depend not 173

only on Rigs but also on the total reads in the samples, Rgs. Permuting the read counts 174

would change the Rgs, and therefore change the estimated expression levels. 175

Permutation testing should “break” associations between different entities by 176

reassigning their values to different samples, but it should not change the values 177
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themselves. It is also not sufficient to permute the estimated expression levels, Eu pigs, 178

as that could change estimated group expression levels, Eu pig. 179

With the null hypothesis being that there is no cross-group correlation between 180

entities, we suggest that a proper way to estimate a null distribution between entities i 181

and j is to compute many different permutations ρ : {1 . . . n} 7→ {1 . . . n} of the group 182

numbers (all permutations, if possible). For each permutation ρ we evaluate the 183

following formula. 184

rρij =
covg(Eu pig, Eu pρ(j)g) + Eg covu(pig, pjg)√

varg,u(pig)varg,u(pjg)
(27)

The distribution of that value for many different permutations ρ is taken to be the null 185

distribution of the Bayesian correlation. 186

In comparison with the formula for the Bayesian correlation (Eq 26), the permuted 187

values of j’s group-level expression are used in the first covariance term. This is the part 188

of the formula where the hypothesis of no cross-group correlation would have its effect. 189

We do not use the permuted j’s in the second covariance term. That term represents 190

the covariance of our beliefs within a sample, which results from the necessity that 191

expression levels within a sample add up to one. This is not affected by the null 192

hypothesis, so we leave it unchanged. The permutations also do not appear in the 193

variance terms of the denominator, although it would not matter if they did, as the 194

variances of i’s and j’s expression are independent. 195

Statistical Significance and Constructing the Bayesian Relevance Network 196

In the classical Relevance Networks algorithm, a single null distribution for correlations 197

under the null hypothesis is constructed by combining the permuted correlations across 198

all pairs of entities. Although it is technically more sound to maintain a separately 199

estimated null distribution for each pair of entities (i, j), in order to maximize our 200

ability to compare the results of Bayesian Relevance Networks to the classical algorithm, 201

we do the same here. Thus, suppose that K times we have permuted the group 202

idealized fractions, Eu pig, of every entity i, and recomputed the cross-group Bayesian 203

correlations as in Eq 27. Let rρijk represent the permuted Bayesian correlation between 204

entities i and j in the kth permutation. We estimate the overall probability of a 205

correlation of at least t, under the null hypothesis, as 206

P (r ≥ t) =
|{(i, j, k) : i < j and rρijk ≥ t}|

Km(m− 1)/2
(28)

Suppose we construct a Bayesian Relevance Network by connecting any pair of 207

entities i and j if their Bayesian correlation is at least t, obtaining Nt such pairs. Given 208

that there are m(m− 1)/2 possible pairs of entities, we can estimate the expected 209

number of false positives at that threshold as FPt = P (r ≥ t)m(m− 1)/2. The number 210

of true positives can be estimated as max(Nt − FPt, 0). The false discovery rate can be 211

estimated as min(FPt/Nt, 1), as long as Nt > 0. Together, these quantities—estimated 212

numbers of true positives, numbers of false positives, and the false discovery rate—can 213

be employed by the user to make a rational choice for the threshold t used to construct 214

the network. 215

Data 216

To demonstrate and evaluate our approach, and potentially to generate some biological 217

insights in an important area, we decided to analyze miRNA expression data from The 218

Cancer Genome Atlas (TCGA) [41]. We used the Genomic Data Commons data 219
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portal [19] to download all available “isoforms.quantification.txt” files on November 10, 220

2016. These files report counts of miRNA-seq reads mapped to a large number of 221

genomic intervals. Those intervals are also annotated for whether they represent a 222

certain pre-miRNA, a mature miRNA, or several other types of objects. From each file, 223

we collected all lines corresponding to a mature miRNA (specified by a unique 224

miRBase [18] MIMAT identifier), and then added up all counts corresponding to the 225

same mature miRNA. This includes reads mapped to slightly different genomic intervals 226

within the same mature miRNA, as well as entirely different genomic regions that 227

happen to code for the same mature miRNA. In the end, this left us with read counts 228

for 2456 distinct mature miRNAs, across 10,999 patient samples. 229

While this gave us a wealth of data on miRNA expression in cancer, the isoform files 230

do not specify which types of cancer each patient had (nor any other patient 231

characteristics). To establish this information, we constructed a json query that, 232

through the Genomic Data Commons API, returned a list of all isoform quantification 233

files, along with their project IDs. The project IDs are synonymous with the types of 234

cancer profiled. In this way, we assigned one of 33 unique cancer types to each 235

miRNA-seq dataset. 236

In order to better inform our co-expression assessments, we downloaded from 237

miRbase [18] their version 21 miR definitions in the file “hsa.gff3”. This file specifies 238

the IDs and genomic coordinates of both stem-loop pre-cursors and mature miRNAs. It 239

also specifies which mature miRNAs are to be found in which stem-loop precursors. 240

Multiple genomic occurrences of the same mature miRNA have IDs ending in 1, 2, 241

etc., to discriminate them. However, the “Alias” field omits these IDs, which could then 242

be matched to the MIMAT IDs in the TCGA isoforms file. Similarly, we downloaded 243

from ENSEMBL their latest gene definitions in the file “Homo sapiens.GRCh38.86.gtf”. 244

This file describes many types of transcribed entities, including protein-coding genes, 245

pseudogenes, long non-coding RNAs, miRNAs, etc. Importantly, it includes their 246

genomic locations. Using these sources of information, we were able to categorize every 247

pair of mature miRNAs into one of the following categories: (1) “stem-loop” if the two 248

mature miRNAs occur within the same stem-loop precursor miRNA anywhere in the 249

genome; (2) “transcript” if the two mature miRNAs occur within the same transcribed 250

entity (according to ENSEMBL) but not the same stem-loop precursor; (3) “near” if the 251

two mature miRNAs occur within 10kb on the genome; (4) “cluster” if the two mature 252

miRNAs occur within the same equivalence class in the transitive closure of the “near” 253

relation, but are not themselves “near”. For example, if i is near j and j is near k, but i 254

and k are not near, then i and k are still in the same cluster; (5) “non-local” if none of 255

the previous categories apply. 256

Results 257

TCGA miRNA expression data spans many orders of 258

magnitude across miRNAs and samples 259

As described in the Methods section, we obtained miRNA-seq expression data from the 260

TCGA project through the Genomic Data Commons, resulting in read counts for 2456 261

miRNAs in 10,999 patient samples, representing 33 cancer types. The data is shown in 262

Fig 1A. Each row corresponds to a miRNA, and each column corresponds to a patient 263

sample. The most-represented cancer was breast cancer, with 1207 samples, while the 264

least-represented was glioblastoma multiforme, with 5 samples. There are clearly 265

miRNAs with cancer-specific, or at least tissue-specific, expression profiles. Fig 1B 266

shows the average expression in units of RPM for the top 20 most highly expressed 267

miRNAs. The most highly expressed miRNA is mir-21-5p, with an RPM over 200,000, 268
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Fig 1. Mature miRNA expression data for 10,999 cancer patients from the TCGA
project. (A) Heatmap of expression, with red indicating high and green indicating low,
relative to the mean for each miRNA across samples. miRNAs are ordered based on a
hierarchical average-linkage Euclidean-distance clustering of the reads per million across
samples. Samples are grouped by cancer type, indicated by labels along the bottom. (B)
Average expression across samples of the 20 highest-expressed miRNAs. (C) Curves
showing expression of all miRNAs within each sample, sorted from highest to lowest
expression. (D) Histogram of the numbers of reads (i.e., sequencing depth) in each
sample.

meaning it comprises more than 20% of the total miRNA pool on average. This miRNA 269

is well known for its role in oncogenesis and metastasis [5, 15,36]. 270

Fig 1C shows the expression of every miRNA in every sample, sorted by decreasing 271

order within the sample. Expression values range from around 105 RPM to below 1 272

RPM. Because all miRNAs are measured in the same units—reads—this means that 273

relative to their expression levels, the miRNAs with lowest expression are measured 274

with approximately 1/100,000 the precision of the miRNAs with highest expression. 275

There are also great differences in sequencing depth between samples, as shown in Fig 276

1D. The sample with the greatest sequencing depth has over 36 million reads, while the 277

sample with the shallowest sequencing depth has under a quarter million. There is 278

approximately a 150-fold difference in resolution between these two samples. Given 279

these statistics, it is clear that our uncertainties about the true expression levels of the 280

miRNAs must vary widely by miRNA and by sample. 281

Bayesian correlations are more reproducible than Pearson 282

correlations 283

We expected that Bayesian correlation estimates would suppress correlations between 284

low expression miRNAs. By contrast, we expected that Pearson correlations would be 285
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more subject to falsely high or low correlations, due to spurious correlations between 286

miRNAs with low read counts. To test this, we computed the Bayesian and Pearson 287

correlations across cancer types for all miRNA pairs. For the Pearson correlations, this 288

was the correlation across cancers of the with-cancer average expression in units of 289

RPM. Fig 2A shows a density scatterplot of the Pearson and Bayesian correlations. 290

Points along the y = x diagonal line correspond to miRNA pairs where Pearson and 291

Bayesian estimates agreed. We note that there are some miRNA pairs correlated at 292

essentially +1 by both Pearson and Bayesian estimates, but no miRNA pairs with such 293

strong anticorrelations. At the same time, there are many miRNA pairs that have high 294

correlations according to the Pearson estimate, but that are relegated to much lower 295

correleation levels—including essentially zero—by the Bayesian estimate. These involve 296

miRNAs that, by our approach, have too much uncertainty in their expression levels to 297

be able to confidently assert a strong correlation. As a rather extreme example, there 298

was a strong disagreement in the estimated correlations between miR-4459 and 299

miR-5692b. The former shows expression in 70 different samples across 12 cancer types, 300

but is primarily seen in thyroid cancers, albeit at low levels (53 samples, 139 total 301

reads). The latter is expressed at only 2 reads in a single thyroid cancer sample, and 302

nowhere else. The Pearson correlation between these two is a near perfect 0.9731, 303

whereas the Bayesian correlation is 0.0512. 304

To test the reproducibility of Pearson and Bayesian correlations, we randomly 305

assigned each sample to one of two data folds, keeping the numbers of samples 306

representing each cancer type as even as possible. We then computed cross-cancer 307

Pearson correlations on each half of the data separately (Fig 2B), and likewise for the 308

Bayesian correlations (Fig 2C). For the Pearson correlations, there is broad agreement 309

between correlations computed based on each fold of the data—the estimates from each 310

half are themselves correlated. But there are also many miRNA pairs where correlations 311

from the two folds disagree dramatically. For a substantial number of pairs, one fold of 312

the data produces a Pearson correlation near 1, while the other fold produces a Pearson 313

correlation near zero. The two “lines” visible along the x- and y-axes of the density 314

scatterplot arise from miRNAs that have absolutely zero reads in one fold of the data 315

(hence no correlation to anything), but some reads in the other fold (and in some cases 316

strong correlations, although they may be spurious). In comparison, the Bayesian 317

correlation estimates from each fold of the data tend to be closer to each other. There 318

are no “lines” of exceptional behaviour for zero-count miRNAs, and no miRNA pairs 319

with near zero Bayesian correlation in one fold and near +1 Bayesian correlation in the 320

other fold (although there are a very few near 0.9). 321

To quantify the reproducibility of the two approaches more carefully, and also to 322

study the relationship between expression level and correlations, we divided miRNAs 323

into 21 bins of increasing average RPM expression. Let X denote the set of miRNAs in 324

one expression bin, and Y denote the set of miRNAs in another expression bin. From 325

data fold 1, we computed all pairwise Pearson correlations between miRNAs in bin X 326

with those miRNAs in bin Y , namely, {rP1
xy : x ∈ X, y ∈ Y }. We did the same for data 327

fold 2, compute the correlations {rP2
xy : x ∈ X, y ∈ Y }. Finally, we computed the mean 328

absolute deviation between these two sets of correlations, 329

MAD(X,Y ) =
∑
x∈X,y∈Y |rP1

xy − rP2
xy |/|X||Y |. This gives the average disagreement of 330

Pearson correlations computed from the two data folds, as a function of binned 331

expression level. Then, we did the same for the Bayesian correlations. Fig 2D shows 332

those mean absolute deviations. Generally, as the expression of both miRNAs trends 333

higher, the disagreement between the two halves of the data decreases, and the error in 334

the Pearson and Bayesian estimates is essentially identical. For these miRNAs, low 335

signal-to-noise ratio is not an issue, and Pearson and Bayesian estimates are nearly the 336

same. Error is worst when both miRNAs have low but nonzero expression, and it is 337
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Fig 2. Comparison of Pearson and Bayesian grouped correlations across cancer types.
(A) Density scatterplot of Bayesian versus Pearson correlations. Non-white points are
where at least one pair of miRNAs has the specified Pearson (x-axis) and Bayesian
(y-axis) correlations. Colored points, going from blue to yellow to red, indicate
increasing numbers of miRNA pairs with the specified correlations. (B) Agreement of
Pearson correlations when the data is divided in half and correlations computed for each
half separately. (C) Agreement of Bayesian correlations when the data is divided in half
and correlations computed for each half separately. (D) For each pair of miRNAs,
organized by their expression quantiles across all samples, the average mean absolute
deviation (MAD) between the two data halves of Pearson and Bayesian correlations.
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nearly as bad when just one of the two miRNAs has low but nonzero expression. When 338

one of the miRNAs is in the lowest expression bin, error tends not to be quite as bad, as 339

both methods will tend to assign zero correlation (but Bayesian more so than Pearson). 340

At all levels of expression, the average error of the Pearson estimates exceeds the error 341

of the Bayesian estimates. Across all pairs of miRNAs, the Pearson MAD is 0.1304 342

between folds, and the Bayesian MAD is 0.0843, a difference that is statistically 343

significant by a simple sign test at a p-value too small for machine precision (easily 344

p < 10−100). 345

Entropy filtering improves reproducibility of both Pearson and 346

Bayesian correlations 347

As described in the Introduction, the classical Relevance Networks algorithm begins by 348

filtering out entities whose expression demonstrates low entropy. The purpose of this 349

step is to avoid correlations that arise from a single sample or small set of “outliers.” 350

Whether or not such an approach is appropriate is situation dependent. For example, if 351

a subset of miRNAs were highly expressed only in glioblastoma multiforme tumours, 352

and no others, such miRNAs would appear to have low entropy. (Remember, just five 353

out of our 10,999 samples are for that disease.) We may not want to naively dismiss 354

correlations among such miRNAs, as they arise from a clear disease relevance. 355

Nevertheless, in the worst case, individual samples may be faulty and can create 356

spurious correlations. 357

To test the effect of entropy filtering on both the Pearson and Bayesian correlations, 358

we first computed the entropy of each miRNA’s expression (Fig 3A). In the original 359

paper [10], it was suggested to discard the 5% of entities with lowest entropy (dashed 360

red line). However, the appearance of the empirical entropy distribution suggested to us 361

cut off around 10% (solid red line) would better separate entities with a “normal range” 362

of entropies from those that appear unusually low. Hence, we chose 10% as our cut off, 363

and defined miRNAs with entropies below that to be “low entropy” and the remainder 364

to be “high entropy.” Fig 3B examines the relationship between miRNA expression and 365

entropy. For the most part, the low entropy miRNAs also have very low expression. 366

However, a small number of miRNAs with above average expression also have low 367

entropy. The miRNA with the highest average expression that is still classified as low 368

entropy is miR-205-3p, a miRNA with some known associations with cancer [12,22,40]. 369

This miRNA is exceptionally high in two patient samples, one thymoma and one head 370

or neck squamous cell carcinoma, where its expression levels of over 10,000 RPM are 371

more than 100 times greater than in any other sample. 372

Restricting attention to the high-entropy genes, and we recomputed the density 373

scatterplots of Pearson correlations from the two halves of our data (Fig 3C), we see 374

that the lines of exceptional correlations along the x- and y-axis are gone. (Compare to 375

Fig 2B.) However, the overall qualitative shape of the point cloud remains, as do 376

numerous miRNA pairs that have near +1 correlation in one half of the data and near 377

zero correlation in the other half. Fig 3D shows the Bayesian correlations of the 378

high-entropy miRNAs from each half of the data. There is little apparent change 379

compared to Fig 2C, which includes the low entropy miRNAs. Perhaps surprisingly, 380

entropy filtering does not improve the mean absolute deviation between the two halves 381

of the data. For Pearson correlations restricted to high-entropy miRNAs, the MAD is 382

0.1305 (versus 0.1304 for all miRNAs), and for Bayesian correlations the MAD is 0.0894 383

(versus 0.0843). Although filtering eliminates some spurious correlations, it also 384

eliminates many (correctly) zero correlations between low- or non-expressed miRNAs, 385

driving the average error up. 386
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Fig 3. The effects of entropy filtering on Pearson and Bayesian correlations. (A)
Empirical distribution of entropies of miRNAs’ expression across samples. Dashed red
line indicates 5th percentile and solid red line indicates 10th percentile. (B) Empirical
distribution of expression levels (average RPM across samples) for low entropy and high
entropy miRNAs. (C) Comparison of Pearson grouped correlations from two halves of
the data, when restricting attention to the high entropy miRNAs. (D) Comparison of
Bayesian grouped correlations from two halves of the data, when restricting attention to
the high entropy miRNAs.
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Bayesian Relevance Networks have lower false discovery rates 387

As Bayesian correlations between miRNAs match better between data folds than do 388

Pearson correlations, we predicted that Bayesian Relevance Networks built based on 389

each half of the data would agree better than classical Relevance Networks would. To 390

test this hypothesis, we performed permutation testing on each half of the data, 391

estimating null distributions for both the Pearson correlations and the Bayesian 392

correlations based on all miRNAs (not just the high-entropy ones). The results are 393

shown in Fig 4A,B. The blue curves indicate the observed distributions of correlations 394

on each half of the data, while the red curves indicate the estimated null distributions. 395

For both Pearson and Bayesian correlations, there appear to be stronger positive 396

correlations than would be predicted based on the null hypothesis of no statistical 397

association between miRNAs. The shapes of the distributions estimated from each half 398

of the data are in close agreement. There are more Pearson correlations at the highest 399

levels (near 1) than there are Bayesian correlations—because of the tendency of the 400

Bayesian approach to discount apparent correlations between low expression miRNAs. 401

Next, we constructed Relevance Networks at different correlation thresholds. At 402

each threshold, we determined the number of miRNA pairs above threshold, as well as 403

the expected number of such pairs under the null hypothesis. Based on these, we 404

estimated the false discovery rate (FDR) for links in the Relevance Networks as a 405

function of correlation threshold. At the same time, we compared the specific links 406

constructed from each half of the data to the links in the other half. Links appearing in 407

one half but not the other were labeled as putative false positives, and from these we 408

constructed a second estimate of the FDR as a function of correlation threshold. The 409

results are shown in Fig 4C,D and are radically different for Pearson and Bayesian 410

approaches. Firstly, the Bayesian FDRs are uniformly better than the Pearson FDRs, 411

especially at higher correlation thresholds. The estimated Pearson FDRs from 412

permutation testing hover around 0.2 for most correlation thresholds, whereas estimated 413

Bayesian FDRs are smaller than 0.15. The empirical Pearson FDRs, based on 414

comparing the networks obtained from each half of the data, are worse than 0.4 at all 415

thresholds. The empirical Bayesian FDRs are somewhat different between the two folds 416

of the data, but average to around 0.3 at most thresholds. The Bayesian FDR estimates 417

either improve (drop) with increasing correlation threshold (permutation-based) or are 418

relatively constant (based on data folds). This is a reasonable behaviour, as increasing 419

the threshold intuitively means increasing stringency. However, Pearson FDRs actually 420

get worse at the highest thresholds, as the relative number of spurious correlations from 421

low-expression entities grows. 422

We then repeated the entire experiment while restricting attention to the 423

high-entropy miRNAs only. Fig 4E,F shows the percentage improvement in empirical 424

FDR for Pearson and Bayesian approaches—as quantified by 425

(FDRall − FDRhe)/FDRall, where FDRall is the false discovery rate when analyzing 426

all miRNAs, and FDRhe is the false discovery rate when analyzing only the 427

high-entropy miRNAs. The Pearson approach benefits modestly from the entropy 428

filtering, especially at the higher correlation thresholds, where improvements of up to 429

20% can be seen. However, its performance still does not reach that of the Bayesian 430

approach. The false discovery rate of Bayesian Relevance Networks seems almost 431

entirely immune to entropy filtering (Fig 4F). 432

A Bayesian Relevance Network describing co-expression of 433

miRNAs across 10,999 patients with 33 types of cancer 434

Having established the soundness of the Bayesian Relevance Networks algorithm in the 435

previous sections, we conclude the Results section by presenting the Bayesian Relevance 436
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Fig 4. Permutation testing and agreement of Relevance Networks constructed based on
Pearson or Bayesian correlations. (A) Empirical (blue) and permutation-based (red)
distributions of Pearson correlations from each half of the data. (B) Empirical (blue)
and permutation-based (red) distributions of Bayesian correlations from each half of the
data. (C) Estimated false discovery rates (blue, based on permutations) and empirical
false discovery rates (red, taking other half of the data as gold standard) at varying
Pearson correlation thresholds. (D) Estimated false discovery rates (blue, based on
permutations) and empirical false discovery rates (red, taking other half of the data as
gold standard) at varying Bayesian correlation thresholds. (E) Percent improvement in
empirical FDR when restricting attention to high-entropy genes, as a function of
Pearson correlation threshold. (F) Percent improvement in empirical FDR when
restricting attention to high-entropy genes, as a function of Bayesian correlation
threshold.
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Network obtained by analyzing the full dataset. We chose not to filter out miRNAs 437

based on low entropy, so that we would not overlook potentially interesting connections, 438

and because our results above suggest there would be little benefit. Accordingly, we 439

computed all pairwise Bayesian correlations, and we performed 100 permutation 440

computations to assess statistical significance. The empirical distributions of actual and 441

permuted Bayesian correlations are shown in Fig 5A. As expected, we see many miRNA 442

pairs that are highly correlated. However, high correlation can also be obtained by 443

chance, as shown by the permutation testing. Even at a threshold of r = 0.99, which 444

links just 60 miRNA pairs, our permutation testing suggests that four of those would be 445

false positives. 446

We decided to construct the relevance network at the threshold r = 0.96. This gave 447

us 1479 links between 338 distinct miRNAs, with an estimated 95 false positive links, or 448

an empirical false discovery rate of 6.5%. We chose this level because it produced a 449

large enough relevance network to see some interesting results, without letting the FDR 450

grow too far out of control. The network is depicted in Fig 5B. We used Cytoscape [35] 451

to construct the layout of the network. Links are colored by their locality: blue for 452

miRNAs in the same pre-miRNA stem-loop, red for miRNAs in the same transcript, 453

light green for miRNAs nearby on the genome, dark green for miRNAs in the same 454

genomic cluster, and black for those not having any of those locality properties. As is 455

typical for relevance networks, and indeed many types of biological networks, we observe 456

connected components of widely varying sizes. Several major components have tens of 457

miRNAs each, heavily cross-connected, while there are also many isolated pairs of 458

miRNAs connected by a single link. The majority of the links do not represent any 459

locality relationship (Fig 5C). 460

A typical cluster is indicated by (i) in Fig 5B. Only a few links are related to 461

genomic locale; most of the miRNAs are spread throughout the genome. miRNAs in 462

this subnetwork are highly expressed in acute myeloid leukemia (TCGA code LAML) 463

(Fig 5D). We found that many of the other connected subnetworks are also highly 464

expressed in just one or a few cancer (or tissue) types. 465

A notable subnetwork is the “C”-shaped one in the upper left of the layout. This 466

includes many miRNAs that are nearby on the genome (within 10kb) or at least within 467

the same genomic cluster. However, the most densely connected part of the subnetwork, 468

towards the bottom of the “C”, contains a mixture of stem-loop, transcript, local and 469

non-local links. When we analyze miRNAs in three different parts of that network, we 470

see different expression patterns (Fig 5E) The mostly-back cluster at the bottom is 471

expressed almost exclusively in testicular germ cell tumors. At the opposite end of the 472

“C”, the dense genomic cluster in green is expressed somewhat in testicular tumors but 473

primarily in thymomas. miRNAs in between those two ends display a mixture of 474

testicular tumor and thymoma expression. These miRNAs comprise the primate-specific 475

C19MC miRNA cluster, which has normal functions in the placenta [29,39]. This 476

cluster’s roles in various cancers are still being worked out [6, 24,32,38]. 477

Although one must zoom in on the figure to see clearly, the vast majority of the 478

links between isolated pairs of miRNAs do have some kind of locality 479

relationship—unlike the majority of links in the network. Nearly half of the isolated 480

miRNAs pairs are in the same stem-loop (11 of 23), five are in the same transcript, and 481

five are nearby on the genome. Only two links are non-local, between miR-1180-3p and 482

miR-6511b-3p, and between miR-548d-3p and miR-3613-5p (Fig 5F). These pairs show 483

some evidence of cancer/tissue-specificity, with the first pair largely expressed in 484

glioblastoma multiforme and ovarian cancer samples, and the latter pair largely 485

expressed in acute myeloid leukemia samples and thymomas. 486
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Fig 5. A Bayesian Relevance Network describing cross-cancer correlations between
miRNAs. (A) Empirical distributions of Bayesian and permuted correlations. (B) The
network obtained at a correlation threshold of r = 0.96. (C) Numbers of links with
different locality relationships. (D) Normalized expression of miRNAs in the
mostly-black subnetwork (i) near the center of the diagram in panel B. (E) Normalized
expression of miRNAs at the top (ii), middle (iii), and bottom (iv) of the “C”-shaped
subnetwork in the top left of panel A. (F) Normalized expression of four miRNAs
participating in the only two non-local miRNA pairs in the relevance network.
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Discussion 487

In this work, we have proposed Bayesian Relevance Networks as an update to the 488

classical and widely-used Relevance Networks algorithm [10], with the aim of making it 489

better suited to high-throughput sequencing data. Our approach accounts for the fact 490

that sequence-based expression measurements can have widely varying precision, both 491

for different entities (e.g., genes or miRNAs) and for different samples. It builds on our 492

recent proposal for Bayesian correlation analysis [33], adding two main ingredients 493

helpful for the construction of co-expression networks: 1) a method for estimating 494

uncertainties in the expression levels in groups of samples; and 2) a permutation-testing 495

scheme to assess statistical significance of Bayesian correlations. In testing on a 496

large-scale miRNA expression dataset from The Cancer Genome Atlas [41], we found 497

that Bayesian estimates of co-expression were more reproducible than the Pearson 498

estimates used in the classical algorithm. As a consequence, we found that Bayesian 499

Relevance Networks had lower false discovery rates than standard Relevance Networks. 500

We also found that the entropy filtering step, with its additional and arbitrary cut off 501

parameter, is unnecessary in the Bayesian approach, leading to a simpler algorithm over 502

all. Although we focused on this single, large-scale dataset for demonstration and 503

empirical evaluation, an important direction for future work is testing on other datasets. 504

We suspect that one area where Bayesian Relevance Networks will be particularly 505

helpful is in the analysis of single-cell RNA-seq data [21]. In such datasets, the average 506

number of reads per gene are much smaller than for bulk RNA-seq data, and there can 507

be great variability in the sequencing depths for each cell. This is exactly the situation 508

where uncertainties in expression levels need to be considered, and where Bayesian 509

approaches can provide a solution. 510

As mentioned in the introduction, since the publication of the original Relevance 511

Networks algorithm, many other algorithms have been proposed for the construction of 512

co-expression networks [1,8,9,14,34,42]. All these algorithms contain important insights 513

about the assessment of co-expression. Although we chose in this paper to develop a 514

Bayesian version of the Relevance Networks algorithm—the “grandfather” of all 515

co-expression algorithms—an important avenue for future research is incoporating 516

similar notions of Bayesian reasoning about expression levels and uncertainty into other 517

co-expression network construction algorithms. 518
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Aittokallio. Systematic construction of gene coexpression networks with
applications to human t helper cell differentiation process. Bioinformatics,
23(16):2096–2103, 2007.

14. Jeremiah J Faith, Boris Hayete, Joshua T Thaden, Ilaria Mogno, Jamey
Wierzbowski, Guillaume Cottarel, Simon Kasif, James J Collins, and Timothy S
Gardner. Large-scale mapping and validation of escherichia coli transcriptional
regulation from a compendium of expression profiles. PLoS biol, 5(1):e8, 2007.

15. Lisa B Frankel, Nanna R Christoffersen, Anders Jacobsen, Morten Lindow,
Anders Krogh, and Anders H Lund. Programmed cell death 4 (PDCD4) is an
important functional target of the microRNA miR-21 in breast cancer cells.
Journal of Biological Chemistry, 283(2):1026–1033, 2008.

19/22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 10, 2017. ; https://doi.org/10.1101/115865doi: bioRxiv preprint 

https://doi.org/10.1101/115865
http://creativecommons.org/licenses/by-nc-nd/4.0/


To appear at GLBIO2017

16. Anna Git, Heidi Dvinge, Mali Salmon-Divon, Michelle Osborne, Claudia Kutter,
James Hadfield, Paul Bertone, and Carlos Caldas. Systematic comparison of
microarray profiling, real-time pcr, and next-generation sequencing technologies
for measuring differential microrna expression. Rna, 16(5):991–1006, 2010.

17. Luciana I Gomes, Gustavo H Esteves, Alex F Carvalho, Elier B Cristo, Roberto
Hirata, Waleska K Martins, Sarah M Marques, Luiz P Camargo, Helena Brentani,
Adriane Pelosof, et al. Expression profile of malignant and nonmalignant lesions
of esophagus and stomach: differential activity of functional modules related to
inflammation and lipid metabolism. Cancer research, 65(16):7127–7136, 2005.

18. Sam Griffiths-Jones, Harpreet Kaur Saini, Stijn van Dongen, and Anton J
Enright. mirbase: tools for microrna genomics. Nucleic acids research, 36(suppl
1):D154–D158, 2008.

19. Robert L Grossman, Allison P Heath, Vincent Ferretti, Harold E Varmus,
Douglas R Lowy, Warren A Kibbe, and Louis M Staudt. Toward a shared vision
for cancer genomic data. New England Journal of Medicine, 375(12):1109–1112,
2016.

20. Shimin Hu, Zijun Y Xu-Monette, Alexander Tzankov, Tina Green, Lin Wu,
Aarthi Balasubramanyam, Wei-min Liu, Carlo Visco, Yong Li, Roberto N
Miranda, et al. Myc/bcl2 protein coexpression contributes to the inferior survival
of activated b-cell subtype of diffuse large b-cell lymphoma and demonstrates
high-risk gene expression signatures: a report from the international dlbcl
rituximab-chop consortium program. Blood, 121(20):4021–4031, 2013.

21. Diego Adhemar Jaitin, Ephraim Kenigsberg, Hadas Keren-Shaul, Naama Elefant,
Franziska Paul, Irina Zaretsky, Alexander Mildner, Nadav Cohen, Steffen Jung,
Amos Tanay, et al. Massively parallel single-cell rna-seq for marker-free
decomposition of tissues into cell types. Science, 343(6172):776–779, 2014.

22. Min Jiang, Peng Zhang, Guozhu Hu, Zuke Xiao, Fanghua Xu, Ting Zhong, Fang
Huang, Haibin Kuang, and Wei Zhang. Relative expressions of mir-205-5p,
mir-205-3p, and mir-21 in tissues and serum of non-small cell lung cancer
patients. Molecular and cellular biochemistry, 383(1-2):67–75, 2013.

23. Wei Jiang, Xia Li, Shaoqi Rao, Lihong Wang, Lei Du, Chuanxing Li, Chao Wu,
Hongzhi Wang, Yadong Wang, and Baofeng Yang. Constructing disease-specific
gene networks using pair-wise relevance metric: application to colon cancer
identifies interleukin 8, desmin and enolase 1 as the central elements. BMC
systems biology, 2(1):1, 2008.

24. Claudia L Kleinman, Noha Gerges, Simon Papillon-Cavanagh, Patrick Sin-Chan,
Albena Pramatarova, Dong-Anh Khuong Quang, Véronique Adoue, Stephan
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