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Abstract 
Recent technological advancements have made time-resolved, quantitative, multi-omics 
data available for many model systems, which could be integrated for systems 
pharmacokinetic use. Here, we present large-scale simulation modeling (LASSIM), which is 
the first general mathematical tool for performing large-scale inference using 
mechanistically defined ordinary differential equations (ODE) for gene regulatory networks 
(GRNs). LASSIM integrates structural knowledge about regulatory interactions and non-linear 
equations with multiple steady states and dynamic response expression datasets. The 
rationale behind LASSIM is that biological GRNs can be simplified using a limited subset of 
core genes that are assumed to regulate all other gene transcription events in the network. 
LASSIM models are built in two steps, where each step can integrate multiple data-types, 
and the method is implemented as a general-purpose toolbox using the PyGMo Python 
package to make the most of multicore computers and high performance clusters, and is 
available at https://gitlab.com/Gustafsson-lab/lassim. As a method, LASSIM first infers a 
non-linear ODE system of the pre-specified core genes. Second, LASSIM optimizes the 
parameters that models the regulation of peripheral genes by core-system genes in parallel. 
We showed the usefulness of this method by applying LASSIM to infer a large-scale non-
linear model of naïve Th2 differentiation, made possible by integrating Th2 specific bindings, 
time-series and six public and six novel siRNA-mediated knock-down experiments. ChIP-seq 
showed significant overlap for all tested transcription factors. Next, we performed novel 
time-series measurements of total T-cells during differentiation towards Th2 and verified 
that our LASSIM model could monitor those data significantly better than comparable 
models that used the same Th2 bindings. In summary, the LASSIM toolbox opens the door to 
a new type of model-based data analysis that combines the strengths of reliable mechanistic 
models with truly systems-level data. We exemplified the advantage by inferring the first 
mechanistically motivated genome-wide model of the Th2 transcription regulatory system, 
which plays an important role in the progression of immune related diseases. 

Author summary 
There are excellent methods to mathematically model time-resolved biological data on a 
small scale using accurate mechanistic models. Despite the rapidly increasing availability of 
such data, mechanistic models have not been applied on a genome-wide level due to 
excessive runtimes and the non-identifiability of model parameters. However, genome-wide, 
mechanistic models could potentially answer key clinical questions, such as finding the best 
drug combinations to induce an expression change from a disease to a healthy state. 

We present LASSIM, which is a toolbox built to infer parameters within mechanistic models 
on a genomic scale. This is made possible due to a property shared across biological systems, 
namely the existence of a subset of master regulators, here denoted the core system. The 
introduction of a core system of genes simplifies the inference into small solvable sub-
problems, and implies that all main regulatory actions on peripheral genes come from a 
small set of regulator genes. This separation allows substantial parts of computations to be 
solved in parallel, i.e. permitting the use of a computer cluster, which substantially reduces 
the time required for the computation to finish.  
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Introduction 
The ‘omics’ era of molecular biology has generated enormous amounts of potentially 
informative molecular data. However, without new methods for data analysis, this tends to 
drown researchers in data, rather than provide clear and useful insights. Such methods are 
considered within systems biology, in particular via its usage of mathematical models [1, 2]. 
This usage includes mathematical models for predictions of the cellular response to different 
stimuli, such as a change in environmental conditions or the presence of pathogens. Stimuli 
are typically recognized by cell surface proteins that induce an intracellular signal 
transmission via signaling cascades to the cell nuclei. Consequently, transcription factors 
(TFs) bind to their target genes which results in a change of gene expression [3]. This is 
reflected by changes in the cellular transcriptome, which may be described mathematically 
by gene regulatory networks (GRNs) [4]. GRNs consist of nodes representing genes, and 
edges, representing gene interactions  or more general influences[5].  

Scientific progress is hindered by the fact that systems biology currently is divided into 
bioinformatics and mechanistic modeling subfields; the bioinformatics approach derives 
large-scale data-driven networks directly from ‘omics’ data, while the mechanistic modeling 
approach performs small-scale non-linear modeling for specific sub-systems. Within 
bioinformatics, it is common to handle thousands of unknown parameters, aiming at 
generating a coarse-grained genome-wide view [6-8]. These types of approaches have been 
shown to perform relatively well in several benchmark studies [9, 10], e.g. the LASSO [11-
13], ARACNE [14], and the Inferelator [13]. However, these methods do not provide a 
simulation model that can be used to predict new experiments, and individual model 
parameters might not be reliable. On the other hand, the mechanistic modeling approach 
typically starts with a priori formulated hypotheses regarding a relatively small sub-system 
representing coupled states. These hypotheses are then formulated into equations, typically 
non-linear ODEs with unknown parameters that are estimated from experimental data. 
Hypotheses that disagree with data are rejected, and non-rejected hypotheses are used to 
predict potentially new regulatory interactions to be tested within new experiments [15-22]. 
However, mechanistic modeling approaches are greatly limited in size since the simulation-
derived parameter estimations scale badly with model size [23]. Because of these inherent 
limitations in both subfields of systems biology, there are today no methods of realistically 
predicting system-wide changes in biological systems. For instance, these systems i) are 
highly non-linear, ii) include critical modeling motifs such as feed-forward and feedback 
regulations, and iii) eventually lead to genome-wide expression changes. Here we present 
LArge-Scale SIMulation-based network identification (LASSIM) – a new reverse engineering 
method of biological systems that resolves i)-iii).  

We implemented LASSIM as a toolbox that can handle non-linear ODE modeling of genome-
wide processes. The rationale behind LASSIM is that only a subset of all regulators has 
complex interactions using integrated feedback and feed-forward network motifs with 
critical internal regulations, while the vast majority of genes are a result of these regulators 
activity [24]. Moreover, we hypothesize that these regulators can be pre-defined through 
prior knowledge, i.e. the biological understanding of the system, and these regulators are 
referred to throughout the article as the core system of the specific function. The 
parameters of the core system can firstly be identified using standard numerical ODE solvers. 
Once the core system is modeled, the control of peripheral genes can be solved 
independently. This parallelization of the second part of the network identification enables 
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the run time of LASSIM to linearly scale with the size of the entire genome, which is inspired 
by the decoupling used in the LASSO method [25]. We have implemented LASSIM as an open 
source modular Python package using optimized compiled code for computationally heavy 
algorithmic components. This makes LASSIM fast and flexible enough to handle a great 
variety of mechanistic and grey-box models. 

To show the potential of LASSIM as a flexible and powerful inference tool, describing 
genome-wide changes from key pathways, we applied it to identify a minimal robust non-
linear model from three kinds of asymmetric data from human Th2 differentiation. This is an 
ideal model system, since prior work by us and others has shown that the system is 
transcriptionally controlled by a few relatively well-studied master TFs that orchestrate the 
expression of a majority of genes [26-31], and that Th2 cells play key roles in regulating the 
human immune system. We used 12 core TF regulators and, based on DNAase 
hypersensitivity, we performed binding predictions of the regulatory regions available in Th2 
cells, which represented our set of putative interactions. We then applied LASSIM, which 
performed data fitting and model complexity reduction using time-series gene expression 
and novel siRNA mediated knock-down experiments during Th2 differentiation such that 
each TF was directly perturbed once. We assessed the pruned model from randomized 
subsets of the DNAase predictions in two steps. First, we analyzed the inferred topology of 
the core system and found that our predicted interactions were significantly better at 
modeling new Th2 data than other models from the putative interaction list (P<0.006). 
Second, we analyzed the core-to-gene interactions and found that they were both supported 
by 14 public ChIP-seq experiments, and identified an enriched set of 685 target genes that 
had lower cost than 95% of the random models (expected was 385, binomial P<10-46). In 
other words, LASSIM is able to create non-linear minimal models that span the entire 
genome, and the example presented herein was shown to predict both new data and 
network structure correctly.   

Results  
LASSIM infers networks from user input 
LASSIM is a newly developed method for large-scale flexible non-linear ODE modeling, with 
an accompanying implementation built as a Python open source software package 
(presented in Fig. 1), and can be found at https://gitlab.com/Gustafsson-lab/lassim. The 
rationale behind LASSIM is the empirical observation that many biological processes are 
controlled by few (less than 50) interlinked regulators that includes feedbacks, hereafter 
referred to as the core system. LASSIM is built to first solving the core system and thereafter 
solving each other peripheral gene in parallel. This significantly reduces the running time 
(Fig. S1). LASSIM has been implemented modularly, allowing for methods and algorithms to 
be easily exchanged, and is built on PyGMO, which is the European Space Agency platform 
for performing parallel computations of optimization tasks [32].  

LASSIM takes as user input the a priori structure of a system, dynamic equations, model 
selection criteria, expression training data (time-series and/or perturbation data), and a 
confidence interaction list (Fig. 1, Input). The default kinetic equations are built on a sigmoid 
activation component and a linear degradation component according to the results 
presented in [33, 34]. However, linear, Hill, mass-action, or other user defined kinetics can 
easily be incorporated thanks to the design of the LASSIM interface, by simply replacing 
default computational components with kinetics coded as Python functions. The models are 
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by default tuned via backward selection and model selection by minimization of likelihood 
ratio -tests. LASSIM starts by inferring parameter values for the internal regulations within 
the core system (Fig. 1, Step 1), and unnecessary parameters in the core system are removed 
using training data such as response to perturbations and time-series measurements. In a 
second step, the core-to-peripheral gene regulations are modeled independently, taking 
advantage of the parallel nature of the problem, again with model selection based on a user-
defined criterion (Fig. 1, Step 2). Finally, due to their independence, the combined models 
are assembled into one single full-scale non-linear ODE model (Fig. 1, Output). We used two 
data generated examples to illustrate that including realistic dynamics provided both 
improved network structure identification and trajectory modeling compared to a pure static 
regression-based LASSO approach (Fig. S2).  

LASSIM modeled Th2 differentiation of naïve T-cells   
We next applied LASSIM to infer a genome-wide mechanistically motivated model of TF-
target relationships of human differentiation of naïve CD4+ T-cells becoming effector Th2 
cells, which play a pivotal role in multiple immune-related processes (Fig. 2A) [35]. We first 
identified a putative core set of 12 TFs (COPEB, ETS1, GATA3, IRF4, JUN, MAF, MYB, NFATC3, 
NFKB1, RELA, STAT3, USF2) from our previous experimental studies of TFs within the context 
of Th2 differentiation [35, 36], and a set of 11,083 differentially expressed genes in fully 
developed Th2 cells vs naïve T-cells (FDR<0.05, see Methods). Second, we predicted 63 core 
TF-TF putative interactions and 64,872 putative peripheral interactions with Th2-specific 
DNase-seq footprints using the HINT bias correction method (Fig. 2B) [37, 38], together with 
motif matching from three TF binding motif databases UniProbe, JASPAR, HOCOMOCO using 
the regulatory genomics toolbox Python package rgt-gen [39-41]. We then trained LASSIM 
on our previous microarray time-series data (Fig. 2C) from naïve T-cells to differentiated Th2 
cells [35], and a compendium of siRNA mediated knock-downs under Th2 differentiation 
(within 16-24 h) of each of the respective TFs analyzed with microarrays (Fig. 2D). We 
compiled the compendium re-using six previously published siRNAs and created six new 
siRNAs (Methods) together with 18 data points (each series repeated 3-4 times), for which 
we applied LASSIM. The initial core system comprised of 216 data points and 75 parameters, 
for which we applied LASSIM to perform a fitting of the core system to the time-series data 
and all siRNA knock-down data simultaneously (Fig. 2C-D). The corresponding starting 
peripheral systems had 18 data points and about eight parameters per gene.  

 
Robustness analysis identified a LASSIM model with a minimal number of parameters and 
low error 
To estimate the robustness of our fitted model we repeated the full LASSIM procedure, 
including stepwise removal of edges in the core system 100 times using different starting 
points and small perturbations of the data (Fig. 2E, S3-4). We found robust minimal solutions 
at 40 removed parameters, simultaneously adhering to the following characteristics: 1) Good 
fit to the time-series data, i.e. non-rejected solution from a Gaussian noise distribution (Eq. 3 
in Methods gives cost function V(p*) = 15.0, χ2

0.95 (df = 12*6) = 92.8) (Fig. 2F). 2) Good fit to 
the siRNA data (Fig. 2D). 3) Robust sets of interactions, i.e. when LASSIM was applied to the 
same training data starting from different initial parameter sets the orders of parameter 
removal were highly similar (Fig. 2E).  
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The problem of model selection and parameter estimation is a complex optimization one 
due to the large number of variables and the non-convex nature of the objective function. 
We therefore analyzed the sensitivity of the core system, and found the error to increase 
more through bootstrap re-sampling than between re-runs of LASSIM on the original data 
(Fig. S3), and that removal of all siRNA data increased the model variance (Fig. S4). These 
two results supported the system with 40 removed parameters, i.e. the 23 remaining 
interactions, as a robust minimal core model. 
 
LASSIM identified peripheral interactions that were functionally supported by ChIP-seq 
Next, LASSIM stepwise pruned the interactions and fitted the parameters representing the 
core regulation onto the peripheral genes. There was a good agreement between model 
simulations and time-series measurements (i.e. V(p*) < χ2

0.95 (df = 6) = 12.6) for 10,546 genes 
(Fig. 2C), as well as for the 12 siRNA knock-downs (Fig. 2D). The resulting genome-wide 
model consisted of 35 900 core-to-peripheral gene interactions, thus removing 28 972 
potential interactions. In order to evaluate the performance of LASSIM we tested whether 
the removed or remaining interactions were more likely to be physical interactions. This was 
done for each individual TF by comparing the mean peak scores of the removed and 
remaining interactions respectively using ChIP-seq and ChIP-Chip from 14 experiments of 
five different TFs. [35, 42-44]. We found consistent enrichments for the remaining 
interactions (permutation test P<0.05) for each experiment, with the highest enrichments 
from the STAT3 and MYB bindings (P<10-9, see Fig. 2G). Thus we feel confident that the 
minimal model robustly removes interactions that are less likely to be direct than the 
remaining interactions. 
 

LASSIM monitored total CD4+ T-cell dynamics significantly better than other models from 
the prior network 
In order to test the general applicability of the inferred Th2 dynamic model we aimed to test 
its capability to model Th2 differentiation from a slightly different starting point. Th2 cells 
were therefore differentiated in vitro starting with a mix of naïve, memory and primary CD4+ 
T-cells, hereafter called the total T-cell population, which through their respective cytokine 
secretion influenced the process. We first asked whether the model developed for Th2 
differentiation of naïve CD4+ T-cells could also monitor that of total T-cells. For this purpose, 
we performed new time-series experiments of four time-points and 15 microarrays 
(Methods). We reasoned that as the new cell-type contained also memory and primary cells 
the magnitude of the kinetic parameters might change, but we hypothesized that the 
underlying interactions and signs should not change. We therefore retrained the identified 
model as well as randomly sampled models from the TF binding prior network and of the 
same size and parameter sign distribution as the minimal Th2 model. The retraining was 
performed similarly for all models using the optimization procedure of LASSIM, and our test 
statistic was the cost functions V(p).  We found a good re-fit for the core system, which 
passed a χ2 -test (V(p*) < χ2

0.95(df = 4*12) = 65.2) (Fig. 3B) and 9 992 peripheral genes (Fig. 
3C). Then, we compared the refitted core model against 1000 null models, which showed 
that its residual was lower than all except six null models (bootstrap P = 0.006, Fig. 3D). To 
analyze whether these random models represented missed good solutions by LASSIM, we 
retrained the kinetic parameters of these six models on our first training data, but could not 
find any random models with as low cost as the identified minimal Th2 model (Fig. S5). 
Lastly, we proceeded to a similar test for each of our peripheral genes by identifying 100 
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random models for each gene (i.e. one million random models, Fig. S6). Many peripheral 
genes had high model complexity both in the random distribution (average in-degree = 5.9) 
and in the minimal model (average in-degree = 3.4), thus we had low statistical power and 
could not perform stringent statistical corrections for testing which of the peripheral genes 
were significantly better than random. However, for 64% of the peripheral genes our model 
performed better than the average random model (binomial test P<10-130), and for 685 
genes our model performed better than 95% of the corresponding random models 
(expected 385 genes, P < 10-46). In summary, we conclude that the LASSIM identified core 
and peripheral solutions could monitor new dynamic data relatively well. 

Discussion 
Gene regulation constitutes a complex dynamic system that can drive cells to new cell states 
during differentiation. These systems are often analyzed using mathematical modeling via 
bioinformatics and mechanistic modeling, respectively. Although both approaches have 
distinct advantages, few efficient ways of combining them have been identified. Herein, we 
have presented the LASSIM toolbox, which is built on a small-scale simulation-based 
framework, and it is therefore theoretically possible to model any combination of standard 
biochemistry kinetics, including classic mass-action and synergistic Hill-kinetics. LASSIM is 
built on the assumption that a small-scale core model can be found –which is regularly 
assumed with the small-scale modeling community. The core model is applied as input to 
the rest of the peripheral genes, and this process is computed in parallel, under the 
assumption that the there are no feedback interactions from the peripheral genes to the 
core genes. The outcome of LASSIM is a full-scale dynamic gene regulatory model. 

Although LASSIM is different to other GRN inference methods, it is useful to compare close 
alternatives. ARACNe is a frequently used fast information theoretical method that produces 
genome-wide networks [14]. However, it cannot be used to predict the directionality or sign 
of interaction, and cannot be used to predict the dynamic response upon treatment due to 
the lack of model equations. Model equations are present in few ODE-based models, such as 
Inferelator [13], ExTILAR [45], and NetGenerator [46].  Inferelator and ExTILAR are directly 
based on regression, thus they use estimated time derivatives directly from data to 
approximate ODEs. ExTILAR [47] use target genes to infer upstream TF activity and solve a 
fully coupled regression problem of TF-targets explicitly. After identifying the structure of a 
model by regression, ExTILAR fits ODEs to that structure to achieve a model, which can be 
simulated. However, the tool can only predict models of moderate size but not full genomic 
systems. Inferelator has been built to include great variety of user-inputs, and some 
different kinetics, while ExTILAR uses linear models. However, neither of the methods can 
handle mechanistic models with feedbacks. There are several tools for small-scale 
mechanistic models, where NetGenerator [46] represents one of those commonly used for 
GRNs. This method is based on linear or non-linear ODEs, and makes use of simulation-based 
models to estimate parameters. NetGenerator uses a heuristic search strategy with forward 
selection and backward elimination to infer a sparse network and can, similarly to LASSIM, 
use several perturbations simultaneously for parameter estimations and model selection. 
However, this method is not optimized for large-scale systems, and practical examples are 
limited to some tens of genes. In conclusion, there is to date no other approach that allows 
for the identification of a GRN simulation model for the entire genome.  
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The key assumption behind LASSIM is that all genes are affected only by a core system. For 
the specific example considered here, Th2 differentiation, the studied core genes have 
already been proposed and studied in previous works [27, 28, 35, 48]. More generally, it is 
reasonable to assume that the most influential TFs can often be considered as a sub-system, 
which can qualify as a core-system in the LASSIM sense. The two main arguments for this are 
1) that as the number of components, i.e. genes, required to sustain a biological function, 
grows, the easier it becomes to destroy the function [24], and 2) that the interactions within 
the TF core system can be considered as collapsed versions of more extensive pathways. 1) 
can be understood by considering that each component works with probability p, then the 
probability that the function will be performed decreases with the number of components n 
as pn. For instance, if p=0.99 and n=10, then the function is performed in 90% of the cases, 
but if n=1000, then it is only performed in 0.004% of the cases. A core system with relatively 
few crucial components should therefore be behind each function.  2) can be understood by 
considering two hypothetical TFs in a core system: TFA and TFB. Assume that TFA affects TFB, 
but via one other gene C outside the core-system. In other words, the true pathway is TFA -> 
C -> TFB. In LASSIM, this interaction would still be captured, but as TFA -> TFB, i.e. as a 
collapsed interaction. Such collapsed interactions form the basis of GRNs as such, since GRNs 
describe the collapsed effect of a gene directly on another gene, even though this effect may 
in reality be indirect, occurring via, for instance, phosphorylation of proteins. The existence 
of a core system is therefore likely to be an effective simplification. Note that, in general, a 
different core system is behind different biological functions, so it is necessary to take 
special care when combining data from different biological functions. 

The application of LASSIM on Th2 differentiation presented herein is of principal importance 
since it is the first simulation-based model developed for the entire genome, and integrates 
three different kinds of data, i.e. prior network estimates, time-series, and knock-down data 
to infer a robust minimal model with realistic dynamics. The first principal requirement was 
a core system, where we relied on our previous findings such that a majority of core genes 
originated from Bruhn et al [36], which is a practical example of how a core system could be 
a priori identified. They identified a Th2 module and its upstream TF regulators, where we 
consideed the regulators as core genes. We applied LASSIM to infer a simulation based 
model of this system, based on Th2-specific binding predictions. Our analysis showed that 
about 45% of the TF-target predictions could be removed from the model with a similar fit to 
data. Importantly, the removed interactions were also the ones with the lowest 
experimental support from ChIP analyses of the individual TFs, which shows support for the 
inferred peripheral gene regulations. We also tested whether the model was capable of 
modeling new expression dynamics from mixed cell differentiation. For that purpose, we had 
to adjust the magnitude of the kinetic parameters. We therefore compared the LASSIM-
inferred model against the random models sampled from the TF-target prior predictions and 
allowed for a similar retraining as for the Th2 model. We found both that the core model 
and an enriched fraction of the peripheral genes were significantly better modeled by 
LASSIM. Interestingly, the core TFs MAF and MYB yielded the worst fit to the dynamic 
curves, but still significantly overlapped with ChIP-seq (PMAF <0.04, PMYB <2*10-9). These 
observations suggest that our modeled dynamics might reflect activation from post-
translational modifications of MAF and MYB, where, for example, tyrosine phosphorylation 
of c-MAF has been shown to increase IL4 and thereby amplify Th2 differentiation in mice 
[49]. From an experimental design point of view, the LASSIM output also demonstrated the 
need for perturbation data of all regulators in the studied core system in order to have 
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enough information in data for making model claims. Moreover, by analyzing the underlying 
motifs in the core model, we can observe feed-forward and feedback loops, e.g. the 
feedback STAT3-RELA-MAF-IRF4-STAT3 path. Hence, LASSIM ODE models are needed to 
perform pharmacokinetic modeling of drugs. In summary, LASSIM enables the large-scale 
modeling of several data types including knock-downs and phosphorylation time-series, for 
which mechanistic non-linear models are needed, for example to include mass-preserving 
constraints.  

Methods  
Selection of core system TFs and predicted interactions  
Several TFs have been tested for being associated with Th2 differentiation. We base our 
selection on the following four studies: 1) In Bruhn et al. [36], we performed siRNA of 25 TFs 
and found seven highly relevant (GATA3, MAF NFATC3, STAT5A, STAT3, NFKB1, JUN). 2) In 
Gustafsson et al. [35] we also identified the TF MYB as having great importance to Th2. 3) 
We have also identified IRF4 and ETS1 as key TFs of Th2 differentiation [43]. 4) By analyzing 
data from Nestor et al [50] we identified USF2, and KLF6 as potentially interesting Th2 TFs 
because they were differentially expressed in unstimulated non-symptomatic allergic 
patients vs controls (PUSF2 = 3 * 10-9, PKLF6 = 0.001).   

Model equations 
Systems of ordinary differential equations (ODEs) are frequently employed in engineering to 
mathematically model the states of a system. Let the i:th state be denoted 𝑥𝑖, and let all 
states be collected in a vector 𝒙. The dynamics of the states are given by ODEs (Eq. 1), which 
describe the changes, i.e. using a function f of states x and additional parameters 𝒑.  

  
 

𝑑𝒙

𝑑𝑡
(𝑡) = 𝑓(𝒙, 𝒑)  

 
(1) 

 

Simulation-based approaches, like LASSIM, can be developed for any form of f, e.g. non-
linear Michaelis-Menten or mass-action expressions. For gene regulation mechanisms, 
however, a more realistic form of f is a sigmoid regulation, used in e.g.  [33, 34], as shown in 
Eq. (2): 

 𝑑𝑥𝑖

𝑑𝑡
(𝑡) = −𝜆𝑖𝑥𝑖 +

𝜉𝑖

1 + 𝑒− ∑ 𝑤𝑖,𝑗𝑥𝑗𝑗  
 

 

 
(2) 

In Eq. (2), the degradation rate of gene 𝑥𝑖  is negatively dependent on the concentration, 
while the regulators  𝑥𝑗 can have both inhibitory and enhancing effects. The rate constants 

are 𝜆𝑖, ξ𝑖, which are strictly positive, and 𝑤𝑖𝑗, which can be both negative and positive. Given 

this equation, the value of the second term is restricted between 0 and ξ𝑖  and the equation 
system is stable for all 𝜆𝑖 , ξ𝑖𝜖 ]0, ∞[. The search bounds of the parameters were defined to 
be 𝜆𝑖, ξ𝑖 , 𝜖 [0, 20], 𝑤𝑖𝑗 𝜖 [−20,20] which covers almost all of the possible values of the term 

(Fig. S7). 

Model selection  
When fitting the model to data, the objective function was set to minimize the sum of 
squares.                     
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𝑉(𝒑∗) = min
𝒑

∑
(𝑦𝑖,𝑗−𝑦̂𝑖,𝑗(𝒑))

2

𝜎𝑖,𝑗
2𝑖,𝑗                  (3) 

 

In Eq. (3), the best parameter vector, 𝒑∗, is the parameter set that minimizes the difference 

of the measurements y and model output 𝑦̂ for state 𝑖 and time point 𝑗. For the knock-down 

data, the fit was calculated correspondingly, but with the standard deviation  set to 1. This 

selection of  made the cost contributions V(p) from the knock down and time simulations 

to be of the same order of magnitude for most parameter sets. For the time series data, 

standard deviations were estimated using all time points. . Both the perturbation and time 

series model output were fitted using Eq. (3). Moreover, the structure of Eq. (3) can be used 

to fit any type of model output, e.g. dose-response curves, knock-in, or steady state data. 

The model selection process in LASSIM can use any of the standard tools, such as minimizing 
the Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), cross-validation 
error, or by utilizing 𝜒2-tests [21]. For the biological example, our inclusion of the siRNA 
perturbations made the theoretical considerations unable to meet the criteria for AIC, as the 
cost V(p) was a function of data points with and without the possibility of estimated 
standard deviation. We instead used a heuristic criterion to find a balance between model fit 
and sparsity, where the first edge removal that yielded a cost increase larger than 0.05 times 
the cost standard deviation of the parameter sets was chosen. The parameter value of 0.05 
was chosen after studying the core system behavior, and deciding to correspond to  the 
sparsest model with a retained fit of the data (Fig. S3, 38 parameters removed). To evaluate 
the fit between model and unperturbed time series data, we used χ2-tests [21]. In the χ2-
tests, the degrees of freedom were set to equal the number of data points, and the rejection 
limit was set to α = 0.05.  

Bootstrap of optimization and model selection sensitivity 
The minimization of Eq. (3) is a complex problem, and the risk of optimization failure is large, 
Moreover, optimization has a stochastic element, and the outcome varies. We therefore 
tested whether the impact of any optimization failure, and differences in outcome, had a 
greater impact than the information embedded in the data. We performed 24 corresponding 
bootstrap experiments, where individual time-series- and knock data points were assigned a 
homogenously distributed cost weight 𝜏 𝜖[0,1], as seen in Eq. 4. 

𝑉𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝(𝒑∗) = min
𝒑

∑ 𝜏𝑖,𝑗  
(𝑦𝑖,𝑗−𝑦̂𝑖,𝑗(𝒑))

2

𝜎𝑖,𝑗
2𝑖,𝑗   (4) 

We found that the robustness of the parameter removal, in terms of removal order and final 
cost Vbootstrap(p*), was lower than the first comparison (Fig. S3). Even though approximately 
the same number of interactions could be removed, the chosen parameter set was different 
between different bootstrap experiments. This fact indicates that phenomena such as 
optimization failure have a nominal impact on model selection compared to the quality and 
certainty of our data. 

Time-series data from Th2 polarized total CD4+ T cells  

Total CD4+ cells were isolated from PBMCs using isolation kits from Miltenyi (Bergisch 
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Gladbach, Germany) according to the manufacturer’s instruction. The isolated cells were 

washed, activated and Th2 was polarized as previously described [35]. Briefly, the isolated 

total CD4+ cells were activated with plate-bound anti-CD3 (500ng/ml), 500ng/ml soluble 

anti-CD28, 5µg/ml anti-IL-12, 10ng/ml IL-4 and 17ng/ml IL-2 (R&D Systems). For microarray 

experiments, 200 ng total RNA was labeled and transcribed to cRNA using the Quick Amp 

Labeling Kit (Agilent, USA), then purified using the RNeasy mini kit and hybridized to Agilent 

Human GE 4x44 K v2 slides, according to the manufacturer’s instructions. Slides were 

scanned using the Agilent Microarray scanner 2505C and raw data were obtained using the 

Feature Extraction Software (Agilent). Moreover, we only considered data for genes that 

were deemed to respond to the data, so that we could reject the changes of expression over 

time from being white measurement, i.e. reject if the sum of residuals from the null-model > 

χ2
0.95(df = 4). 

In vitro knock-down experiments 
In vitro knock-downs were generated from human naïve CD4+ T-cells isolated from healthy 
donor buffy coats using magnetic bead separation (Miltenyi Biotec, Sweden). Typically, 1x106 
cells were transfected with 600nM on-target plus SMART pool against IRF4 (Dharmacon, 
USA), MAF, GATA3, USF2, COPEB (Thermo Fisher Scientific Inc, USA), or non-targeting siRNA 
(Dharmacon, USA) using Amaxa transfection (U-014). After six hours of incubation, the cells 
were washed and subsequently activated with plate-bound anti-CD3 (500 ng/ml), soluble 
anti-CD28 (500 ng/ml) and polarized towards Th2 using IL-4 (10 ng/ml), IL-2 (17 ng/ml) and 
anti-IL-12 (5 µg/ml, R&D Systems, USA) for 24 hours for each of the TFs siRNA (12h for IRF4).  
The cells were then harvested in Qiazol and total RNA was extracted using the RNeasy mini 
kit (QIAGEN, Germany). Expression was analyzed using the Human GE 4x44K v2 Microarray 
Kit from Agilent Technologies.  All siRNA-induced knock-downs were followed by a short Th2 
polarization (24h for all except IRF4, which had 12h) and microarray analysis, and control 
experiments corresponding Th2 polarization using scrambled non-targeting siRNA. 

In silico knock-downs 
To overcome possible hurdles with dynamics outside the prediction ability of the model, and 
thus any bias in model fit, the data was truncated between -2 and 2. The knock-downs can 
be in silico modeled in a great variety of ways, and in LASSIM we chose to model 
homozygotic and heterozygotic knock-downs by increasing the degradation constant in Eq. 
(2), such that: 

𝜆̃𝑖 = 𝜆𝑖 ∗ (
𝑥𝑖

𝑥̃𝑖
)  (5) 

In Eq. 5, the augmented 𝜆 is estimated from the inverse of the data fold change. For each of 
the in silico siRNA knock-downs, 12 independent simulations were performed. The 
perturbations were approximated by increasing the self-regulatory term λ for each of the 
studied TFs. This increase was set to be proportionate to the measured decrease of said 
knocked gene.  

Data access 
All utilized data are deposited at gene expression omnibus under the supe-series GSE60683, 
which will be publicly release upon acceptance. Reviewers can download the data using the 
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private link 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=gxmneaiehlqxlar&acc=GSE60683.  

Disclosure declaration  
There are no conflicts of interest to declare.  
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Figure legends 

Fig 1. General workflow of the LArge-Scale SIMulation (LASSIM) high performance 
toolbox. LASSIM requires four basic inputs (left), i.e. a core and peripheral network, 
expression data and dynamic equations, and fits a large-scale non-linear dynamic system 
based on the fully parallel, modular, ultra-rapid global optimization toolbox PyGMO 
developed by ESA. First, LASSIM performs pruning and fitting of a core dynamic system, and 
then expands it by adding peripheral genes in parallel using a computer cluster. The LASSIM 
functions are fully modular, and have been built so that the functions describing the 
optimization procedure, dynamic equations, cost function and data pruning can easily be 
changed by the user.  

Fig 2. LASSIM inferred a robust minimal full-scale non-linear transcription factor - target 
dynamic system describing naïve T-cells towards Th2 cells.  (A) We identified 12 core Th2 
driving TFs from the literature, inferred their putative targets using DNAase-seq data from 
ENCODE. This was, together with Th2 dynamics, and siRNA of each TF followed by 
microarrays, used by LASSIM to infer a Th2 system, which is shown in (B). (C) The measured 
mRNA profiles of the 10 543 peripheral genes (blue/yellow represent relative low/high 
expression), sorted by the model cost (V(p*)).  (D) Heat map of the data fit of the Th2 model 
to the siRNA perturbation data, i.e. the siRNA part of V(p*). Each siRNA knock experiment is 
represented as a separate column. For example, the model fits the response of a knock-
down on RELA well, but fails to fit the response of MAF when IRF4 is knocked down by 
siRNA. (E) Box-plot representing the ranking of each removed parameter from multiple runs 
of LASSIM from somewhat different starting positions. All edges that had a median over 39 
were included in the final model. (F) Microarray experiments (red dots) and simulated 
dynamics of the model (blue solid lines) of the core TFs. (G) The results from the ChIP-seq 
analysis, where the y-axis shows the –log10(P). The red line denotes the significance level 
0.05.  
 

Fig 3. The edges from the naïve Th2 model were better refitted to total Th2 differentiation 
than the prior network. (A) We refitted the core network to new time-series data from total 
Th2 by keeping the signs of the inferred minimal Th2 model. (B) The fit of the core model to 
the total T-cell model is shown. The y-axis has arbitrary units, and the x-axis is time. The 
model output is the blue curves, and the data are the red points. (C) The fit of the peripheral 
genes. The figure follows the same style as in Fig. 2F. The black band in the cost bar denotes 
the 0.95 rejection limit of the corresponding χ2-test, with all rejected models above the 
band. (D) We resampled our prior matrix with the same number of parameters and signs as 
the Th2 model 10,000 times, and compared the random models with the output from 
LASSIM. The ability of the inferred core network structure to fit novel gene expression data 
of total T-activation was considered. A total of 1 000 random core model structures were 
drawn from the prior network, and refitted to the data. The distribution of the fit is shown 
by the blue curve. The core network identified from LASSIM was showed to be significantly 
better for fitting the novel data, as marked by the black arrow. Moreover, most of the core 
models could be rejected by a χ2-test, and are represented in red. 
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Supplementary material 
 
 
Fig S1. The time scale of LASSIM. It was found that the time needed for the search algorithm 

to find a parameter solution that passes a test increased exponentially with number of 
parameters. 
 
Fig S2. LASSIM improved dynamic trajectories and structure compared to LASSO on two 
computer-generated examples. (A) Simulations using LASSIM (dashed blue line) and LASSO 
(red solid lines) derived models on a synthetic dataset. The black dots and lines shows 
sampled and real expression of IRSP over time. LASSIM is able to identify the overshoot of 
IRSP between the first and second time-point correctly, whereas LASSO cannot. (B) LASSIM 
(red dots) receives higher AUC than our previous best performer LASSO method (blue line) in 
the DREAM2 network identification challenge in terms of precision [51]. LASSIM backward 
selection using the linear transfer function was applied to all connections with confidence 
score of >80% from our previous approach, and therefore has no predictions for recall>0.22. 
The area under the curve (AUC) of the receiver operating curve (ROC) was about 20% higher 
for LASSIM than for LASSO (P<0.03). 

Fig S3. Sensitivity analysis of core model identification. When removing edges from the 
model, the randomness imbedded in the stochastic optimization will give rise to a difference 
in the system behavior (blue lines). To test if such optimization artifacts have a larger impact 
on the model selection than the quality of the data, a sensitivity analysis was performed, 
where each data point was given a uniformly distributed random weight between 0 and 1. 
The weighted version of the goodness-of-fit as a function of removed edges are plotted in 
red. As seen, the changes in the data weights induce a higher uncertainty to the core model 
identification. Moreover, the unperturbed model starts to rise around 37 removed 
parameters, which was used when determining the mu-coefficient in Eq. 4.  

Fig S4. The impact of knock data on the core model inference. We tested the benefit of 
adding the siRNA knock down data as perturbations in the model inference, and found that 
the stability of the network inference dramatically increased. On the left side graphs, the 
model behavior without the perturbation data is shown. The results can be compared with 
the more stable version on the right, where knock data have been used.   

Fig S5. The fit of the random core models to the naïve data 
The models that were found to fit the total t-cell data better than our prediction, were 
tested at the original training data, i.e. the naïve t-cell data. It was found that none could fit 
the data better than the prediction. Nevertheless, none of the models could be rejected 
using a χ2-test. 

Figure S6: Distribution of the certainty of the peripheral genes 
The distribution of the fits of the peripheral genes on the total T-cell expression time series 
are shown. Here, the x-axis shows the goodness of fit (as calculated by Eq. 3), and the y-axis 
correspond to the frequencies.  

Figure S7: The saturation effect of the input to each gene 

The nodes were modeled as nonlinear dependent on each other. Shown is the potential 

values of the input from other nodes. More specifically, the values are plotted such that they 
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cover the range of the parameter search span for the minimal case of only one input to a 

transcription factor.  
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