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Abstract

Most natural populations are affected by seasonal changes in temperature, rainfall, or

resource availability. Seasonally fluctuating selection could potentially make a large con-

tribution to maintaining genetic polymorphism in populations. However, previous theory

suggests that the conditions for multi-locus polymorphism are restrictive. Here we explore

a more general class of models with multi-locus seasonally fluctuating selection in diploids.

In these models, loci first contribute additively to a seasonal score, with a dominance pa-

rameter determining the relative contributions of heterozygous and homozygous loci. The

seasonal score is then mapped to fitness via a monotonically increasing function, thereby

accounting for epistasis. Using mathematical analysis and individual-based simulations,

we show that stable polymorphism at many loci is possible if currently favored alleles

are sufficiently dominant with respect to the additive seasonal score (but not necessarily

with respect to fitness itself). This general mechanism, which we call “segregation lift”,

operates for various genotype-to-fitness maps and includes the previously known mecha-

nism of multiplicative selection with marginal overdominance as a special case. We show

that segregation lift may arise naturally in situations with antagonistic pleiotropy and
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seasonal changes in the relative importance of traits for fitness. Segregation lift is not

affected by problems of genetic load and is robust to differences in parameters across loci

and seasons. Under segregation lift, loci can exhibit conspicuous seasonal allele-frequency

fluctuations, but often fluctuations may also be small and hard to detect. Via segregation

lift, seasonally fluctuating selection might contribute substantially to maintaining genetic

variation in natural populations.
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Introduction

Ever since biologists were first able to detect population genetic variation at the molecular level,

they have been puzzled by its abundance in natural populations [1]. Dispute over the underlying

reasons gave rise to two scientific schools [2, 3]. Proponents of the “(neo)classical” school claim

that the bulk of genetic variation is due to neutral or weakly deleterious mutations present

at an equilibrium between mutation, genetic drift, and selection. The neoclassical view admits

that selection may maintain alleles at intermediate frequency at some loci, but argue that such

loci are exceedingly rare on a genomic scale [2]. By contrast, the “balance” school posits that

substantial variation is maintained by some form of balancing selection (with some controversy

over the meaning of “substantial” [3]), for example heterozygote advantage (overdominance),

negative frequency-dependent selection, and spatial or temporal variability in selection pressures

[4, 5].

Fifty years later, much is still open [6, 7] but the general view seems to be that (nearly)

neutral mutations cause most genetic variation, with overdominance playing a relatively minor

part, perhaps acting at only tens of loci per species [8–10]. A mechanism considered more com-

mon and powerful is spatial environmental heterogeneity. Temporal heterogeneity, by contrast,

is believed to be of limited importance [11], despite widespread fluctuations in the strength and

direction of selection, both on phenotypes [12] and on genotypes [13]. In fact, most organisms

with multiple generations per year experience a particular type of temporal heterogeneity: sea-

sonality, for example in temperature, rainfall, resource availability, but also in the abundance

of predators, competitors, or parasites. Even tropical populations usually experience some sea-

sonality [14, 15]. For example, flowering and fruiting in tropical forests is often synchronized

within and even between tree species, leading to seasonal changes in food availability for ani-

mals [15]. Often, there are life-history trade-offs across seasons [16, 17]. For example, seasons

with abundant resource supply might select for investment in reproduction, whereas stressful
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seasons may select for investment in survival. Since such life-history traits are usually polygenic,

many organisms should experience seasonally fluctuating selection at a large number of loci.

With discrete generations, the fates of genotypes under temporally fluctuating selection

depend on their geometric mean fitnesses over time [18]. In haploids, two alleles generally cannot

coexist because one will have a higher geometric mean fitness and eventually go to fixation [18],

but see [19]. In diploids, polymorphism at a single locus is stable if heterozygotes have the

highest geometric mean fitness across generations (“marginal overdominance”), although in

any particular generation one of the homozygotes might be fittest and increase in frequency

[18, 20, 21]. However, it is not trivial to extend these results to the multi-locus case. So far,

only two cases are well-understood: 1) multiplicative selection across loci, and 2) temporally

fluctuating selection on a fully additive trait.

Under multiplicative selection in an infinite population with free recombination, the allele-

frequency dynamics at a focal locus are independent of those at other loci. Thus, exactly as in

the single-locus case, polymorphism is stable if heterozygotes have the highest geometric mean

fitness. However, deviations from multiplicative selection appear to be the rule. In particular,

beneficial mutations often exhibit diminishing-returns epistasis [22–24]. Additionally, there is

the potential problem of genetic load. Genetic load is commonly defined as the difference be-

tween the population’s average fitness and the fitness of the fittest possible genotype. Lewontin

and Hubby [1] noticed that this value can become unsustainably high if there is strong het-

erozygote advantage at many loci. This was a conundrum for the neoclassical school, which was

worried that with high genetic load, single individuals would have to produce an astronomi-

cally large number of offspring. Others have dismissed this concern, arguing for example that

selection does not generally act on all loci independently or that only relative fitness differ-

ences within the population are relevant, not fitness relative to some optimum genotype that

might not even exist [25–28]. However, debate continues over whether genetic load should be

an important consideration [29, 30].

The second previously studied scenario is seasonally fluctuating selection on a trait to which

loci contribute additively [31, 32]. These models generally assume additivity also within loci,

such that the contribution of heterozygotes is exactly intermediate between the contributions

of the two homozygotes. Temporally fluctuating selection can then cause intermediate trait

values to be best in the long run [33], i.e. variance in fitness is selected against and it is best

to be a “jack of all trades”. This effectively is stabilizing selection on the temporal average.

As such, it can generally maintain polymorphism at only one locus [34, 35], or two loci if their

effect sizes are sufficiently different [36] or if they are closely linked [31]. The reason is that with

multiple loci and additivity within and between loci, there are multiple genotypes with inter-

mediate phenotypes. For two loci, for example, there is the double heterozygote (“heterozygous

intermediate”) and the genotype homozygous at both loci but for alleles with opposite effects

(“homozygous intermediate”). These genotypes may all have the same high fitness. However,
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matings between heterozygous intermediates produce a range of different genotypes, some of

which are less fit than their parents. By contrast, matings between homozygous intermediates

only produce new homozygous intermediates. Homozygote intermediates can therefore go to

fixation and eliminate all polymorphism.

In summary, multiplicative seasonal selection is a powerful mechanism to maintain multi-

locus polymorphism, but the required independence across loci and the associated load call into

doubt its plausibility. On the other hand, selection on additive traits can maintain polymor-

phism at only few loci. So far, there has been little need for further exploration because there

were no clear empirical examples to challenge these theoretical results. However, part of the

reason why balancing selection is so rarely observed may be that it is simply hard to detect.

With recent advances in sequencing technology, a more detailed picture of genetic variation

across time, space, and species is emerging, and some of the new results question the consensus

that temporal heterogeneity rarely maintains variation. For instance, by sampling the same

population at several time points, Bergland et al. [37] identified hundreds of loci in the genome

of Drosophila melanogaster that exhibit strong allele frequency fluctuations in temperate pop-

ulations, but are also shared with African populations of D. melanogaster and some even with

the sister species D. simulans, indicating that they constitute ancient balanced polymorphisms.

More generally, recent population genomic data appear to suggest that the role of balancing

selection in maintaining polymorphism might be more important than previously assumed [38],

and that mutation-selection-drift balance alone is not sufficient to reconcile evidence from pop-

ulation genomics and evidence from quantitative genetics [39]. Thus we need to reconsider the

potential of temporally fluctuating selection to maintain multi-locus polymorphism.

As explained above, the conditions for multi-locus polymorphism under seasonally fluc-

tuating selection have been examined mostly in two narrow cases. Here we examine a more

general class of seasonal selection models with various forms of dominance and epistasis. Us-

ing deterministic mathematical analysis and stochastic simulations, we show that multi-locus

polymorphism is possible if the currently favored allele at any time is sufficiently dominant,

with dominance measured using a scale on which contributions across loci are additive. This

mechanism, which we call segregation lift, can maintain polymorphism at a large number of

loci across the genome, is robust to many model perturbations, and does not require single

individuals to have too many offspring. Depending on the parameter values, allele-frequency

fluctuations can be large and readily detectable, or subtle and hard to discern.

Basic model

We consider a diploid, randomly mating population in a seasonally fluctuating environment.

Specifically, we assume a yearly cycle with g generations of winter followed by g generations of

summer (robustness to asymmetry is explored below). The genome consists of L unlinked loci

4

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 9, 2017. ; https://doi.org/10.1101/115444doi: bioRxiv preprint 

https://doi.org/10.1101/115444


with two alleles each: one summer-favored and one winter-favored allele. For a given multi-locus

genotype, let ns and nw be the number of loci homozygous for the summer and winter allele,

respectively, and nhet the number of heterozygous loci, with ns + nw + nhet = L.

In the basic model, loci are interchangeable in their effects (see Stochastic simulations for a

more general model) and the fitness of a multi-locus genotype can be computed as a function

of ns, nw and nhet. In the simplest case, fitness depends only on ns + 0.5 · nhet in summer

and nw + 0.5 · nhet in winter, i.e. half the number of currently favored allele copies. To allow

for dominance effects, we generalize this simple scenario and assume that fitness in summer

depends on the summer score

zs := ns + ds · nhet (1)

and fitness in winter depends on the winter score

zw := nw + dw · nhet. (2)

The parameters ds and dw quantify the dominance of the currently favored allele in summer and

winter, not with respect to fitness, but with respect to the seasonal scores zs and zw. Because

we are interested in whether temporally fluctuating selection can maintain polymorphism in the

absence of other stabilizing mechanisms, we only consider values of ds and dw between 0 and

1, and do not allow values larger than one, which would correspond to standard heterozygote

advantage.

The relationship between the seasonal score z (z = zs in summer and z = zw in winter),

and fitness, w, is given by a monotonically increasing fitness function w(z). This function

specifies the strength of selection and accounts for epistasis. With discrete generations, the

allele-frequency dynamics at a focal locus are driven by the relative fitnesses of the three possible

genotypes at that locus, for example the ratio of the fitness of homozygotes and heterozygotes.

We say that there is no epistasis if these ratios and thus the strength of selection are independent

of the number of other loci and their contributions to z. This is the case when fitness is

multiplicative across loci:

w =
L∏
i=1

wi ⇔ ln(w) =
L∑
i=1

ln(wi), (3)

where wi is the fitness value at locus i. In our model, this is achieved by setting w(z) = exp(z)

because then Eq. (3) is fulfilled with wi = exp(1) if locus i is homozygous for the currently

favored allele, wi = exp(ds) or wi = exp(dw) if it is heterozygous, and wi = exp(0) = 1 if it is

homozygous for the currently disfavored allele. With v(z) := ln(w(z)), the multiplicative model

is characterized by v′′(z) = 0. We therefore use the second derivative of the logarithm of fitness

v′′(z) as a measure of epistasis (see [40] for a similar definition of epistasis). Under positive or
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Figure 1: Examples for fitness functions generated by Eq. (4) or Eq. (5) with various parameters. In
(A), fitness is shown on a linear scale, in (B) on a logarithmic scale.

synergistic epistasis (v′′(z) > 0), the logarithm of fitness increases faster than linearly with z

and thus selection at a focal locus increases in strength with increasing contribution of the other

loci to z. By contrast under negative or diminishing-returns epistasis (v′′(z) < 0), selection at

a focal locus becomes weaker with increasing contribution of other loci to z. We focus on two

classes of fitness functions (Fig. 1). The first is of the form

w(z) = (1 + z)y (4)

with a positive parameter y for the strength of selection. Although for y > 1 in Eq. (4), fitness

increases faster than linearly with increasing z (Fig. 1 A), transformation to the logarithmic

scale reveals that epistasis is negative for all y (Fig. 1 B). The second class of fitness functions

is of the form

w(z) = exp(zq) (5)

with q ≥ 1. This function reduces to the multiplicative model with q = 1 (cyan lines in Fig. 1)

and has positive epistasis with q > 1 (e.g. magenta lines in Fig. 1).

In summary, fitness is computed in two steps. The first maps the multi-locus genotype onto

a seasonal score z to which loci contribute additively, essentially a generalized counter of the

number of favored alleles (Eq. (1), Eq. (2)), and the second maps z to fitness (Fig. 1). This

two-step process disentangles dominance (first step) and epistasis (second step).

In our model, there is antagonistic pleiotropy in the sense that genotypes with many summer

alleles have a high summer score but a low winter score and vice versa. Previous theoretical
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Figure 2: Values of the seasonal score, z, as a function of the dominance parameter, d, for two example
four-locus genotypes: a heterozygous intermediate (blue line) and a homozygous intermediate (black
solid line).

studies suggest that antagonistic pleiotropy is most likely to maintain polymorphism if for each

trait affected by a locus the respective beneficial allele is dominant [41, 42]. Such “reversal

of dominance” also facilitates the maintenance of polymorphism in single-locus models for

temporally fluctuating selection [43]. Hypothesizing that reversal of dominance would also help

to maintain polymorphism under multi-locus temporally fluctuating selection, we assume that

ds and dw in Eq. (1) and Eq. (2) take the same value, d, which means that dominance switches

between seasons (see Stochastic simulations for a more general model). For d < 0.5, we have

“deleterious reversal of dominance” [42] and the currently favored allele is always recessive,

whereas for d > 0.5, we have “beneficial reversal of dominance” [42] and the currently favored

allele is always dominant. If d = 0.5, the seasonal score z is additive not just between loci, but

also within loci. Importantly, the value of d also determines the relative fitness of “heterozygous

intermediates”, multi-locus genotypes with the same number of summer and winter alleles and

at least some heterozygous loci, compared to “homozygous intermediates”, which also have the

same number of summer and winter alleles but are fully homozygous (Fig. 2). For d < 0.5,

heterozygous intermediates have a lower seasonal score, z, and therefore a lower fitness in

both seasons than homozygous intermediates. For d = 0.5, heterozygous and homozygous

intermediates have the same score and fitness. Finally, for d > 0.5 heterozygous intermediates

have a higher score and fitness.

Reversal of dominance between seasons can arise naturally in situations with antagonistic

pleiotropy for two traits. In the example in Fig. 3, d > 0.5 in both seasons although the

effects of the different alleles on the two traits remain constant throughout the year. Seasonal

changes are required only in the relative importance of traits, which appears common in natural
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Figure 3: Potential mechanistic underpinning for beneficial reversal of dominance. There is antagonis-
tic pleiotropy for two traits and the seasonal scores for winter and summer are computed as weighted
averages of trait 1 and trait 2, with the relative importance of the two traits switching between sea-
sons. The dashed line indicates the average of the two homozygote traits. If the heterozygotes are
closer to the fitter homozygote with respect to both trait 1 and trait 2, there is a beneficial reversal
of dominance at the level of the seasonal score, z. See Fig. S1 for alternative scenarios.

populations. For example, in many species, starvation tolerance might be more important in

winter and fecundity more important under abundant resource supply in summer. Note that

this particular example also requires changes (though not necessarily a reversal, see Fig. S1 A) in

dominance with respect to the pleiotropic effects of a locus on the two traits. On the metabolic

level, such changes in dominance may arise in branched enzyme pathways with saturation

or feedbacks [44], but it is unclear how common such situations are. Alternatively, seasonal

reversal of dominance could be mediated by seasonal reversal in gene expression. In Drosophila

melanogaster, for instance, many genes exhibit reversal of dominance in gene expression between

different environmental conditions [45].

Interestingly, because d measures dominance not at the scale of fitness but at the scale of

the seasonal score, z, reversal of dominance for fitness is neither sufficient nor necessary for

d > 0.5. To see this, consider the counterexamples in Fig. 4 where we compare the genotypes

at a focal locus in a common genetic background. If the fitness function is concave, the fitness

of a heterozygote can be closer to the fitter homozygote even for d < 0.5 (Fig. 4 A). On the

other hand, if the fitness function is convex, the fitness of heterozygotes can be closer to the

less fit homozygote even for d > 0.5 (Fig. 4 B).
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Figure 4: Examples illustrating why a heterozygote fitness closer to the fitter homozygote is neither
a sufficient (A) nor a necessary condition (B) for d > 0.5. It is assumed that the genetic background
is the same for all genotypes and, for simplicity, that it makes contribution 0 to z. The dotted lines
illustrate the mapping between z = d and z = 1 and the respective fitnesses. A) Eq. (4) with y = 0.1.
B) Eq. (5) with q = 1.2.

Deterministic analysis

In this section, we assume that population size is so large that genetic drift does not play a

role. We also assume that mutations are rare enough that the allele-frequency dynamics will

equilibrate before a new mutation arises at one of the L loci. This simple deterministic frame-

work allows us to develop an intuitive understanding of the conditions for stable polymorphisms

for various genotype-to-fitness maps. The intuitions developed here will then be checked and

extended with stochastic simulations in the next section.

We will first confirm that the conditions under which seasonally fluctuating selection can

maintain polymorphism are restrictive when contributions to the seasonal score z are additive

within loci (d = ds = dw = 0.5 in Eq. (1) and Eq. (2)). Then zs + zw = L for all possible

genotypes and the mean z over time is z∗ = L/2. The long term success of a genotype depends

on its geometric mean fitness, or equivalently on the arithmetic mean of the logarithm of fitness,

v(z). Jensen’s inequality or simple geometric considerations (Fig. 5) tell us that the arithmetic

mean of v(zs) and v(zw) for a given genotype will be smaller than or equal to v(z∗) if v′′ < 0

everywhere (Fig. 5 A), equal to v(z∗) if v′′ = 0 (Fig. 5 B), and larger than or equal to v(z∗) if

v′′ > 0 (Fig. 5 C).

The inter-annual allele-frequency dynamics (e.g. from summer to summer or from winter to

winter) with multiplicative fitness (v′′ = 0) and d = 0.5 are thus neutral. No balancing selection

emerges. With positive epistasis (v′′ > 0), extreme types with either only summer alleles or only

winter alleles have the highest geometric mean fitness. Therefore, the population ends up in a

state where all loci are fixed for the summer allele or all for the winter allele. With negative
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Figure 5: The logarithm of summer fitness (red) and winter fitness (blue) and the average logarithm
of fitness (gray) as a function of a genotype’s summer score, zs. Assuming d = 0.5, the winter score
is zw = L− zs, leading to the mirror symmetry around L/2. If the fitness function is concave on the
logarithmic scale, intermediate types have the highest average log-fitness (A), if the fitness function is
log-linear, then all types have the same average log-fitness (B), and if the fitness function is convex on
a logarithmic scale, extreme types have the highest average log-fitness and thus the highest geometric
mean fitness (C).

epistasis (v′′ < 0), the genotypes with the highest geometric mean fitness are those with the

same number of summer and winter alleles and thus zs = zw. There are always some genotypes

heterozygous at one or more loci that fulfill this condition (heterozygous intermediates, see Fig.

2). For an even number of loci, zs = zw is also true for genotypes homozygous for the summer

allele at half of the loci and homozygous for the winter allele at the other half (homozygous

intermediates). When one of the homozygous intermediates fixes in the population it cannot be

invaded by any mutant starting at small frequency (under the assumptions of the deterministic

model, see Appendix S1 for a detailed proof), and all polymorphism is eliminated. For an

odd number of loci, homozygous intermediates do not exist and some polymorphism may be

maintained, at least at one locus. This case, which we will examine in more detail below, appears

to be the only way in which seasonally fluctuating selection can maintain polymorphism under

additivity (d = 0.5).

Next we explore whether deviations from additivity (d 6= 0.5) can facilitate multi-locus

polymorphism. Under multiplicative selection, i.e. without epistasis, the conditions for poly-

morphism at one locus are not affected by the dynamics at other loci. Thus given the fitness

values for individual loci (exp(d) for heterozygotes, exp(1) and exp(0) for currently favored and

disfavored homozygotes, respectively, see text below Eq. (3)), we can conclude that polymor-

phism is possible if

exp(d)2 > exp(1) · exp(0)⇔ d > 0.5. (6)
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That is, there must be a beneficial reversal of dominance with respect to z such that at any

time the currently favored allele is dominant.

Now we explore whether such a beneficial reversal of dominance can also maintain poly-

morphism in the presence of epistasis. In each case, a necessary condition for polymorphism

is that a population fixed for the fittest possible fully homozygous genotype can be invaded

by mutants. As we have seen above, with synergistic epistasis (v′′ > 0) there are two fully

homozygous genotypes with maximum fitness, the one with the summer allele at all loci and

the one with the winter allele at all loci. In both cases, the resident type has score L in one

season and score 0 in the other season, whereas mutants differing in one position have scores

L− 1 + d and d. For mutants to invade, we thus need

v(d) + v(L− 1 + d) > v(L) + v(0). (7)

Using our example class of fitness functions with positive epistasis, Eq. (5) with q > 1, we thus

obtain the condition

dq + (L− 1 + d)q > Lq. (8)

The critical value of d, dcrit, at which extreme types become invasible, satisfies(
dcrit
L

)q

+

(
1 +

dcrit − 1

L

)q

= 1. (9)

For q = 2, dcrit takes values 0.707, 0.954, and 0.995, with 1 locus, 10 and 100 loci, respectively.

For q > 1 in general, dcrit approaches 1 as the number of loci increases. To see this, note first

that the condition in Eq. (9) is always fulfilled for d = 1 and thus dcrit ≤ 1. Thus, as the number

of loci, L, goes to infinity (dcrit− 1)/L becomes small and we can approximate the second term

on the left hand side of Eq. (9) by a Taylor expansion around 1 to obtain(
dcrit
L

)q

+ 1 + q · dcrit − 1

L
+O

(
1

L2

)
= 1. (10)

Multiplying both sides by L and letting L go to infinity, we can conclude that dcrit is approx-

imately 1 if the number of loci is large. Thus for fitness functions of the type in Eq. (5) with

positive epistasis, seasonally fluctuating selection can in principle maintain polymorphism at

many loci, but the respective favored allele would have to be almost completely dominant,

requiring large seasonal changes in dominance.

With diminishing-returns epistasis (v′′ < 0), the fittest possible fully homozygous genotype

carries the summer allele at half of the loci and the winter allele at the other half of the loci

(assuming an even number of loci). Thus a necessary condition for polymorphism is that this

homozygous intermediate type can be invaded by mutants. The resident type has score L/2 in

both seasons whereas mutants differing in one position have scores L/2 + d and L/2 − 1 + d.
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Thus the resulting necessary condition for polymorphism is

w(L/2 + d) · w(L/2− 1 + d) > w(L/2)2. (11)

Again, this condition is always fulfilled for d = 1. For fitness functions of the form Eq. (4) with

any exponent y, the critical dominance coefficient dcrit at which homozygous intermediates

become invasible satisfies(
1 +

L

2
+ dcrit

)(
1 +

L

2
− 1 + dcrit

)
=

(
1 +

L

2

)2

. (12)

This quadratic equation has a negative solution, which is not relevant for our model, and a

positive solution

dcrit =
1

2

(
−1− L+ (2 + L)

√
1 +

1

(2 + L)2

)
. (13)

From Eq. (13), dcrit decreases as L increases and approaches 0.5 as L goes to infinity. The

intuition here is that the second derivative of the logarithm of fitness v′′(z) = −y(1 + z)−2

decreases with increasing z. Therefore, for large L, epistasis around the intermediate type with

z = L/2 is weak and the conditions for polymorphism approach those without epistasis. In

other words, with increasing L, selection against temporal variation around the intermediate

type becomes weaker and a smaller change in dominance is sufficient to overcome it.

Our results so far suggest that for a broad class of fitness functions seasonally fluctuating se-

lection can maintain polymorphism if in both seasons the respective favored allele is sufficiently

dominant. We call this mechanism segregation lift because it is based on a positive aspect of

two alleles segregating at the same locus, as opposed to the negative aspect of segregation load.

However, the preceding analysis does not tell us whether polymorphism will be maintained at

all loci, or just one or a few of them. Also, it is still unclear how efficient segregation lift is

at maintaining multi-locus polymorphism in finite populations with genetic drift and recurrent

mutations and whether genetic load is a problem. To address these questions, we now turn to

stochastic simulations.

Stochastic simulations

We use Wright-Fisher type individual-based forward simulations (see Appendix S2.1 for details).

That is, for every individual in a generation independently, two individuals are sampled as

parents in proportion to their fitnesses. We focus on diminishing-returns fitness functions of

type Eq. (4) both because diminishing-returns epistasis is common [e.g. 22–24] and because

the above theoretical arguments suggest that it is more conducive to multi-locus polymorphism

12
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than synergistic epistasis. Specifically, the critical dominance parameter, dcrit, for diminishing-

returns epistasis in Eq. (13) is generally smaller than the one for synergistic epistasis in Eq. (9).

Additional parameters in the stochastic simulations are the symmetric mutation probability

µ per allele copy per generation and the population size N . We generally keep population size

constant over the year, but we also run supplementary simulations with seasonal changes in

population size. Table 1 gives an overview of the model parameters and the ranges explored.

In most simulated scenarios, selection and dominance effects are strong relative to mutation

(w′(z) and d − 0.5 are much larger than the mutation rate µ). Natural populations are cer-

tainly often larger and mutation rates smaller than the values used here. However, since many

population genetic processes depend only on the product Nµ [e.g. 46], large populations with

small mutation rates may be well approximated by computationally more manageable smaller

populations with larger mutation rates.

Table 1: Overview of model parameters and the ranges explored in the simulations.

Parameter Explanation Range explored
g Number of generations per season; a year has

2g generations
1–20

N Population size 100–10,000
L Number of loci 1–500
µ Mutation probability per allele copy per gener-

ation
10−6 − 10−4

d Dominance parameter 0–1
y Exponent of the fitness function Eq. (4) 0.5–4

In addition to the basic model, we designed a “capped” model to assess the relevance

of genetic load. In this model, individuals can have at most 10 offspring. While assembling

the offspring generation from the parent generation, we track how many offspring a parent

individual has already produced. Once this number reaches 10, the fitness of this individual is

set to 0 so that it cannot be drawn as a parent again.

From the simulation output, we estimate an “effective strength of balancing selection” (see

Methods and Appendix S2.2), which tells us whether and how fast a rare allele increases in

frequency over a full yearly cycle. As expected from the above theoretical arguments, additive

contributions within loci (d = 0.5) are not conducive to multi-locus polymorphism (Fig. 6). For

even numbers of loci, i.e. whenever haplotypes having an equal number of summer and winter

alleles are possible (homozygous intermediates), the effective strength of balancing selection

estimated from the simulations is negative, indicating that rare alleles tend to become even

rarer. For small odd numbers of loci, the effective strength of balancing selection is positive,

but only one or two loci at a time fluctuate at intermediate frequency (Fig. S3). As the number

of loci increases, the effective strength of balancing selection eventually becomes negative even

for odd numbers, decreases overall in absolute value, and finally approaches zero (effective
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Figure 6: Effective strength of balancing selection (be in Eq. (14) in Methods), in the additive case
(d = 0.5) as a function of the number of loci. Solid lines indicate means and dashed lines indicate
means ± two standard errors. Simulations were always run for successive odd and even numbers.
N = 1000, g = 15, µ = 0.0001.

neutrality) from below (Fig. 6). This behavior is independent of the exponent, y, of the fitness

function Eq. (4). Also as expected, effective balancing selection (see Methods) emerges if the

dominance parameter, d, is larger than a certain critical value, which decreases with the number

of loci and is only weakly influenced by mutation rate (Fig. 7).

From now on, we will focus on scenarios with large numbers of loci. For the case of 100 loci,

Fig. 8 shows example allele-frequency trajectories with three different dominance parameters,

d. For small d, each locus is almost fixed either for the summer or winter allele. For large d, all

loci fluctuate at intermediate frequency. The critical dominance parameter, dcrit, with 100 loci

is close to 0.5, independently of the exponent of the fitness function (Fig. 9 A). For d < 0.5, i.e.

if the currently favored allele is recessive, the effective strength of balancing selection is negative

and polymorphism is unstable (Fig. 9 A). As d increases beyond 0.5, i.e. as the currently favored

allele becomes more dominant, effective balancing selection becomes stronger (Fig. 9 A). Both

the stabilizing and destabilizing effects increase with increasing exponent of the fitness function,

y (Fig. 9 A). The finding of stable multi-locus polymorphism for d > dcrit ≈ 0.5 is robust both

to an imbalance in the number of generations in summer and winter (Fig. S5) and to seasonal

changes in population size (Fig. S6).

A tendency for rare alleles to increase in frequency does not guarantee that the average

14
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Figure 7: Critical value of the dominance parameter, dcrit, such that the effective strength of balancing
selection (be in Eq. (14) in Methods), is positive (stable polymorphism) if d > dcrit, and negative
(unstable polymorphism) if d < dcrit. Symbols represent means across replicates and lines represent
averages ± two standard errors. Since the pattern for odd numbers of loci is more complex (see Fig.
6), only even values for the number of loci are included here. N = 1000, y = 2, g = 15.
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Figure 8: Three examples of allele-frequency trajectories for N = 1000, L = 100, g = 15, y = 4, µ =
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lifetime of a polymorphism is larger than under neutrality [43, 47]. This is particularly inter-

esting for fluctuating selection regimes with positive autocorrelation where alleles regularly go

through periods of low frequency [43]. We therefore compute the so-called retardation factor

[47], the average lifetime of a polymorphism in the selection scenario relative to the average

lifetime under neutrality (see Appendix S2.3 for detailed methodology). The results for 100

loci are consistent with those for the effective strength of balancing selection: For d > 0.5,

polymorphism under segregation lift is lost more slowly than under neutrality (Fig. 9 B).

To quantify seasonal fluctuations, we compute an effective selection coefficient (see Methods

and Appendix S2.2). We also compute the predictability of fluctuations as the proportion

of seasons over which the allele frequency changes in the expected direction, e.g. where the

summer-favored allele increases over a summer season. Both the effective selection coefficient

and the predictability of fluctuations have a maximum at intermediate values of d and increase

with increasing exponent y of the fitness function Eq. (4) (Fig. 9 C, D). Also, effective strength

of balancing selection, effective selection coefficient, and predictability of fluctuations increase

with the number of generations per season (Fig. S7). Despite considerable variance in fitness

across individuals in a population (coefficients of variation up to at least 0.25, see Fig. S8), the

results for the capped model generally match the results for the uncapped model in all respects,

especially for d > 0.5 (Fig. 9 A-D).

With increasing number of loci and with d > 0.5, the strength of balancing selection,

the retardation factor, the magnitude and predictability of fluctuations all decrease (Fig. 10).

Population size hardly influences effective strength of balancing selection and effective selection

coefficient (Fig. 10 A, C), but large populations maintain polymorphism for longer (Fig. 10

B) and have more predictable allele-frequency fluctuations (Fig. 10 D). In small populations,

polymorphism can even be lost slightly faster than under neutrality (Fig. 10 B).

Finally, we consider a generalized model where parameters vary across loci and seasons.

Independently for each locus l, we draw four parameters: summer effect size ∆s,l and winter

effect size ∆w,l are drawn from a log-normal distribution. Specifically, we draw the logarithms

of these parameters from a bivariate normal distribution with mean 0, standard deviation

1, and correlation coefficient 0.9. Summer and winter dominance parameters, ds,l and dw,l, are

drawn independently from a uniform distribution on [0,1]. Seasonal scores are then computed as

z =
∑L

l=1 cl, where the contribution cl of locus l in summer is 0 for winter-winter homozygotes,

ds,l∆s,l for heterozygotes, and ∆s,l for summer-summer homozygotes. Winter contributions are

computed analogously. Because all effect sizes ∆ are positive, all loci exhibit a trade-off between

summer and winter effects. We use y = 4 here because it led to the most stable polymorphism

in the basic model.

The results indicate that polymorphisms with different parameters can be maintained in

the same population, with their allele frequencies fluctuating on various trajectories (Fig. 11

A). With a sufficiently high total number of loci, hundreds of stable polymorphisms (positive
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Figure 9: Influence of the dominance parameter d on (A) effective strength of balancing selection (be,
Eq. (14), Methods), (B) retardation factor, (C) magnitude of fluctuations (se, Eq. (15), Methods), (D)
predictability of fluctuations. Symbols indicate averages across replicates for the uncapped vs. capped
model variant (often overlapping) and solid vs. dashed lines in A, C, and D indicate the respective
means ± two standard errors. Lines in B simply connect maximum-likelihood estimates obtained
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information on the distribution and frequency-dependence of seasonal allele frequency changes. The
vertical grey lines are at d = 0.5.
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Figure 10: Influence of population size and the number of seasonally selected loci on (A) effective
strength of balancing selection (be in Eq. (14), Methods), (B) retardation factor, (C) magnitude
of fluctuations (se in Eq. (15), Methods), and (D) predictability of fluctuations. Symbols indicate
averages across replicates and lines in A, C and D indicate means ± two standard errors (In C and D,
standard errors are too small to be visible). Lines in B simply connect maximum-likelihood estimates
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of polymorphism was too small to be quantified. d = 0.7, y = 4, g = 15, µ = 10−4.
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expected frequency change of a rare allele, see Appendix S2.4 for details) can be maintained

in populations of biologically plausible size (Fig. 11 B). The number of loci classified as stable

depends only weakly on population size. However, only a small proportion of the polymorphisms

classified as stable also exhibit detectable allele-frequency fluctuations, defined as changes in

the expected direction by at least 5 % in at least half of the seasons (Fig. 11 C,D). The number

of detectable polymorphisms is highest at an intermediate total number of loci and increases

with population size (Fig. 11 D). Detectable polymorphisms tend to have larger summer and

winter effect sizes than polymorphisms that are only stable (Fig. 11 E). Compared to unstable

polymorphisms, stable polymorphisms are more balanced in their summer and winter effect

sizes (two-sample t-test on | ln(∆s,l/∆w,l)|, p < 2.2 · 10−16, Fig. 11 E, see also Fig. S9). For

almost all stable polymorphisms, detectable or not, the average dominance parameter across

seasons is larger than 0.5 (Fig. 11 F).

Discussion

We have studied a simple model for seasonally fluctuating selection that maps the multi-locus

genotype to fitness in two steps. First, we count the number of loci homozygous for the currently

favored allele and add the number of heterozygous loci weighted by a dominance parameter. The

resulting seasonal score is then mapped to fitness via a monotonically increasing function which

accounts for strength of selection and epistasis. The previously studied cases of multiplicative

selection and selection on a fully additive phenotype are special cases of our model. We identified

a general mechanism, which we call segregation lift, by which seasonally fluctuating selection

can maintain polymorphism at tens or hundreds of unlinked loci. Segregation lift requires that

the average dominance parameter of the currently favored allele, the summer allele in summer

and the winter allele in winter, is sufficiently large. Individuals with many heterozygous loci

then have higher average scores in both seasons than individuals with the same number of

summer- and winter-favored alleles but more homozygous loci. Unlike in previously studied

fully additive models, fully homozygous types thus cannot fix in the population and multi-

locus polymorphism is maintained.

The critical value of the dominance parameter required to maintain polymorphism, dcrit,

depends mostly on the type of epistasis and on the number of loci. Without epistasis, i.e. for

multiplicative selection, dcrit is 0.5. With synergistic epistasis it is close to one when there

are multiple loci. For diminishing-returns epistasis and a small number of loci, dcrit can be

substantially above 0.5, but as the number of loci increases, dcrit decreases toward 0.5. For

one hundred loci, for example, only small deviations from additivity are required to maintain

polymorphism at all loci.
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Figure 11: Stability of polymorphism and detectability of allele-frequency fluctuations when parame-
ters vary across loci and seasons. A) Snapshot of allele-frequency trajectories for stable polymorphisms
in one simulation run. B) Average number of stable polymorphisms as a function of the total number
of loci for different population sizes. C,D) As in A and B, but only for polymorphisms that are also
detectable. E) Winter effect size, ∆l,w, vs. summer effect size, ∆l,s, for stable and detectable and only
stable polymorphisms. The plot shows pooled results over ten simulation runs with independently
drawn parameters. Oval isoclines indicate the shape of the original sampling distribution, with 75 %
of the sampling probability mass inside the outermost isocline. F) Corresponding dominance parame-
ters. The dominance parameters were originally drawn from a uniform distribution on the unit square.
Parameters: y = 4, g = 10, µ = 10−4 and in (A,C,E,F) N = 10, 000, L = 100.
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Robustness and plausibility of segregation lift as a mechanism to

maintain variation

The conditions for stable polymorphism under segregation lift are insensitive to the mutation

rate (see Fig. 7) and to the number of generations per season, even if there is an asymmetry

(see Figs. S7 and S5). Segregation lift is also robust to seasonal changes in population size (Fig.

S6) and to variation in effect sizes and dominance parameters across loci (Fig. 11). Future work

will be needed to assess how linkage between selected loci affects stability of polymorphism

under segregation lift.

Whenever there is balancing selection at a large number of loci, genetic load is a potential

concern. In the case of segregation lift with diminishing-returns epistasis, however, genetic load

does not appear to play an important role. The results for our capped model closely match the

results for the original, uncapped model. Thus, although individuals might occasionally have a

large number of offspring in the uncapped model, large offspring numbers are not required for

stable multi-locus polymorphism or any of the other observed features.

Although changes in dominance across seasons or traits, a key requirement for segregation

lift, have traditionally been considered rare [42, 48], the required changes are small and we argue

that they can indeed arise naturally in situations with antagonistic pleiotropy and seasonal

changes in the relative importance of traits (see Fig. 3). In reality, it is likely that seasonal

differences are more pronounced in some years than in others, and there may also be spatial

variation in seasonality. If seasonality is weak and both traits are roughly equally important

throughout the year, antagonistic pleiotropy can even lead to simple heterozygote advantage

[Fig. S1 B, 41]. Thus, maintenance of polymorphism by segregation lift should also be robust to

variation in the degree of seasonality. Segregation lift can also be interpreted as a specific type

of phenotypic plasticity, where the ability of a genotype to adjust plastically to both summer

and winter environments increases with the number of heterozygous loci. This plasticity could

be mediated by environment-dependent changes in dominance for gene expression as observed

in Drosophila [45].

All in all, the notion that seasonally fluctuating selection cannot contribute substantially to

genomic variation appears no longer justified. The conditions for polymorphism in our model

are much less restrictive than in previously studied scenarios. We do not need multiplicative

selection but can allow other types of epistasis and the required small changes in dominance

can arise naturally under antagonistic pleiotropy. Segregation lift is not affected by problems

of genetic load and is robust to many perturbations in the parameters across time and loci.

Because of this robustness, segregation lift should be able to maintain polymorphism at many

loci in the genome under seasonally fluctuating selection and potentially also under other forms

of temporal heterogeneity.
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Magnitude and detectability of allele-frequency fluctuations

Segregation lift not only explains stability of polymorphism, but can also produce strong and

predictable seasonal fluctuations in allele frequencies. This is the case especially for large ex-

ponents y of the fitness function (Eq. (4)), our measure for the strength of selection, and for

dominance parameters, d, slightly above 0.5. For even higher values of d, fluctuations are not as

strong, presumably because heterozygotes are fitter and therefore more copies of the currently

disfavored allele enter the next generation.

The magnitude of allele-frequency fluctuations also decreases with the number of loci under

selection. This explains why the number of detectable polymorphisms is maximized at an inter-

mediate number of loci in Fig. 11. In Appendix S3, we use a heuristic mathematical argument to

explore the relationship between number of loci and magnitude of fluctuations in a population

of infinite size. We show that as the number of loci goes to infinity, the effective strength of

selection at each locus is expected to go to zero, i.e. effective neutrality. This is because more

loci lead to higher overall seasonal scores, z, which under diminishing-returns epistasis leads to

weaker average selection pressures at each locus. These findings and also our results in Fig. 11

suggest that even if segregation lift contributes substantially to maintaining polymorphism at

a large number of loci, it is not necessarily easy to detect individual selected loci based on their

allele-frequency fluctuations.

Empirical evidence, alternative hypotheses, and potential tests for

segregation lift

Recently, Bergland et al. [37] observed strong and stable allele-frequency fluctuations at a

large number of loci in a temperate population of Drosophila melanogaster. The population

was sampled twice a year for three successive years, once in spring and once in fall. Pooled

whole-genome sequencing revealed hundreds of apparently seasonally selected single-nucleotide

polymorphisms (SNPs). The SNPs were distributed throughout the genome, and most were

not closely linked. At each SNP, one allele was favored during summer and the other allele

during winter with large allele-frequency fluctuations (∼10% over a single season of about 10

generations). As mentioned above, many of the SNPs are shared with African populations of D.

melanogaster and some even with the closely related Drosophila simulans, suggesting long-term

stability. Based on our results, it is plausible that seasonally fluctuating selection with segre-

gation lift, even in the absence of other stabilizing mechanisms, can maintain polymorphism at

such a large number of loci. It is less clear, however, whether segregation lift can explain the

observed large magnitude of allele-frequency fluctuations. Only few loci exhibited such large

fluctuations in the generalized model with parameter variation across loci (see Fig. 11 C, D).

However, in our basic model with equal parameters across loci we did observe 100 loci with

allele-frequency fluctuations of similar magnitude as in the Drosophila data (see Fig. 8 C),
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suggesting that, in principle, segregation lift is compatible with large fluctuations at many loci.

Of course, segregation lift is not the only possible explanation for polymorphisms with sea-

sonal fluctuations in frequency. Such fluctuations are also possible under stabilizing selection on

an additive trait with a temporally fluctuating optimum because recurrent mutation can induce

substantial genetic variance [32, 49]. However, this is really a form of mutation-selection balance

and not a mechanism leading to long-term stable polymorphism. Alternative mechanisms that

could potentially lead to both fluctuations and long-term stability are 1) differential responses

to fluctuating resource concentrations and population densities [19, 50–52], 2) a so-called “tem-

poral storage effect” where genetic variation can be buffered by a long-lasting life-history stage

on which selection does not act, or by some other protected state [51, 53, 54]. However, these

mechanisms are more commonly studied in an ecological context, and it is unclear whether they

can maintain polymorphism at multiple loci.

Detecting segregation lift in empirical data will be challenging, but should be possible in

principle. One way would be to stock outdoor cages with various multi-locus genotypes and

track fitness over one or more seasons. The main challenge is that the pivotal dominance

parameter, d, is relative to the seasonal score, z, which mediates between multi-locus genotype

and fitness, and is itself not directly measurable. Since the shape of the fitness function, w, is

also generally unknown, it is not possible to infer d from fitness measurements of different single-

locus genotypes in a common genetic background (see Fig. 4). For a set of loci with the same

effect sizes and dominance parameters, we would be able to compare multi-locus genotypes

with the same number of summer and winter alleles and conclude that there is segregation

lift if fitness in both seasons increases with the number of heterozygous loci. More generally,

given fitness measurements for a large number of multi-locus genotypes, we could use statistical

methods such as machine learning to jointly estimate parameters of the fitness function, effect

sizes, and dominance parameters and thereby assess whether or not there is segregation lift.

Such statistical approaches could also take into account the existence of several multiplicative

fitness components each with a set of contributing loci that might exhibit segregation lift and

epistatic interactions. In any case, one point is clear: Looking at one locus or two loci at a time

is not sufficient to understand the multi-locus phenomenon of segregation lift.

Conclusions

We have identified segregation lift as a general mechanism by which seasonally fluctuating

selection can maintain polymorphism at hundreds of unlinked loci in populations of biologi-

cally reasonable size. Segregation lift circumvents the problems associated with maintenance of

polymorphism under stabilizing selection and does not require highly heterozygous individuals

to have unrealistically many offspring. Given the ubiquity of environmental fluctuations, this

mechanism could make a substantial contribution to genetic variation in natural populations
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of many taxa. With easy access to population genomic data across time and space, we are now

in a good position to make progress on the puzzle of genetic variation, that is quantify the

contributions of segregation lift and other mechanisms to overall genetic variation.

Methods

For the basic model and the capped model, we assess stability of polymorphism by estimating

an effective strength of balancing selection, be, from the year-to-year allele-frequency dynamics.

For this, we fit a standard balancing selection model [55] of the form

∆yx = bex(1− x)(1− 2x) (14)

to average changes in allele frequency over one yearly cycle, ∆yx (see Appendix S2.2 for details).

Positive values of be indicate that rare alleles tend to become more common in the long run,

whereas negative values indicate that rare alleles tend to become even more rare. Second, we

quantify the magnitude of fluctuations over individual seasons. For this, we fit a standard

directional selection model [55]

∆sx = sex(1− x), (15)

with an effective selection coefficient se, to average allele-frequency changes over one season,

∆sx (see Appendix S2.2).

To obtain a measure for statistical uncertainty in our results, we run 10 replicates for every

parameter combination and calculate effective strength of balancing selection, be, and effective

selection coefficient, se, independently for each replicate. We do the same for the predictability

of fluctuations, i.e. the proportion of seasons in which a locus changes its allele frequency in the

expected direction. In all three cases we report the mean over replicates ± two standard errors

of the mean. To obtain retardation factors, we run 100 replicates until the first polymorphism

is lost or a maximum time of 500 years is reached. From the times of loss for the replicates, we

obtain maximum likelihood estimators for the rate of loss of polymorphism (see Appendix S2.2

for details).

C++ source code and R scripts for the individual-based simulations and their analysis are

available upon request.
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Figure S1: Alternatives to the scenario in Fig. 3. A) If heterozygotes are relatively close to the fitter
homozygote with respect to one of the traits and the beneficial allele is only slightly recessive for the
other trait, we can still obtain a beneficial reversal of dominance with respect to the seasonal score,
z. However, in this case, ds 6= dw. B) If the two traits are of similar importance in the two seasons,
heterozygotes are fitter than either homozygote at all times.

Appendix S1 Local stability analysis for the additive sce-

nario (d = 0.5) with diminishing-returns

epistasis

In this section, we consider a scenario where alleles contribute to the seasonal score z addi-

tively within and between loci (ds = dw = 0.5 in Eq. (1) and Eq. (2)). We show that in the

deterministic model without recurrent mutation, a population fixed for a balanced haplotype

with L/2 summer-favored alleles and L/2 winter-favored alleles (L even) cannot be invaded by

any other haplotype. We give an intuitive rather than a mathematically formal outline of the
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stability analysis.

Assume that a certain balanced haplotype is at frequency close to 1 in the population. We

will call it the resident haplotype. Let εi,j be the combined frequency of all haplotypes that have

a winter allele at i positions where the resident haplotype has a summer allele and a summer

allele at j positions where the resident haplotype has a winter allele. Thus an i, j-haplotype

has L/2 + i − j winter alleles, L/2 − i + j summer alleles, and differs in i + j positions from

the resident haplotype.

Rare i, j-haplotypes will almost certainly occur in a genotype with a copy of the resident

balanced haplotype. This has two consequences. First, recombination with the resident balanced

haplotype will produce other haplotypes that differ in at most i+ j positions from the resident

haplotype. Haplotypes with more than i+ j differences cannot be produced because if resident

and invading haplotype have the same allele at a locus, then all offspring haplotypes will carry

this allele as well. Given free recombination, the probability that one of the two recombinant

haplotypes produced by an i, j-resident genotype (consisting of one i, j-haplotype and one

resident haplotype) is of type i, j is 1/2i+j. Second, the relevant fitness values for the invasion

of the i, j-haplotype are w((L + i − j)/2) in winter and w((L − i + j)/2) in summer. The

population mean fitness will be approximately w(L/2) in both seasons, namely the fitness of

the resident-resident genotype.

To linear order, the frequency of the i, j-haplotype after one yearly cycle with g generations

of summer and g generations of winter will be

ε′i,j = εi,j ·
(
w((L+ i− j)/2)

w(L/2)

)g

·
(
w((L− i+ j)/2)

w(L/2)

)g

·
(

2 · 1

2i+j

)2g

, (S1)

where the factor of two in the last term comes from the fact that each genotype contributes on

average two haplotypes in the next generation. From the assumption that intermediate types

are favored in the long run (negative epistasis), we can conclude that

w((L+ i− j)/2) · w((L− i+ j)/2) ≤ w(L/2)2, (S2)

with equality for i = j. Hence ε′i,j < εi,j for i 6= j, showing that unbalanced haplotypes cannot

invade the population.

For a balanced haplotype (i = j),

ε′i,j = εi,j · 1 ·
(

2 · 1

22i

)2g

< εi,j for i ≥ 1. (S3)

Intuitively, other balanced haplotypes cannot invade, because they differ from the resident

balanced haplotype at more than one position and are therefore broken down by recombination.

Hence we have shown that a population fixed for a certain balanced haplotype cannot be invaded
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by any other balanced or unbalanced haplotype.

Appendix S2 Detailed methods

Individual-based simulations

We assume discrete, non-overlapping generations with population size N and L loci. In each

generation, the following events take place in this order: 1) The fitnesses of all individuals in the

parent generation are calculated using the genotype-to-fitness map described in the main text

(Eq. (1), Eq. (2), Eq. (4)). 2) Each individual in the offspring generation draws two parents,

independently, with replacement (i.e. selfing is possible), and proportionally to parent fitness.

3) Each parent passes one set of alleles to each of its offspring. We assume unlinked loci such

that at each of the L loci each of the two allele copies is passed on with equal probability,

independently of the alleles passed on at other loci, and also independently of which alleles

were passed on to other offspring of the same parent. 4) Independently and with probability µ,

each of the allele copies passed to an offspring mutates to the respective other allele. 5) The

parent generation is removed from the model and replaced by the individuals in the offspring

generation.

To initialize a simulation run, we randomly assemble genotypes. Independently for each indi-

vidual, locus, and allele copy, we draw the summer and the winter allele with equal probabilities.

Each simulation runs for 500 years, corresponding to 500 · 2 · g generations. Each parameter

combination is replicated 10 times. For each locus, we store the allele-frequency trajectory over

time.

Stability of polymorphism and magnitude of fluctuations

To quantify and compare the dynamics of different simulation runs, we compute three summary

statistics from the allele-frequency trajectories: an effective strength of balancing selection, be,

as a measure of the stability of polymorphism, an effective selection coefficient, se, as a measure

of the magnitude of fluctuations, and the proportion of allele frequency changes that go in the

expected direction as a measure of predictability of fluctuations.

To compute the strength of balancing selection, we divide the allele-frequency interval be-

tween 0 and 1 into 25 equally-sized bins (from 0 to 0.04, from 0.04 to 0.08, ...). For each

frequency bin, we compute the average allele-frequency change over the course of one year,

from the middle of the cold season to the middle of the next cold season. We chose the middle

of the cold season as a reference point because at this point the average frequency across all loci

should be approximately 0.5. Choosing the middle of the warm season as the reference point

should give the same results, but choosing either the beginning or end of the warm season
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Figure S2: Examples of model fits to estimate (A) the effective strength of balancing selection
(Eq. (14)) and (B) the effective selection coefficient (Eq. (15)). The letters A, B, and C in the plots
indicate the panel in Fig. 8 that depicts the corresponding time series.

would lead to asymmetric results. We average over all loci and times, for which the frequency

at the reference point is in the respective frequency bin. Because we want to quantify dynamics

at equilibrium, we only use data from the second half of each simulation run. We also ex-

clude data points for which the allele frequency at the beginning of the year is exactly 0 or

1. For each bin, we then subtract an approximate average frequency change due to mutations

2 · g · (µ · (1− p̄)−µ · p̄) = 2 · g ·µ · (1− 2p̄), where p̄ is the midpoint of the respective frequency

bin (0.02, 0.06,...). Finally, we use the lm function in R [56] to fit a balancing-selection model

of the form be · p̄(1− p̄)(1− 2p̄) to the mutation-adjusted average allele-frequency changes. The

coefficient be is our effective strength of balancing selection. Example model fits are shown in

Fig. S2 A.

To compute the effective selection coefficient, we use the same data subsets and frequency

bins as for the effective strength of balancing selection. But now we compute the average

frequency change of the currently favored allele for each season, i.e. of the summer allele from

spring to fall or of the winter allele from fall to spring. We bin data points according to the mid-

season frequency of the currently favored allele. After subtracting g ·µ·(1−2p̄), the approximate

expected frequency change due to mutations, we fit the model se · p̄(1 − p̄). The coefficient se

is the effective selection coefficient. Example model fits are shown in Fig. S2 B.
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Retardation factor

To obtain the retardation factor, we ran additional simulations without recurrent mutations

(µ = 0). We started at allele frequency 0.5 for all loci and simulated nrep = 100 replicate

populations. We stopped the simulation when polymorphism was lost at the first locus, but

at most after 500 years, corresponding to tmax = 500 · 2 · g generations. For each parameter

combination, we ran a neutral control simulation, which was achieved by setting y = 0.

The relevant results for each parameter combination are the number of replicates, nlost,

in which the first polymorphism was lost before tmax and the times of loss for each of these

replicates t1, t2, ..., tnlost
.

For simplicity, we assume that polymorphism is lost with the same probability p in every

generation such that the time to the first loss is geometrically distributed. We then adopt a

Maximum-Likelihood approach to estimate p. The likelihood of p is

L(p) = (1− p)tmax·(nrep−nlost)pnlost

nlost∏
i=1

(1− p)ti−1 (S4)

= pnlost(1− p)a (S5)

with

a := tmax(nrep − nlost)− nlost +

nlost∑
i=1

ti. (S6)

To look for extreme values, we take the first derivative with respect to p

L′(p) = pnlost−1(1− p)a−1 (nlost − p(nlost + a)) (S7)

and obtain our estimator

p̂ =
nlost

nlost + a
=

nlost∑nlost

i=1 ti + tmax(nrep − nlost)
. (S8)

Eq. (S7) is positive for p < p̂ and negative for p > p̂. Therefore, p̂ is a maximum of the likelihood

function. To see that this estimator makes sense, consider an example where loss is so fast that

all replicates lose a polymorphism before tmax. In this case, p̂ will be the inverse of the average

time to loss.

For each parameter combination, we obtain the ML-estimator p̂sel under seasonally fluctu-

ating selection and the ML-estimator for the corresponding neutral scenario p̂neutral. Finally, we

compute the retardation factor as p̂neutral/p̂sel. Values larger than one occur for selection sce-

narios that tend to maintain polymorphism longer than neutrality, whereas in scenarios with a

retardation factor below one polymorphism is lost more quickly than under neutrality.
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Stability in asymmetric scenarios

In our model with parameter variation across loci and seasons, and also in the basic model with

different numbers of generations in summer and winter, the dynamics are generally asymmetric.

That is, either the summer or the winter allele is more common on average. Hence the standard

balancing selection model Eq. (14) does not fit anymore. We therefore use a different method to

assess stability of polymorphism for individual loci. For each frequency bin between 0 and 0.5,

we take all time points for which the frequency of the currently rare allele is in the frequency

bin at the beginning of the cycle and compute the average change in its allele frequency over

one cycle. As above, we subtract the expected input from new mutations. We do this separately

for 10 replicate simulation runs (or for 10 disjoint subsets of the data if the actual replicates

differ in the locus parameters) and for each frequency bin we compute the interval mean ± 2

standard errors. We then call a polymorphism stable if the rare allele has a positive expected

frequency change in the most marginal frequency bin whose interval does not overlap zero.

Appendix S3 Magnitude and detectability of seasonal fluc-

tuations with diminishing-returns epista-

sis

In this section, we use a heuristic mathematical argument to explore how the magnitude of

allele-frequency fluctuations changes as the number of loci increases in a population of infinite

size.

Let us assume that there are L+1 loci in total, with one focal locus whose dynamics we will

now study while the remaining L loci form its “genetic background”. Let us first consider the

contribution, zb, of the genetic background to the seasonal score, z, i.e. the total score minus the

contribution from the focal locus. For simplicity, we will focus on the expected allele frequency

change over one generation at one of the two time points at which the allele frequency equals

the yearly average allele frequency. At this point, both the population mean and the variance

of the score zb among individuals in the population should be approximately proportional to

the number of loci:

z̄b =
L∑
l=1

c̄l ≈ k1L (S9)

and

Var(zb) =
L∑
l=1

Var(cl) ≈ k2L, (S10)

where we have assumed free recombination. Here, cl is the contribution of locus l to an in-

dividual’s score, and k1 and k2 are positive constants that will depend on the distribution of
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locus parameters. For example, if all loci have symmetric parameters (∆s,l = ∆w,l =: ∆l and

ds,l = dw,l =: dl), all loci will have an allele frequency of approximately 0.5 in the middle of

summer. Since mating is random, allele frequencies will be in approximate Hardy-Weinberg

equilibrium in every generation before selection and, with ∼ denoting averages across loci,

z̄b =
L∑
l=1

(
1

4
+

1

2
dl

)
∆l =

(
1

4
∆̃ +

1

2
d̃∆

)
︸ ︷︷ ︸

k1

L. (S11)

Similarly,

Var(zb) =
L∑
l=1

E[c2l ]− E[cl]
2 (S12)

=
L∑
l=1

(
1

4
+

1

2
d2l

)
∆2

l −
(

1

4
+

1

2
dl

)2

∆2
l (S13)

=

(
3

16
∆̃2 +

1

4

(
∆̃2d2 − ∆̃2d

))
︸ ︷︷ ︸

k2

L. (S14)

Next, we quantify the fitnesses of the three genotypes (WW, WS, SS) at a focal locus

averaged over the possible genetic backgrounds. For this, we expand the fitness function w(z)

as a second-order Taylor expansion around z̄b:

w(z) ≈ w(z̄b) + w′(z̄b)(z − z̄b) +
1

2
w′′(z̄b)(z − z̄b)2. (S15)

Now, we need the values of the phenotype z for the three genotypes at the focal locus. Let us

assume that the focal locus has parameters d and ∆. Because we consider the population in the

middle of summer, the winter-winter homozygote (WW) at the focal locus does not contribute

anything to the seasonal score and z = zb. For the heterozygote (WS), z = zb + d ·∆, and for

the summer-summer homozygote, z = zb + ∆. With this, we obtain

wWW ≈ w(z̄b) +
1

2
w′′(z̄b)Var(zb), (S16)

wWS ≈ w(z̄b) + w′(z̄b)d ·∆ +
1

2
w′′(z̄b)Var(zb), (S17)

and

wSS ≈ w(z̄b) + w′(z̄b)∆ +
1

2
w′′(z̄b)Var(zb). (S18)

Finally, we compute the expected change in summer allele frequency, p, over one generation
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at the focal locus. The frequency of the summer allele in the next generation is

p′ ≈ p2wSS + p(1− p)wWS

p2wSS + 2p(1− p)wWS + (1− p)2wWW

(S19)

and the proportional change in allele frequency is

p′ − p
p
≈ p(1− p)wSS + (1− p)(1− 2p)wWS − (1− p)2wWW

p2wSS + 2p(1− p)wWS + (1− p)2wWW

. (S20)

Substituting Eq. (S16)–Eq. (S18) and simplifying, we obtain

p′ − p
p
≈ (1− p)w′(z̄b)∆(p+ d(1− 2p))

w(z̄b) + 1
2
w′′(z̄b)Var(zb) + ∆pw′(z̄b)(p+ 2(1− p)d)

. (S21)

For the specific fitness function fitness function used in this paper

w(z) = (1 + z)y, (S22)

with

w′(z) = y(1 + z)y−1, (S23)

and

w′′(z) = y(y − 1)(1 + z)y−2, (S24)

and using Eq. (S9) and Eq. (S10), we obtain

p′ − p
p
≈ ∆(1− p)(p+ d(1− 2p))y(1 + k1L)y−1

(1 + k1L)y + 1
2
y(y − 1)(1 + k1L)y−2k2L+ ∆py(1 + k1L)y−1(p+ 2(1− p)d)

(S25)

=
∆(1− p)(p+ d(1− 2p))y

1 + k1L+ 1
2
y(y − 1) k2L

1+k1L
+ ∆py(p+ 2(1− p)d)

=: φ(L). (S26)

It follows that,

lim
L→∞

φ(L) = 0. (S27)

Moreover,

d

dL
φ(L) < 0 (S28)

⇔ d

dL

(
1 + k1L+

1

2
y(y − 1)

k2L

1 + k1L

)
> 0 (S29)

⇔k1 +
1

2
y(y − 1)

k2
(1 + k1L)2

> 0. (S30)

With y > 1, the second term is positive and the inequality is always fulfilled. With y < 1 it is

fulfilled for sufficiently large L. Thus, with y > 1, the magnitude of allele-frequency change in
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Figure S3: Example time series for the additive model (d = 0.5) with (A) four loci, or (B) five loci.
N = 1000, g = 15, y = 1, µ = 10−4.

an infinite population decreases monotonically as L increases and approaches zero for very large

numbers of loci. With y < 1, allele-frequency change may first increase with increasing number

of loci, but eventually decreases and also approaches zero. This finding indicates that there is a

limit to the number of loci that can be detected to exhibit seasonal allele-frequency fluctuations.

Intuitively, as the number of loci increases the average fitness of the genetic background becomes

larger. Thus selection at a focal locus gets effectively weaker.

Appendix S4 Additional results

See Figs. S3–S9.
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Figure S4: Detailed information on allele frequency change over one season for the scenarios with
d = 0.7 in Fig. 9. (A) The distribution of the change in frequency for all loci over the currently favored
allele over one season compared to neutrality (gray curve), and (B) the average frequency change of
the currently favored allele over one season for d = 0.7 as a function of the frequency at the beginning
of the season. N = 1000, L = 100, g = 15, µ = 10−4. In (A) the results for the capped vs. uncapped
model variants are virtually indistinguishable.
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Figure S5: Influence of an imbalance in the number of generations in summer vs. winter. There are 15
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stable polymorphism (see section Stability in asymmetric scenarios), open symbols represent unstable
polymorphism. Lines indicate means± two standard errors. Other parameters: N = 1000, L = 100, y =
4, µ = 10−4.
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Figure S6: Robustness of results to seasonal changes in population size. (A) Four population-size
trajectories. The trajectories are deterministic and cyclic and only two years are shown. Population
size is 500 during winter and grows exponentially to different final sizes, Nmax, over summer (except for
the case Nmax = 500, where population size remains constant throughout the year). (B) Corresponding
effective strength of balancing selection. L = 100, g = 15, y = 4, µ = 10−4.
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Figure S7: Influence of the number of generations per season, g, on (A) stability of polymorphism,
(B) magnitude and (C) predictability of fluctuations. Dashed lines indicate means ± two standard
errors, but they coincide with the solid lines in B and C. N = 1000, L = 100, µ = 10−4, d = 0.7.
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Figure S8: Coefficient of variation in fitness among individuals in the population as a function of
the dominance parameter d. N = 1000, L = 100, g = 15, µ = 10−4. Symbols indicate the mean across
replicates for the uncapped vs. capped model variant (often overlapping) and lines indicate means
± two standard errors for the uncapped case. Since the standard errors are so small, the lines are
overlapping.
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