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Abstract

Motivation: The three-dimensional structure of chromatin plays a key role in genome
function, including gene expression, DNA replication, chromosome segregation, and DNA
repair. Furthermore the location of genomic loci within the nucleus, especially relative
to each other and nuclear structures such as the nuclear envelope and nuclear bodies
strongly correlates with aspects of function such as gene expression. Therefore, deter-
mining the 3D position of the 6 billion DNA base pairs in each of the 23 chromosomes
inside the nucleus of a human cell is a central challenge of biology. Recent advances
of super-resolution microscopy in principle enable the mapping of specific molecular
features with nanometer precision inside cells. Combined with highly specific, sensitive
and multiplexed fluorescence labeling of DNA sequences this opens up the possibility of
mapping the 3D path of the genome sequence in situ.

Results: Here we develop computational methodologies to reconstruct the sequence
configuration of all human chromosomes in the nucleus from a super-resolution image
of a set of fluorescent in situ probes hybridized to the genome in a cell. To test our
approach we develop a method for the simulation of chromatin packing in an idealized
human nucleus. Our reconstruction method, ChromoTrace, uses suffix trees to assign
a known linear ordering of in situ probes on the genome to an unknown set of 3D in
situ probe positions in the nucleus from super-resolved images using the known genomic
probe spacing as a set of physical distance constraints between probes. We find that
ChromoTrace can assign the 3D positions of the majority of loci with high accuracy and
reasonable sensitivity to specific genome sequences. By simulating spatial resolution,
label multiplexing and noise scenarios we assess algorithm performance under realistic
experimental constraints. Our study shows that it is feasible to achieve chromosome-wide
reconstruction of the 3D DNA path in chromatin based on super-resolution microscopy
images.
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Introduction 1

The primary nucleic acid sequence of the human genome is not sufficient to understand 2

its functions and their regulation. Fitting the 6 billion basepairs or approximately 2 m of 3

double-helical DNA into an approximately 10 µm nucleus requires tight packing of DNA 4

into chromatin, where about 150 bp of DNA are wrapped around cylindrical nucleosome 5

core particles, which in turn can be tightly packed due to interspersed flexible linker 6

DNA [1]. In addition, each chromosomal DNA molecule occupies a discrete 3D volume 7

inside the nucleus and the arrangement of these chromosome territories is non-random 8

and changes with cell differentiation [2,3]. This remarkable management of 23 large linear 9

polymer molecules controls crucial functions of the genome, such as gene expression, 10

DNA replication, chromosome segregation, and DNA repair. 11

12

Structural biology techniques, such as electron microscopy, crystallography, and NMR 13

have given atomic level insights into the physical structure of the DNA double helix 14

and the nucleosome [4]. In vitro, also higher order structures such as nucleosomes 15

stacked into 11 or 30 nm chromatin fibres can be observed and studied at high resolution. 16

However, the existence of regular higher order nucleosome structures in vivo has not 17

been demonstrated under physiological conditions. To date, little direct information is 18

available about the functionally crucial 3D folding and structure of chromatin between 19

the scale of single nucleosomes (approximately 5 nm) and the diffraction limit of light 20

(200 nm), which can only resolve entire chromosome territories with a size of a few µm. 21

22

In situ, classically two general types of higher order chromatin organization have been 23

distinguished at a coarser level, euchromatin which tends to be less compact and displays 24

high gene density and activity, and heterochromatin, with a higher degree of compaction 25

and lower gene density and activity [5]. Due to the arrangement of chromatin from indi- 26

vidual chromosomes in territories, the majority of DNA-DNA interactions occur in cis, 27

while trans interactions are more rare and mostly observed on the surface of or on loops 28

outside of territories [6–8]. Within territories and across the whole nucleus euchromatin 29

and heterochromatin are generally spatially separated [9], leading to heterochromatin 30

rich and gene expression poor domains at the nuclear periphery and around nucleoli. 31

Gene expression is intrinsically linked to the 3D structure of chromosomes, chromatin 32

packing densities and the accessibility of DNA by the transcriptional machinery. 33

34

In the last 10 years, biochemical DNA crosslinking technologies based on chromo- 35

some conformation capture (3C), have been developed to address the issue of higher 36

order chromatin structure in an indirect manner [10]. These methods have been widely 37

used to measure the average linear proximity of genome sequences to each other in cell 38

populations with good throughput and at kb resolution. The resulting contact frequency 39

maps analyzed with computational models have indirectly inferred principles of genome 40

organization [11]. A major result of these studies, is that chromosomes are organized into 41

domains of 400-800 kb that are topologically associated. These TADs are the smallest 42

structuring units of chromatin above the 150 bp nucleosome level that can be reliably 43

detected biochemically so far. Although good correlations between contact frequency and 44

function of regulatory elements has been shown for several genes [12], such crosslinking 45

technologies cannot determine the 3D position and physical distances of genomic loci 46

inside the nucleus directly. 47

48

Recent developments in light microscopy techniques, collectively called super-resolution 49

microscopy, can determine the position of single fluorescent molecules with a precision of 50

a few nanometers, much below the diffraction barrier. This allows the characterization 51

of previously unobserved details of biological structures and processes [13–16]. First 52
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studies have already explored the use of super-resolution microscopy to investigate 53

chromatin structure [17–19], such as the organization of distinct epigenetic states in 54

Drosophila cells [20] that suggested distinct folding mechanisms and packing densities 55

that correlate with gene expression. Dissection of nucleosome organization inside the 56

nucleus in single cells using super-resolution shows that higher nucleosome compaction 57

corresponds to heterochromatin while lower compaction associates with active chromatin 58

regions and RNA polymerase II, and that the spatial distribution, size and compaction 59

of nucleosome correlate to cell pluripotency [18]. While these studies provide first new 60

intriguing insights into chromatin organization they have so far largely focused on single 61

loci without a complete 3D reconstruction of a chromosome or the genome. 62

63

However, the resolving power of super-resolution microscopy raises the tantalizing 64

possibility to directly reconstruct the 3D path of large parts of the chromosomal DNA se- 65

quence. Super-resolution microscopy can resolve unprecedentedly small volume elements 66

(approximately 20 x 20 x 20 nm [21]) inside the total nuclear volume (approximately 8 67

x10-6 µm3), which will on average contain only up to 2 kb or a few nucleosomes. This 68

fundamental increase in information of the relative positioning of defined loci in the 69

genome can now be leveraged computationally. 70

71

This increase in resolution, which enables to distinguish around 60 million volume 72

elements inside a single nucleus, can be combined with any sensitive and site specific 73

fluorescence in situ hybridization (FISH) probe design that allows for spectral and/or 74

temporal multiplexing. Several methods that fulfill these criteria have recently been 75

developed, and fall within two general probe design categories. Either a primary imager 76

strand with fluorophore-containing DNA is hybridized to the genome directly [22] or 77

a primary genome-sequence specific DNA probe that facilitates transient binding of 78

the fluorophore-containing secondary imager strand is used (DNA-PAINT) [23]. Our 79

reconstruction algorithm should in principle allow the mapping of the genome sequence 80

in 3D with a resolution of tens of nucleosomes, depending on their local packing density. 81

82

Carrying out such large-scale genome mapping studies by systematic super-resolution 83

microscopy will critically depend upon choosing the best design of the necessary chro- 84

mosome or genome wide fluorescent probe libraries and use sufficient resolution in the 85

employed 3D super-resolution imaging technology. To prove that such studies are feasible 86

and guide their probe design and microscope technology choices, we have developed 87

an algorithm, called ChromoTrace that uses an efficient combinatorial search to test 88

the theoretical possibility of complete three-dimensional reconstruction of chromosomal 89

scale regions of DNA inside nuclei of single human cells (Fig 1). To thoroughly test 90

our algorithm, we have developed a simulation to model chromatin packing of the 91

human genome sequence within a realistic geometry of the nucleus. Our modeled 3D 92

architecture of the genome reproduces several key characteristics of real chromosomes, 93

and our ChromoTrace reconstruction algorithm, based on suffix trees, then maps the 94

simulated 3D sequence label positions back to the reference genome. By simulating 95

realistic resolution, label multiplexing and noise scenarios we assessed the algorithm 96

performance for different experimental scenarios. Our results show that ChromoTrace 97

can map the positions of the labeled probes to the genome with very high precision, 98

while it has some limitations in terms of recall. Importantly, our study shows for the first 99

time that it is feasible to achieve chromosome-wide reconstruction of the 3D DNA path 100

in chromatin based on current super-resolution microscopy and DNA labeling technology 101

and defines the required quality of experimental data to achieve a certain bp resolution 102

and reconstruction completeness, which will be invaluable to guide experimental efforts 103

to generate such data sets systematically. 104
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105

Fig1. Representation of a chromosome labelling scheme. (A) Linear DNA displayed as 106

a ribbon with six genome regions labelled in three different colors. (B) 3D view of an 107

expected super-resolution microscope experiment. 108

Materials and Methods 109

Simulation of chromatin structure of the nucleus 110

In order to generate simulations of the chromatin structure we use a well-known mathe- 111

matical model known as Self-Avoiding Walk (SAW). A SAW is a sequence of distinct 112

points in a d-dimensional (hyper) cubic lattice such that each point is a nearest neighbor 113

of its predecessor. The generation of a SAW for dimension of 2 or greater is not trivial, 114

and the complexity increases with the portion of the lattice that the SAW has to occupy 115

(density). For example consider a generic d-lattice containing N points for the generation 116

of a SAW composed of K points, it is clear that the complexity of this task increases 117

with K and that it has the maximum complexity when K = N . A pivot algorithm was 118

used to generate the SAWs. In particular, for each chromosome we generated a SAW of 119

length N (N being the size of the corresponding chromosome), that is, we generated 120

a sequence of points in 3D-space, S = P1, P2, . . . , PN satisfying the SAW properties of 121

adjacency and uniqueness. This process starts by randomly picking the initial position 122

P1 of each SAW among all the possible available positions: i) positions inside the nucleus 123

that are not included in the nucleolus ii) positions that have not been already picked 124

and included in any other walk. Let Pi be the current 3D-coordinate position associated 125

with the ith point of the SAW (i < N), then pick the next position P(i+1) across all the 126

available adjacent points, where all positions have the same probability to be picked. 127

If the current point Pi does not have any available position (i.e., all adjacent positions 128

have been already assigned to a SAW), then restart the computation of the current SAW 129

from another point Pj of the SAW with j < i. Our choice was to select j = i− 0.2i. If 130

the resulting j ≤ 0 then restart the computation of the SAW from the first point, by 131

picking a new random point P1. Fig 2 shows an example of a simulation obtained by 132

using the described method. From this figure one can appreciate that the SAW-based 133

model approach is able to produce a challenging scenario for the proposed reconstruction 134

algorithm, generating visually different types of chromatin conformation (i.e., similar to 135

open, fractal and compact). 136

137

Fig2. 3D view of the nucleus simulation. (A) One whole genome simulation, each 138

chromosome (two copies of the 22 autosomes and the two sex chromosomes X and Y) is 139

drawn with a different colour. Individual chromosomes show a random configuration 140

with a high degree of compactness inside the nucleus. (B) One copy of chromosome 1 is 141

highlighting the ability of the simulation to create a realistic chromatin structure having 142

the expected conformations, open, fractal and compact. 143

ChromoTrace Algorithm 144

We propose a new algorithm, ChromoTrace, to reconstruct the position of the chromo- 145

somes from labelled points in the chromosome, defined below: 146

147

Main data structures: The two main inputs of our algorithm are a labeling and 148

a segmentation file which are modeled through the following two data structures: 149

First, a list L modelling the labelling file, where each element Li ∈ L is a concatenated 150

list for the ith chromosome with i = 1, 2, . . . , 22, X, Y . 151
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152

Each concatenated list contains ||Li|| elements, that is, the number of probes labelled on 153

the ith chromosome and each pair of elements Li
j , L

i
j+1 ∈ Li correspond to two probes 154

that are genomic adjacent in the labelling file. 155

156

Given a sequence of elements Li
j , . . . , L

i
j ∈ Li we define col(Li

j , . . . , L
i
j) to be a function 157

returning the sequence of associated colours. This function is defined on the discrete set 158

of colours used to label the probes. For example, for a three colour labelling schema we 159

have col(Li
j , . . . , L

i
j′

) :→ red, green, blue 160

161

Second, a set S modelling the segmented file, where each element Sk ∈ S corresponds to 162

a segmented point in the segmentation file. 163

164

It contains ||S|| elements (the number of segmented points), each element Sk ∈ S 165

has three components specifying the coordinates in the 3D-lattice: Sx
k , S

y
k , S

z
k ∈ N0. 166

Given two points Sk, Sk′ ∈ S we define their Euclidean distance: 167

168

169

d(Sk, Sk′) =
√

(Sx
k − Sx

k′)2 + (Sy
k − S

y
k′)2 + (Sz

k − Sz
k′)2,with d(Sk, Sk′) ∈ R+

170

171

In addition, we define the function col(Sk, . . . , Sk′) in agreement with the previous 172

definition used for L. 173

174

Step1: Computing the suffix tree and the unique color signatures: 175

176

A suffix tree T is used to model the labeling file. This tree is defined on the set 177

of colours used to label the probes and it has the following properties: 178

179

Let ||T || be the maximum depth of the tree T, and let ||ω|| be the number of colours 180

used for the labelling then the tree has ||ω||||T ||leaves. Each node has an associated 181

colour in the alphabet ω (e.g. ω → red, green, blue), and each node Tt ∈ T can be 182

uniquely identified by using the sequence of colours (nodes) visited on the path from the 183

root node (T0) to this node: col(T0, . . . , Tt). 184

185

In addition, each node Tt ∈ T has an associated number indicating the total times that 186

the colour sequence col(T0, . . . , Tt) is found in the labelling list, This number can be 187

accessed by referring to T[col(T0, . . . , Tt)] (or more concisely #Tt). 188

189

We define the set of unique signature colours C as the set of nodes in Tt ∈ T (and 190

consequently the set of sequence colours) that has been found only once in the labelling 191

list: Tt ∈ C if f#Tt = 1. 192

193

Note that the suffix tree has to be reversible, so it needs to be computed by scrolling 194

the elements in L from the first to the last probe and vice versa. 195

196

Step2: Computing the distance graph and the trivial path set: 197

198

The distance graph is computed from the list of segmented points S, and it is modelled 199

as an adjacency matrix A having the following properties: 200

A = ||S|| × ||S||
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Ak,z =
{=1 if d(Sk,Sz)≤ Threshold

=0 Otherwise
with k 6= z, and k, x = 1, . . . , ||S||

201

202

Here, the threshold used to define adjacent elements should be related to the degree 203

of chromatin compactness. In particular, this value should decrease with the compact- 204

ness observed in the segmentation data (super resolution image). In our performance 205

assessment we used the minimum threshold value of 1 indicating that the produced 206

segmentation is highly compact. 207

208

Given the adjacency matrix A we define a list of trivial paths V where each element 209

Vv ∈ V is a sequence of segmented points Vv = Sk1, Sk2, . . . , SN such that: 210

Aki,ki+1 = 1 for i = 1, N − 1

where points have to be adjacent, and 211∑ ||S||
z=1Aki,z = 2 for i = 2, . . . , N − 1

where the internal points of the sequence have to have exactly two adjacent points, and 212∑ ||S||
z=1Aki,z > 0 and

∑ ||S||
z=1Aki,z 6= 2 for i = 1, N

where the first and the last point of the sequence need to have either one or more than 213

two adjacent points. 214

215

Step3: Locating trivial paths: 216

217

The aim of this step is to try to assign the genomic positions to the trivial paths. 218

In particular, we look for a subset of trivial paths V̄ ⊆ V that have a unique colour 219

signature, that is, we look for V̄ ⊆ V , such that: 220

∀ V̄v = {Sk1
, Sk2

, . . . , SN} ∈ V̄ : T[col(Sk1
, Sk2

, . . . , SN )] ∈ C

221

Step4: Expansion of trivial paths: 222

223

After Step3 we know exactly the genomic position of the segmented probes in V̄, 224

in fact we have a unique association between each segmented element in V̄ and 225

one element in L. That is, ∀ V̄v = {Sk1 , Sk2 , . . . , SN} ∈ V̄ we have the association 226

[Skp → Li
j ]( with p = 1, . . . , N). 227

228

Now we can use these associations to try to extend the trivial paths by using the 229

colour information contained in the labelled file. The expansion is separately performed 230

on the first and last element of each trivial path (i.e. Sk1
and SN ). 231

232

Let Skp be either the first or the last element of one trivial path in V̄(p = 1, N), 233

then we know that for this element we have an associated element in L, [Skp
→ Li

j ]. 234

Let Li
j−1 be the adjacent node of Li

j , the aim of the expansion is to find a segmented 235

element Sz ∈ S, such that: 236

Akp,z = 1 and col(Sz) = col(Li
j−1)

If such an element is found the trivial path is updated, by concatenating the new 237

association [Sz → Li
j−1]. For example, if Skp

= Sk1
, then the updated trivial path is 238
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V̄v = {Sz, Sk1
, Sk2

, . . . , SN}. 239

240

This step is iteratively repeated until the above condition is satisfied exactly for one 241

probe, and it stops if we do not find any adjacent probe with the expected colour. 242

243

Alternatively, when we have ambiguous situations, that is, more than one adjacent 244

probe of Skp
have the expected colour then we expand our search to the next adjacent 245

probes, in other words, we look for the pair of segmented elements that satisfy the 246

following condition: 247

col(Sz, Sz′ = col(Li
j−1, L

i
j−2))

where Az,z′ = 1. If again we have more than one pair of segmented probes satisfying 248

this condition the algorithm stops. 249

250

End of the algorithm: 251

252

When all the described steps are performed, we will find in V̄ all the segmented probes 253

for which we could assign a genomic position. Therefore, we can remove from S the 254

segmented points in V̄, and from L the elements having an association with the elements 255

in V̄. This update of L and S results in a new set of unique colour signature C, a new 256

adjacency matrix D, and consequently a new set of trivial paths V. All the described 257

steps, including the update of L and S, are iteratively run until no new association 258

[Sz → Li
j−1] is found and full iterative closure has been achieved. 259

Results 260

Simulation of reasonable chromatin structure in the nucleus 261

The nucleus is delimited by the nuclear envelope and contains the nucleolus and chromatin. 262

To simulate the results of super-resolved detection of large-scale probe hybridizations, 263

we need to build a model of reasonable packing densities of DNA in the human nucleus. 264

The precise local density of DNA in the human nucleus is surprisingly unclear due to 265

the uncertainty regarding the in vivo structure of chromatin. To tackle this problem 266

with reasonable computational complexity at the scale relevant for super-resolution mi- 267

croscopy our simulation uses an intermediate grained self-avoiding-walk (SAW) model for 268

chromatin on a grid of points. We assume random packing of chromatin and an average 269

density corresponding to the highest values estimated in human cells, to conservatively 270

estimate the sequence reconstruction challenge at the single cell level. Although real 271

biological data will likely show stronger heterogeneity in local packing density, this would 272

aid rather than hinder the reconstruction task (Discussion). We focus here purely on 273

the single cell reconstruction problem, although cell-to-cell structure conservation is 274

likely to improve the reconstruction ability by allowing averaging of conserved structures 275

of the same genomic sequence between cells (Discussion). 276

277

The SAW model has been widely used in literature to simulate the structure of polymer 278

chains [24], and as such should also be suitable for the generation of chromatin confor- 279

mation producing a structure with similar features to those observed in real experiments. 280

For this simulation we wanted to generate a model that was in agreement with a simple 281

yet realistic structure of the human nucleus (Fig 1B). We used a 3D sphere of 500 µm3
282

volume, with an internal sphere of 50 µm3 volume devoid of chromatin that represents 283

the nucleolus. In this space the simulation laid the 46 human chromosomes (two copies 284

of the 22 autosomes and the two sex chromosomes X and Y for a total of 6,053,303,898 285

bp). Each chromosome was then modeled as a separate SAW with a length proportional 286
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to the real chromosome size and the simulated chromatin paths were forced to remain 287

inside the nucleus but not allowed to enter the nucleolus. 288

289

Fig 2 shows the packing density and folding characteristics for a synthetic whole 290

chromosome set generated by SAWs to simulate the whole genome within the nucleus. 291

Overall the simulated chromosomes display a number of structural characteristics that 292

are very similar to previous experimental data [7, 25, 26]. Interestingly, although we 293

assumed random packing and no biologically driven heterogeneity in density, the sim- 294

ulation results in a variety of chromatin conformations: similar to the observed open, 295

fractal, and compact [25]. Furthermore, each chromosome resides roughly within its own 296

chromosome territory (Fig 2). 297

298

In order to assess the properties of our simulated genome architectures statistically, 299

we next simulated 100 synthetic nuclear chromosome sets. To quantify the packing 300

density of chromatin in our simulated genomes we used the average number of contacts 301

between labeled probe positions within the SAWs across the 3D search space. For each 302

chromosome Fig 3A shows the average number of contacts made within the same chro- 303

mosomal SAWs (intra-chromosome contacts) and the average number of contacts made 304

between different chromosomal SAWs (inter-chromosome contacts). Unsurprisingly the 305

average number of contacts within chromosomes is highly correlated with chromosome 306

length (Fig 3A) and after adjusting of chromosome length each chromosome shows 307

proportionally similar numbers (Fig 3B). 308

309

Fig3. Packing density of the simulated chromatin configurations. The packing density 310

was obtained as the number of contacts in the 3D-lattice space between non-adjacent 311

points within the SAWs and presented as the average number of contacts across all 312

the 100 generated simulations. (A) The number of intra-chromosome and the inter- 313

chromosome overall. (B) The number of intra-chromosome and the inter-chromosome 314

overall after adjusting for chromosome length. (C) Linear distance against Euclidean 315

distance for all points at five different linear distances, as the linear distance between 316

two points increase so does both the value and variance of Euclidean distances. 317

318

It is reasonable to expect that as the genomic distance between two loci on the same 319

chromosome increases than on average so should their physical distance in 3D space. To 320

test this, we walked along the simulated genomes using five different genomic distances 321

and calculated the Euclidean distance that our simulation assigned to all pairs of such 322

spaced loci for all chromosomes. As expected, the average physical distance between 323

two loci in 3D space is highly correlated to their genomic distance and the variance in 324

Euclidean distance increases with genomic distance (Fig 3C).Loci with a large genomic 325

distance but short 3D distance are reminiscent of chromatin looping behavior. Overall 326

we conclude that we have a reasonable simulation of genome architecture, without 327

heterogeneity in packing density, that recapitulates many features of chromatin. 328

Testing the mapping of chromosomal DNA sequence to 3D posi- 329

tions of labeled loci 330

Confident in our ability to simulate realistic chromatin paths, we then explored under 331

which experimental conditions, and with what computational methods, the 3D positions 332

of fluorescently labeled genomic loci could be mapped back to the linear chromosomal 333

DNA sequences. Computationally the inputs to the method is a description of the linear 334

labeling of the genome with different colors, which we are able to experimentally design 335

to optimize reconstruction, and the results of the super-resolution image determination, 336
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providing a set of the 3D coordinates (x,y,z) and color classification but without the 337

indication of the locus (Fig 4A). The goal of the reconstruction algorithm is to assign 338

each of the in situ locus with a specific (x,y,z) position. 339

340

Fig4. Illustration of the ChromoTrace algorithm. (A) The 3D coordinates that would 341

be obtained from super-resolution microscope imaging are converted into an adjacency 342

graph. Given the pre-specified linear labelling sequence of green-red-blue-blue-green 343

a trivial path is detected. (B) Extension is attempted is both forward and reverse 344

directions mapping colors back to the probe design, position A has only one option in 345

the adjacency graph and is unambiguously mapped to green, position F is mapped to 346

green but on two different paths, finally position G two two options, red and blue but 347

there is only the option to mapp position G to the color blue given the probe design. 348

349

This problem is computationally challenging, as we have vastly more loci along the chro- 350

mosomal sequence than different colors to create distinguishable sequence specific probes. 351

Further challenges will occur due to errors in the labeling and imaging experiment. We 352

proposed to solve this problem using the fact that the linear sequence of the probe design 353

on the sequence dramatically constrains the search space for solutions. Furthermore we 354

can use efficient string based data structures, such as a suffix tree, to efficiently explore 355

compatible places on the design space relative to the 3D space. We named this combined 356

combinatorial exploration followed by expansion ChromoTrace method (Methods). 357

358

Our simulations puts us in a position to explore these experimental and technical 359

constraints in a controlled manner, since we can vary the design of the probe library 360

both in terms of number of colors and spacing along the linear genome sequence and use 361

the 3D chromatin simulations in our nuclear sets to predict the outcome if these probes 362

were imaged by super-resolution microscopy. Since we know the underlying ground truth 363

of sequence identity and probe color, we can test the hypothesis that the high resolution 364

of 3D position determination and high reliability of color classification provided by 365

super-resolution microscopy should provide enough information to find unique solutions 366

for mapping back multicolored probe positions to the linear DNA sequence. 367

368

We created probe designs using a regular fixed spacing between probes (in our hands, a 369

10.8 kb spacing is optimal), resulting in an effective spatial imaging resolution of 4.3 370

x10−5 µm3 volume which is well within the limits of super-resolution. We then convert 371

the 3D positions of the simulated imaging data to a graph of potential adjacencies, using 372

a threshold distance of 3672 nm relating to the maximum distance between two sequential 373

probe positions in space (10.8 kb). The resulting potential adjacencies graph should in 374

theory contain most of the true path of the probes along the genome plus spurious links 375

of physically close but non-adjacent probes. We then create a suffix tree of depth 20 (the 376

maximum length from the root to any leaf) containing the expected probe colors along 377

the genome and capturing the two possible directions of reading the labels (p to q and q 378

to p direction) resulting in a reversible suffix tree with path information for both forward 379

and reverse genome direction. At depth of 20 the vast majority of leaves are unique (this 380

depends on the number of colors, but often this achieved around depth 7). The algorithm 381

then iteratively explores the adjacency graph to find regions with a unique solution of 382

matching potentially physically adjacent color combinations with the genome sequence 383

(Fig 4A)Once such anchor regions are found, the algorithm has a vastly reduced search 384

space and extends them into the adjacency graph until it hits regions with high com- 385

binatorial complexity (Fig 4B), such as for example repetitive or highly compact regions. 386

387

To test the performance of ChromoTrace for determining the DNA path through the 388
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nucleus we first loaded the labeling file into the reversible suffix tree and jointly searched 389

the suffix tree and adjacency graph (x, y, z) to find unique sequences of labels (colors) 390

found in both. We performed this analysis for all 100 synthetic nuclear sets, for all 22 391

probe designs, for all chromosomes separately as well as for the whole genome. We choose 392

to use precision (specificity) and recall (or sensitivity) to assess algorithm performance. 393

Recall is the ratio of the number of relevant records retrieved to the total number of 394

relevant records and precision is the ratio of the number of relevant records retrieved to 395

the total number of relevant and irrelevant records retrieved. Since the ground truth 396

(labeling design) is known a priori in our simulation there is no ambiguity in how to 397

measure performance. 398

399

Analyzing these 55,000 reconstruction attempts shows that the algorithm is highly 400

precise (mean of 0.97 across all simulations), however the recall rate is much more 401

variable (Fig 5A). This variability can largely be explained by two factors i) the number 402

of colors available in the probe design ii) the density of probe positions in 3D space. 403

For individual chromosomes the mean recall rate is approximately 50% when using a 404

10 color probe design, however for the same probe design genome wide the mean recall 405

rate drops to 5.5% (Fig 5A). This reflects the increased number of ambiguous sequence 406

paths available when the spatial search space is more densely packed, due to labeled 407

sequences from physically close chromosome territories. 408

409

Fig5. Reconstruction performance for the main simulations. This figures shows the 410

reconstruction algorithms performance in terms of the relationship between precision 411

and recall given the number of colors in the probe design. Figure A shows Recall against 412

precision genome wide (circles) and for chromosome 20 only (triangles). Precision is 413

good for both genome and chromosome scale regions for all the different probe designs 414

whereas recall is much more dependent on the number of available colors and improves 415

as the number of colors is increased. Figure B shows the total number of contacts in 416

100 kb windows against the area under the precision-recall curve given the number of 417

colors in the probe design. Regions with a higher packing density of probes are more 418

difficult to reconstruct and the PR-AUC values are strongly negatively correlated with 419

the total number of contacts for all different probe designs. The critical density where 420

the PR-AUC values from the mean probe design (14 colors) drops below 0.5 is 61 or 421

more total contacts within a 100 kb window relating to approximately 32% of possible 422

spaces being occupied. 423

424

As expected the mean number of contacts for synthetic chromatin paths per chromosome 425

are highly correlated to chromosome length (Fig 3A). To assess the reconstruction 426

performance in dependence of the spatial probe position density (i.e. chromatin com- 427

paction) we show the area under the precision-recall curve values (PR AUC) against 428

the total number of intra-chromosomal contacts in 100 kb windows across all autosomes 429

and for all probe designs (Fig 5B). The contacts are defined as the total number of 430

occupied spaces around each labeled probe position given the adjacency graph distance 431

threshold. There is a clear trend for increased PR AUC values for probe designs with 432

a greater number of colors irrespective of chromatin density. Across all probe designs 433

there is a marked drop in performance as the chromatin density increases, and this drop 434

is much sharper for probe designs with fewer colors (Fig 5B). The chance for creating 435

ambiguous sequence paths is reduced as the number of unique color options increases, 436

and given the strict (single-point) distance threshold of 3672 nm there will be 19 spaces 437

around each probe that could potentially be occupied by another color. Exactly which 438

colors these spaces may contain is unknown (3D folding of chromatin) so even for probe 439

designs with greater than 19 colors there will almost certainly be at least one ambiguous 440
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sequence path extension possible for a probe that has a relatively large proportion of its 441

adjacent spaces occupied. The point at which the mean PR AUC values drop below 0.5 442

is 61 or more total contacts within a 100 kb window (Fig 5B), relating to approximately 443

32% of possible spaces in 3D space being occupied and a critical compaction of 31.1 444

kb within 1.48 x10−6 µm3 nuclear volume for the mean probe design (14 colors). The 445

amount of chromatin compaction that can be tolerated at the 0.5 PR AUC level is 446

dependent on the number of colors available to the labeling design, with designs con- 447

taining larger numbers of colors allowing more compacted genomic regions to be resolved. 448

449

Overall for probe designs with 7 or more colors, and for chromosomal scale regions 450

we provide highly accurate reconstructions for up to 97% of the probes (mean=72%, 451

sd=11%). Unsurprisingly smaller chromosomes can be more completely reconstructed, 452

and the larger the number of colors the better the reconstruction. 453

Robustness and error tolerance 454

Real experimental super-resolution data will contain noise, likely from two major sources, 455

firstly missing probes due to hybridization failure and secondly mislabeled probes, either 456

due to chemical mislabeling or crosstalk between different dyes in the super-resolution 457

microscope. To assess the performance of the reconstruction algorithm in the presence 458

of errors we simulated 99 datasets for each error mode, containing error rates ranging 459

from 1% to 99%, across all 22 probe designs for the 100 simulated nuclear sets, for all 460

chromosomes separately as well as for the whole genome (a total of over 5.4 Million 461

simulations). 462

463

For all probe designs the proportion of mislabeled probes has a dramatic effect on 464

the reconstruction precision and we observe a clear decrease in precision as the propor- 465

tion of probes with the wrong color is increased (Fig 6A). At only 10% mislabeled probes 466

for the 24 color probe designs the mean precision is 0.9 (sd=0.012), dropping to 0.85 467

(sd=0.017) for 11 colors and to 0.5 (sd=0.064) for 3 colors. Recall rates are even more 468

strongly effected by the proportion of mislabeled probes, starting from a maximum recall 469

rate of approximately 0.8 for the 24 color probe designs with no mislabeled probes, recall 470

rates drop sharply for all probe designs as the proportion of mislabeled probes increases 471

(Fig 6B). At 10% mislabeled probes for the 24-color probe designs the mean recall 472

is 0.34 (sd=0.026), dropping to 0.23 (sd=0.022) for 11 colors and to 0.044 (sd=0.012) 473

for 3 colors. Above 60% of mislabeled probes both precision and recall is reduced 474

below useful levels. The rapid drop in performance for recall compared to precision is 475

not unexpected considering the suffix tree matching used was exact, did not allow for 476

gaps and that the process for simulating noise due to mislabeled probes put them in 477

random positions along the genome, where they will consequently terminate search paths. 478

479

Fig6. Robustness to missing and mislabeled probes. The relationship between the 480

amount of error for two different modes (missing and mislabeled probes) and the overall 481

reconstruction performance given the number of colors in the probe design is displayed 482

in panels A through D. The number of colors in the probe design is indicated using 483

different shades of black-blue. Panels A and C show the proportion of error against 484

precision for mislabeled and missing probe errors respectively and panels B and D show 485

the proportion of error against recall. The relationship between percentage error and 486

recall is very similar for the two different error modes with a strong decrease in recall 487

for modest increases in error for all different probe designs. Whereas the tolerance to 488

error for precision shows a clear difference between the two modes with missing probes 489

being far less likely to introduce incorrect path extensions than mislabeled probes. 490

491
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For missing probes the relationship between recall and percentage of errors is very 492

similar (Fig 6B and 6D). This is not surprising since either removing or replacing 493

probes with a wrong color in a sequence of colors is likely to stop the extension of 494

correct paths at a similar rate (distance threshold). Precision however, only starts to 495

drop at a much higher percentage of missing, compared to mislabeled probes (Fig 6A 496

and 6C). This suggests that the chance of creating an error in path extension when 497

removing probes is lower than if mislabeled probes are present. If DNA paths were 498

linear in 3D space this would be entirely expected as the distance threshold between 499

sequential probes would ensure that most paths are not incorrectly extended across 500

missing probe locations, while mislabeled probes will not only terminate extension but 501

also cause mismatches to the genome sequence. These results suggest that removing 502

relatively large numbers of probes is unlikely to cause incorrect path extensions across 503

a majority of the simulated chromatin space. However, it is worth noting that the 504

reconstruction performance is greatly influenced by chromatin compaction (Fig 5B), 505

and since the number of extension choices for any given path will be higher in dense 506

regions, the presence of missing probes in highly compacted regions can also lead to 507

incorrect path extension. 508

509

Encouragingly even for the probe designs with the lowest numbers of colors (3) precision 510

remains greater than 0.75 with a missing probe rate of 25%. Furthermore, precision is 511

also relatively robust to mislabeled probe errors, remaining above 0.75 with more than 512

10% of mislabeled probes for probe designs with greater than 7 colors. As expected recall 513

is far more sensitive to error and there is only a marginal difference observed between 514

the two error modes. When maintaining a recall rate above 0.5, error tolerance improves 515

by approximately 0.2% for both error modes with each additional color and reaches a 516

maximum of 5% for the probe designs with the highest number of colors (24). 517

Differences in chromatin packing density 518

We are interested in creating the right computational complexity for the reconstruction 519

problem. It is unclear how much of the available volume chromatin occupies locally 520

within the nucleus under physiological conditions, but the literature suggests nucleosome 521

concentrations of 142± 28 µM with nucleosomes every 185 bp in HeLa cells leading to a 522

packing density of 10 % when assuming a nucleosome volume of 1296 nm3 [27]. To be 523

conservative, our simulation used a higher than average density of chromatin, with 34% 524

of the available local volume occupied by chromatin (545 thousand points per genome 525

from a 1.59 million point grid). An increased density of the SAWs will result in a harder 526

reconstruction problem, because a higher number of occupied adjacent spaces within the 527

simulation lead to an increase in the number of ambiguous choices for path extension. 528

529

To assess the effect of lowering the chromatin density we performed some additional 530

simulations by omitting the nucleolus and doubling the number of grid points resulting 531

in filling approximately 6.9% of the nuclear volume with chromatin (982 thousand points 532

per genome from a 14.1 million point grid). Unsurprisingly these SAWs are less densely 533

packed, an effect that can be visualized by looking at the proportion of adjacent spaces 534

that are occupied, given the distance threshold, for all labeled genomic locations in 535

the simulations (Fig 7). While in our original simulations the median proportion of 536

occupied spaces around each probe position from the labeling design is 0.52 (Fig 7A), 537

in the lower density simulation this is decreased to 0.37 (Fig 7B). 538

539

Fig7. Differences in simulation packing densities. Reconstruction performance in 540

when decreasing the packing density of the simulations. (A-B) For all positions across 541

the simulations, the proportion of directly adjacent spaces that are occupied for the 542
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new (blue) and original (red) simulations respectively. The distribution is left shifted 543

for the new simulations compared to the original and the median number of occupied 544

spaces is reduced reflecting a decrease in density. (C) Genome wide performance of the 545

reconstruction algorithm for the new (triangles) and original (circles) simulations in 546

terms of precision and recall given the number of colours in the probe design. 547

548

To test how this affects the reconstruction performance, we generated 100 synthetic 549

nuclear sets using the approach described above and produced 22 different probe designs 550

containing 3 to 24 colors for the lower density simulations. We then reconstructed using 551

the ChromoTrace algorithm for all synthetic data sets for each chromosome separately 552

and for the whole genome. As expected performance, in terms of both precision and 553

recall, is improved for the less densely packed simulation (Fig 7C). The genome wide 554

mean precision remains high (greater than 0.9) for all probe designs, increasing gradually 555

with more colors and reaching a maximum of 0.98 for the probe designs with 24 colors. 556

The difference in recall is much more pronounced with mean recall rates of 0.62, 0.37 and 557

0.035, compared to 0.19, 0.06 and 0.003, for probe designs with 24, 11 and 3 colors for 558

the lower density compared to the higher density simulations respectively. Importantly 559

when comparing the lower to the higher density simulations the recall rate is improved 560

by a mean factor of 5.5 across all different color probe designs (Fig 7C). This marked 561

improvement in sensitivity reflects the decreased number of occupied adjacent 3D spaces 562

around each individual probe position and consequently a reduced number of ambiguous 563

sequence path extension choices when lowering the density of the simulated chromatin 564

paths (Fig 7A and 7B). 565

566

Overall across all probes designs the lower density simulation has a genome wide 567

mean recall rate of 0.39 compared to 0.09 for the higher density simulation, a more 568

than 4 fold difference. Interestingly, the reconstruction performance increase is much 569

less striking for individual chromosomes with only marginal differences observed in 570

both precision and recall (Supplementary Figure 1) suggesting that even in highly 571

compacted chromatin regions, additional challenges arise due to the close proximity of 572

neighboring chromosome territories and reflect the increased combinatorial complexity 573

when adding more probes into the reversible suffix tree. 574

575

Supplementary Fig 1 3D view of the nucleus simulation when decreasing the packing 576

density. (A) One whole genome simulation with each chromosome is drawn in a different 577

colour confined within the defined nuclear space. (B) One copy of chromosome 1 showing 578

the different type of compaction across the chromsome. 579

Discussion 580

Although we simulated reasonable chromatin paths and deliberately used a challenging 581

density of chromatin in the nucleus, our simulation of 3D chromosome folding is coarse 582

grained and does at this time not take the known structural heterogeneity of chromatin 583

packing of different genomic sequences into account, for example eu- and heterochromatic 584

domains or TADs. It is therefore necessary to consider how such structural heterogeneity 585

would affect the reconstruction problem. For a given packing density, such structures 586

should lead to one of two outcomes, firstly that the entire chromosome (or probed 587

region of interest) is overall more compact that simulated, leading to a significantly 588

smaller volume of the chromosome territory. This would effectively reduce the amount of 589

resolvable spatial information present for the reconstruction. Such a result would be dis- 590

appointing in terms of the reconstruction algorithm, but fascinating in terms of how such 591

chromosomal domains are created and maintained. However, the extended conformation 592
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of many chromosomes seen previously [28], along with the distribution of their contacts 593

to the nuclear lamina [29], suggest that overall compaction is an unlikely configuration, 594

except for specific cases such as mitotic chromosomes or the inactive X chromosome. The 595

second outcome is that the more highly packed regions than we simulated are interspersed 596

with more extended regions. The extended regions would be easier to reconstruct, as 597

the better resolved 3D information will be more accurately able to place these regions 598

to a unique position on the genome. At the extreme of this model one would have a 599

series of resolvable linkers with interspersed globules of packed chromatin that would 600

not be resolvable. In such a scenario integration with the HiC data or other contact 601

maps, whose resolution is good in these more dense regions [30] would be very interesting. 602

603

On the other hand, when the density of chromatin in the nucleus is lower, the re- 604

construction improves dramatically in terms of recall. In experimental HiC data if 605

unusual numbers of contacts are observed relative to chromosome size it may be indica- 606

tive of biological processes effecting chromatin condensation [31]. It is feasible to resolve 607

a large fraction of chromosomal scale regions with a resolution of 10.8 kb and reconstruc- 608

tion at this level would provide very high-resolution chromosomal scale chromatin maps 609

(including the internal structure of TADs, TAD boundaries and inter-TAD regions). 610

Even if the very fine details of high density chromatin structures remain challenging with 611

the currently available imaging technology, the spatial information provided by even 612

partial reconstruction of the chromatin path is certain to increase our understanding 613

of how chromosome folding and partitioning is related to active processes such as gene 614

expression [32] as chromatin density is thought to be lower in active and higher in inactive 615

TADs [33]. Interestingly, in addition to resolving chromatin paths and map interactions 616

within resolved paths, the reconstruction completeness of ChromoTrace will provide an 617

indirect measure of density and thus allow chromatin state inference across chromosomes. 618

619

The other important consideration is the number of differentiatable fluorescence colors 620

that the reconstruction requires. The number of flourophores compatible with 3D super- 621

resolution microscopy and in-situ hybridization probes is currently limited to about 622

three dyes that can be reliably spectrally separated if imaged at the same time. Since 623

DNA in situ probes can be coupled to more than one flurophore, combinatorial labeling 624

can create different color ratios. In our simulations, up to 10 colors for simultaneous 625

detection could easily be generated in this manner, however will also introduce noise due 626

to chemical labeling errors (the chance by which a probe will be labeled with a different 627

color ratio than intended) which would lead to wrong probe assignments. However, 628

since any given color will have only a finite set of possible neighboring mistakes with 629

associated error rates, a substitution matrix of possible errors can easily be integrated 630

into both the extension phase and exploration phase of the suffix tree, changing the 631

formulation of the problem into a likelihood model of seeing the 3D position of probes 632

(Data) given a certain path labeling. In addition, recent advances in labeling techniques 633

such as the ’Exchange-PAINT’ method now allow sequential hybridization and image 634

capture, allowing to separate up to 10 pseudocolors based on a single dye in time [21]. 635

This labeling technology requires long super-resolution image acquisition times, but 636

could massively increase the number of probes available for the reconstruction algorithm. 637

For example, a binary code with 2 colors and 10 labeling rounds could distinguish in 638

the region of 210 labels, which would make reconstruction almost trivial. It is therefore 639

very likely that a well-designed combination of spectral and temporal multiplexing of 640

fluorescent dyes, will make it possible to generate image data with sufficiently large 641

numbers of differently ’colored’ probes and reasonable data acquisition times to allow 642

high resolution reconstruction of the chromatin paths for individual chromosomes within 643

the nucleus. Our ChromoTrace algorithm should prove valuable to guide the optimal 644
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design of such probes, since it allows to simulate the effect of different designs on the 645

reconstruction performance rapidly in silico. 646

Conclusion 647

In this paper we proposed a novel algorithm, ChromoTrace, to in theory, leverage super- 648

resolution microscopy of thousands to millions of in situ genome sequence probes to 649

provide accurate physical reconstructions of 3D chromatin structure at the chromosomal 650

scale in single human cells. To test this algorithm we have made simulations of chromatin 651

paths in realistic nuclear geometries, and explored different labeling strategies of in 652

situ probes. Our study shows, that near complete resolution of a chromosome with 653

10 kb resolution can be achieved with realistic microscope resolution and fluorescent 654

probe multiplexing parameters. Extensions to this method such leveraging between 655

nucleus consistency effects and using a likelihood-based scheme will allow even more 656

sophisticated modeling of experimental error sources in the future. 657

658

There is currently no suitable experimental data in to substantiate this work; this 659

is firmly a theoretical exploration of the possibility to achieve this and the constraints 660

any experimental method would need to satisfy for successful reconstruction. For exam- 661

ple, it is clear that minimizing mislabeling is more important than minimizing missing 662

probes. However, our simulations are based on known and realistic experimental parame- 663

ters where available, and we have tested our method under challenging chromatin density 664

levels and aggressive error models of missing or misreported data. Our algorithm and 665

assumptions are compatible with leading super-resolution techniques; in particular our 666

method assumes isotropic resolution of the probes, which has been shown using methods 667

such as direct stochastical optical reconstruction microscopy combined with interfer- 668

ence [21,34]. Nevertheless real experimental data will likely have properties that we have 669

not anticipated. Some of these properties, such as systematic error behavior, or changes 670

in resolution across the nucleus might hinder our reconstruction. On the other hand, 671

properties such as structured heterogeneity in packing density and cell-to-cell structure 672

conservation are likely to improve our ability to reconstruct. Our reconstructions based 673

on single cell image data are initially most likely to work in a patchwork manner across 674

a chromosome, and will be very complementary to the contact based maps based on 675

HiC or promoter-capture HiC [35]. Combining super resolution imaging and contact 676

mapping should provide fundamentally new insights into chromatin organization and 677

packing within the nucleus. 678
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