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Single nucleus RNA-Seq (sNuc-Seq) profiles RNA from tissues that are preserved or 

cannot be dissociated, but does not provide the throughput required to analyse 

many cells from complex tissues. Here, we develop DroNc-Seq, massively parallel 

sNuc-Seq with droplet technology. We profile 29,543 nuclei from mouse and human 

archived brain samples to demonstrate sensitive, efficient and unbiased 

classification of cell types, paving the way for charting systematic cell atlases. 
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Single cell RNA-seq has become an instrumental approach to interrogate cell types, 

dynamic states and functional processes in complex tissues1,2. However, current protocols 

require the preparation of a single cell suspension from fresh tissue, a major roadblock in 

many cases, including clinical deployment, handling archived materials and application 

in tissues that cannot be readily dissociated. In particular, in the adult brain, harsh 

enzymatic dissociation harms the integrity of neurons and their RNA, biases data in 

favour of recovery of easily dissociated cell types, and can only be used on samples from 

young organisms, precluding, for example, those obtained from deceased patients with 

neurodegenerative disorders. To address this challenge, we3 and others4 developed single 

nucleus RNA-seq (e.g., sNuc-Seq3 and Div-Seq3) for analysis of RNA in single nuclei 

from fresh, frozen or lightly fixed tissues. sNuc-Seq can handle even minute samples of 

complex tissues that cannot be successfully dissociated, and provide access to archived or 

banked samples, such as fresh-frozen or lightly fixed samples. However, it relies on 

sorting nuclei by FACS into plates (96 or 384 wells), and thus cannot easily be scaled to 

profiling tens of thousands of nuclei (such as human brain tissue) or large numbers of 

samples (such as tumor biopsies from a patient). Conversely, massively parallel single 

cell RNA-seq methods, such as Drop-Seq5, InDrop6 and related commercial tools7,8 can 

be readily applied at this scale9 in a cost-effective manner10, but require a single cell 

suspension as input. 

 

To address this challenge, we developed DroNc-seq (Fig. 1a), a massively parallel single 

nucleus RNA-seq method that combines the advantages of sNuc-Seq with the scale of 

droplet microfluidics to profile thousands of nuclei at very low cost and massive 
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throughput. DroNc-Seq was modified from Drop-Seq5 to accommodate for the smaller 

size and relatively lower amount of RNA in nuclei compared to cells. Specifically, we 

modified the microfluidics design (Supplementary Fig. S1A, B) to generate smaller co-

encapsulation droplets (75 µm diameter) and flow parameters; we optimized the nuclei 

isolation protocol to reduce processing time and increase capture efficiency 

(Supplementary Fig. S1C); and we changed the downstream PCR conditions 

(Methods). We validated for single nucleus specificity using species-mixing 

experiments5, in which we combine nuclei from human 293 cells and mouse 3T3 cells in 

one DroNC-seq run, to assess single nucleus purity, as previously performed for cells5 

(Supplementary Fig. S1D). Notably, the DroNc-Seq device and workflow are 

compatible with current Drop-Seq platforms. 

 

DroNc-Seq robustly generated high quality expression profiles from nuclei isolated from 

a mouse cell line (3T3, 4,442 nuclei), adult mouse brain tissue (9,219), and adult human 

post-mortem frozen archived tissue (20,324 nuclei). It detected, on average 3,152 genes 

(6,614 transcripts) for 3T3 nuclei, 1,500 genes (2,614 transcripts) for nuclei from adult 

mouse brain, and 1,000 genes (1,337 transcripts) for nuclei from human post mortem 

brain tissue (Methods, Fig. 1b). 

 

To assess Dronc-Seq’s throughput and sensitivity, we profiled the same 3T3 cell culture 

at both the single cell (with Drop-Seq) and single nucleus (with DroNc-Seq) levels, each 

sequenced to an average depth of 120,000 reads per nucleus or cell. Both methods 

yielded high quality libraries, detecting, on average, 4,770 and 3,152 genes for cells and 
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nuclei, respectively (Fig. 1c). DroNc-Seq had somewhat reduced throughput, with 2,982 / 

300,000 input nuclei passing filter (~1%), compared to 5,175 / 100,000 cells (5%) 

passing filter per run. The average expression profile of single nuclei was well-correlated 

with the average profile of single cells (Pearson r=0.87, Fig. 1d), albeit somewhat lower 

than the correlation between the average profiles of two replicates of Drop-Seq (r=0.99) 

or DroNc-Seq (r=0.99). Those genes with significantly higher expression in nuclei (e.g., 

the lncRNAs Malat1 and Meg3) or cells (mitochondrial genes Mt-nd1, Mt-nd2, Mt-nd4, 

Mt-cytb) (Fig. 1d) were consistent with their known distinct enrichment in nuclear vs. 

non-nuclear compartments (Supplementary Table 1). Interestingly, while in both 

methods over 85% of reads align to coding loci, in cells 80% of these reads map to exons, 

whereas in nuclei 56% map to exons and 32% to introns (Fig. 1e), reflecting the 

enrichment of nascent, pre-processed transcripts in the nuclear compartment3,11-14. 

 

Clustering9 of 5,592 nuclei profiled from frozen adult mouse hippocampus (3 samples) 

and prefrontal cortex (3 samples) (each with >20,000 reads per nucleus, Methods) 

revealed groups of nuclei corresponding to known cell types (e.g., GABAergic neurons) 

and anatomical distinctions between the brain regions and within the hippocampus (e.g., 

CA1, CA3, dentate gyrus; Fig. 1f). Neurons of the same class but from different brain 

regions (and different samples) group together, as was also the case for GABAergic 

neurons, glia and endothelial cells (Fig. 1f-g). Among the non-neural cells, different glia 

cell types, including astrocytes, oligodendrocytes and oligodendrocyte precursor cells 

(OPC), readily partitioned into separate clusters, despite their relatively low RNA levels 

and correspondingly lower numbers of detected genes (Fig. 1f). Finally, DroNc-Seq of 
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mouse hippocampus compared well to sNuc-Seq of the same region15, maintaining the 

ability to detect the same cell types and correlated cell-types specific signatures (Fig. 1h, 

Supplementary Table 2) with increased throughput, despite a lower number of genes 

detected per nucleus in the massively parallel setting.  

 

To demonstrate the utility of DroncSeq on archived human tissue, we profile adult (40-65 

years old) human post-mortem frozen brain tissue archived by the GTEx project16. We 

analysed 10,368 nuclei (each with >20,000 reads per nucleus) from five frozen post-

mortem archived samples of adult human hippocampus and prefrontal cortex, revealing 

distinct nuclei clusters corresponding to the known cell types in these regions (Fig. 2a). 

We readily annotated each cell type cluster post-hoc by its unique expression of known 

canonical marker genes (Fig. 2b), including rare types, such as adult neuronal stem cells 

specifically found in the hippocampus (Fig. 2a, cluster 9). Although the human archived 

samples vary in the quality of the input material, DroNc-Seq yielded high-quality 

libraries of both neurons and glia cells from each sample (Fig. 2c, bottom), and each 

cluster was supported by multiple samples (Fig. 2c, top), demonstrating the robustness 

and utility of DroNc-Seq for clinical applications.  

Finally, we determined cell-type specific gene signatures for each human cell type cluster 

(Fig. 2d), as well as a pan-neuronal signature, a pan-glia signature, and signatures for 

neuronal stem cells and endothelial cells (Supplementary Table 3). Signatures are 

enriched for key relevant pathways (FDR<0.01, Methods). For example: Neuronal stem 

cells signatures are enriched for the expression of genes regulated by NF-kB in response 
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to TNF signalling17; Endothelial cells are enriched for the expression of immune 

pathways, such as MHC I genes and interferon signalling (Fig. 2e), consistent with the 

known role of interferon signalling in modulation of the blood brain barrier18. Moreover, 

we captured finer distinctions between closely related cells (Fig. 2f and Supplementary 

Fig. 2), such as, distinct sub-types of GABAergic neurons (Fig. 2f), each robustly 

identified across biological replicates (Supplementary Fig. 3a), and often from both 

brain regions (Fig. 2g). Two of the GABAergic neuron sub-clusters are specific to the 

hippocampus (Supplementary Fig. 3a, Fig. 2f, clusters 1 and 4); these too are supported 

by multiple samples (Supplementary Fig. 3a). We associated each GABAergic neuron 

sub-cluster with a distinct combination of canonical markers (Fig. 2h), as previously 

reported in the mouse brain3,19,20.  

 

In conclusion, DroNc-Seq is a massively-parallel single nucleus RNA-seq method, which 

is robust, cost-effective, and easy to use. Our results show that DroNc-Seq profiling from 

both mouse and human frozen archived brain tissues successfully identified cell types and 

sub-types, rare cells, expression signatures and activated pathways, opening the way to 

systematic single nucleus analysis of complex tissues that are either inherently 

challenging to dissociate or already archived. This will help create vital atlases of human 

tissues and clinical samples. 
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Figure 1. DroNc-Seq: Massively parallel single nucleus RNA-Seq. (a) Overview of 

DroNc-Seq. (b-e) Quality measures. (b) Distribution of number of genes detected (X 

axis) in DroNc-Seq of nuclei isolated from 3T3 mouse cells line, mouse frozen brain 
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tissue, and human frozen archived brain tissue (Methods). (c) Distribution of number of 

genes detected per 3T3 cell (by Drop-Seq) or nucleus (by DroNc-Seq). (d) The percent of 

reads (Y axis) mapped to the: genome, exons, introns, intergenic regions and rRNA loci 

(X axis) of the mouse genome, for cells and nuclei. (e) Scatter plot comparing the 

average expression levels detected in single 3T3 nuclei (Y-axis, by DroNc-seq) and cells 

(X-axis, by Drop-Seq). Red dots mark outlier genes highly expressed in one but not the 

other experiment. (f-h) DroNc-Seq analysis of adult frozen mouse hippocampus (hip) and 

prefrontal cortex (PFC) brain regions. (f) A 2 dimensional t-stochastic neighbourhood 

embedding (tSNE) plot of 5,592 DroNc-Seq nuclei profiles from adult frozen mouse 

hippocampus (hip) (3 samples) and prefrontal cortex (PFC) (2 samples, each with 

>20,000 reads per nucleus), colored by clustering and labelled post hoc by cell types and 

anatomical distinctions (1. PFC=pyramidal neurons from the PFC, 2. CA=pyramidal 

neurons from the hip CA, 3. GABAergic= GABAergic neurons, 4. DG=granule neurons 

from the hip dentate gyrus (DG), 5. ASC=astrocytes, 6. ODC=oligodendrocytes, 7. 

OPC=oligodendrocyte precursor cells, 8. EC= endothelial cells). (g) Number of nuclei (Y 

axis) from each sample (PFC = blue gradient, hip =yellow gradient) associated with each 

cluster (X axis), showing that each cluster is supported by multiple samples, and most by 

both brain regions. (h) Signatures of differentially expressed genes. Right: The average 

expression in each DroNc-Seq cluster (column) of signature genes (Methods, rows) that 

are differentially expressed in the DroNc-Seq data for each cell type cluster derived from 

the DroNc-Seq data (numbered as is f). Expression is centred per row (color bar). Right: 

The average expression in each relevant DroNc-Seq cluster (numbered as is f, column) of 

signature genes previously identified on sNuc-Seq profiles3 for the corresponding cell 
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types, showing that DroNc–seq captures similar diversity in nuclear RNA profiles 

between cell types. 
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Figure 2. DroNc-Seq distinguished cell types and signatures in adult post-mortem 

human brain tissue. (a) Cell type clusters. tSNE embedding of 10,368 DroNc-Seq 

nuclei profiles from adult frozen human hippocampus and prefrontal cortex (PFC), each 

with >20,000 reads per nucleus. Clusters are color-coded and labelled post-hoc (1. 

PFC=pyramidal neurons from the PFC, 2. CA=pyramidal neurons from the hip CA, 3. 
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GABAergic= GABAergic neurons, 4. DG=granule neurons from the hip dentate gyrus 

(DG), 5. ASC=astrocytes, 6. ODC=oligodendrocytes, 7. OPC=oligodendrocyte precursor 

cells, 8. MG=Microglia, 9. Stem=neuronal stem cells, 10. EC=endothelial cells) (b) 

Marker genes. Shown is the same plot as in (a) but with cells colored by the expression 

level of known cell type marker genes. (ID4 - stem cells, GAD1 – GABAergic neurons, 

PLP1 – ODC, PTPRC – microglia, CAMK2 – excitatory neurons, PDGFRA – OPC, 

CLDN5 – EC, PPFIA2 – DG, SLC1A2 – ASC) (c) Successful DroNc-Seq across samples 

of different quality. Top: Number of nuclei (Y axis) from each sample (color code) 

associated with each cluster (X axis), showing that each cluster is supported by nuclei 

from multiple samples. Bottom: Number of nuclei passing quality filters (Y axis) 

recovered from each of 19 human tissue samples from 9 donors (X axis, sorted). (d) Cell 

type signatures. Heatmaps of the average expression of signature genes (rows; FDR 

<0.01) in nuclei in each of the clusters in (a). (e) Interferon signalling and MHC I genes 

in single endothelial cells. Shown is the expression of each gene across the nuclei in the 

endothelial cluster in (a). (f-h) Sub-types of GABAergic neurons. (f,g) tSNE embedding 

of DroNc-Seq nuclei profiles from the GABAergic neuronal cluster (in a), color coded by 

sub-clusters (f) or brain region (g).  (h) Heatmap of the average expression of known 

marker genes of sub-types of GABAergic interneurons, in each of the nuclei sub-clusters 

in (f) (columns). 
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Materials and Methods 

Experimental procedures 

Microfluidic device design and fabrication 
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Different microfluidic coflow devices were designed using AutoCAD (AutoDESK, USA) 

and tested using COMSOL Multiphysics as well as empirically. Microfluidic devices 

were fabricated using soft lithographic techniques21. Briefly, a negative mold of poly 

(dimethylsiloxane) elastomer (Sylgard 184, Krayden, Inc., Cat # DC4019862) was cast 

from a positive master mold made of SU8 photoresist (MicroChem, Cat # SU8-3050) via 

replica molding. The PDMS mold was then bonded to a 50 mm x 75 mm glass slide 

(Corning, Cat # 2947-75X50) using O2 plasma bonding, followed by baking the PDMS-

glass device in an oven at 65oC for 1 hour. The device was then treated with Aquapel 

Glass Treatment (Aquapel, # 47100) to render all microfluidic channels hydrophobic to 

facilitate aqueous droplet generation in a continuous oil phase. The devices were 

extensively tested on a microfluidic setup consisting of an optical microscope and three 

syringe pumps (KD Scientific, Cat # KDS 910), using bare beads (Tosoh, Japan, Cat # 

HW-65s) in Drop-Seq Lysis Buffer (DLB5; a 10 ml stock consists of 4 ml of nuclease-

free H2O, 3 ml 20 % Ficoll PM‐400 (Sigma, Cat # F5415-50ML), 100 µl 20 % Sarkosyl 

(Teknova, Inc., Cat # S3377), 400 µl 0.5 M EDTA (Life Technologies), 2 ml 1M Tris pH 

7.5 (Sigma), and 500 µl 1M DTT (Teknova, Inc., Cat # D9750), where the DTT is added 

fresh before every experiment) and 1x PBS, to optimize flow and bead occupancy 

parameters in drops. Droplet generation under different flow conditions was assessed in 

real time under an optical microscope (Olympus, Model # IX83) at 4x magnification 

using a fast camera (Photron, Model # SA5), and later by sampling the emulsion 

generated using disposable Neubauer Improved Hemocytometer (Life Technologies, Cat 

# 22-600-100) to check droplet integrity and size, as well as bead occupancy in drops. 

The device design is provided as a Supplementary File 1. 
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Cell culture 

3T3 cells were cultured and prepared as described5. For DroNC-seq run cells were 

washed once with PBS, scrapped with 2ml Nuclei EZ lysis buffer (Sigma Cat # EZ PREP 

NUC-101) and processed as described below for tissues. 

Dissection of and mouse hippocampus and cortex 

Microdissections of the mouse hippocampus and prefrontal cortex regions were 

performed under a stereomicroscope as previously described3. Dissected sub-regions 

were flash frozen on dry ice and stored at -80°C until processed for nuclei isolation. 

 

Human hippocampus and prefrontal cortex samples. Human hippocampus and pre-

frontal cortex samples were collected as part of the Genotype-Tissue Expression (GTEx) 

project. All samples were collected from recently deceased postmortem, non-diseased 

donors as previously described16,22. Briefly, brains were collected for only a subset of 

donors when consent and conditions (donors could not have been on a ventilator for the 

24 hours prior to death) allowed. All collected brains were immediately removed from 

the body and placed on wet ice, then shipped to the Brain Bank at the University of 

Miami. Up to 11 regions of brain were then carefully dissected by the brain bank upon 

receipt. All brain tissues sampled were placed in to cryovials and flash frozen in Liquid 

N2, then shipped to the LDACC at the Broad institute for processing and analysis. For 

this study, samples of frozen hippocampus and prefrontal cortex were selected from 5 

male donors, ranging in age from 40-65. We used the quality of RNA derived from the 

tissues as a proxy for tissue quality, and selected tissues with corresponding RNA RIN 
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values of 6.9 or higher (average RIN was 7.3). Average post-mortem ischemic interval of 

the brains collected was 12.4 hours.  

 

Nuclei isolation 

Nuclei were isolated by using the EZ nuclei isolation kit (Sigma, #EZ PREP NUC-101). 

Briefly, tissue samples were cut into pieces smaller than 0.5 cm, dounce homogenized in 

2 ml of ice-cold Nuclei EZ lysis buffer and incubated on ice, for 5 minutes, with 

additional 2 ml of ice-cold Nuclei EZ lysis buffer. Nuclei were collected by 

centrifugation at 500 x g for 5 minutes at 4 °C, washed with 4 ml of ice-cold Nuclei EZ 

lysis buffer and incubated on ice for 5 minutes. After centrifugation, the nuclei preps 

were washed again in 4 ml of Nuclei Suspension Buffer (NSB; consisting of 1x PBS, 

0.01% BSA and 0.1% RNAse inhibitor (Clontech, Cat  #2313A)). Isolated nuclei were 

resuspended in 2ml of NSB, filtered through a 35 µm cell strainer (Corning, Cat # 

352235) and counted. A final concentration of 300,000 nuclei/ml was used for DroNc-seq 

experiments. 

Co-encapsulation of nuclei and barcode beads 

A 10 µl sample of a single nuclei suspension prepared on ice in NSB (as described 

above) was stained with DAPI (ThermoFisher Scientific, Cat # D1306), loaded on a 

disposable Neubauer Improved Hemocytometer, and checked under the microscope to 

ensure that the nuclei are adequately isolated into singletons and no big clusters remain. 

The nuclei were also counted and suspended in NSB at a concentration of ~300,000 

nuclei /ml.  
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Barcoded beads (Chemgenes, Cat # Macosko-2011-10) were washed and filtered using 

100 µm cell strainer (VWR, Cat #08-771-19), as previously described5. Because the 

DroNc-Seq microfluidic device has narrower channels (~70 µm), they are more likely to 

clog in the presence of large beads. We therefore size-selected for beads that are less than 

40 µm in diameter, using a 40 µm cell strainer (PluriSelect, Cat # 43-50040-03); these 

smaller beads consist of roughly 55% of the original population of barcoded beads. The 

barcoded beads were then suspended in Drop-Seq Lysis Buffer (DLB; described above) 

and counted using a disposable Fuchs-Rosenthal hemocytometer (VWR, Cat # 22-600-

102) as previously described5, at concentrations ranging between 325,000 and 350,000 

per ml.  

The nuclei and barcoded bead suspension were then loaded into 3 ml syringes (BD 

Scientific, Cat # BD309695) connected to the custom-built DroNc-Seq microfluidic chip 

via 26G1/2 sterile needles (BD Scientific, Cat # BD305111) and PE2 tubing (Scientific 

Commodities, Inc. Cat # BB31695-PE/2), and flown at 1.5 ml/hr each, along with carrier 

oil (BioRad Sciences, Cat # 186-4006) at 16 ml/hr.  This allowed us to co-encapsulate 

single nuclei and beads in ~75 µm drops (vol. ~ 200 pl) at 4,500 drops/sec and double 

Poisson loading concentrations. The smaller droplet volume in DroNc-Seq (at 75 µm 

diameter) results in a higher concentration of mRNA in these drops (more than 5x) 

compared to those used in Drop-Seq (at 125 µm diameter).  

The theoretical Poisson loading concentration for devices with channels that are 75 µm 

deep and nominally 70 µm wide at 1/10 bead and nuclei occupancy is ~520,000/ml, and 

that of 75 µm channel and 100 µm depth (also tested) is 340,000/ml. We tested bead and 

cell loading at this and other concentrations using species-mixing experiments5 (e.g., 
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Supplementary Fig. 1d) and ease of bead flow as metrics and found that a bead 

concentration of 350,000/ml and a nuclei concentration of 300,000/ml had the best 

performance, in terms of low human-mouse doublet rate and fewer clogging events 

during droplet generation. 

The barcoded beads are constantly stirred while loaded on the syringe pump, using a flea 

magnet (VP Scientific, cat # 782N-6-150) in the syringe and magnetic stirrer setup (VP 

scientific, Cat # 782N-3-150), also previously described5. 

 

Droplet breakage, washes and RT 

The resulting emulsion was collected via PE2 tubing into a 50 ml Falcon tube for a period 

of ~22 min each, and left to incubate at room temperature for up to 45 min before 

proceeding to break droplets.  

Emulsion collected after co-encapsulation had the droplets cream to the top with clear oil 

collected under the droplets. We carefully removed the excess clear oil, added 30 ml of 

6x SSC (Teknova, Inc., Cat # , S0282) into each 50 ml Falcon collection tube, agitated it 

vigorously, and added 1 ml of 1H,1H,2H,2H-Perfluorooctan-1-ol (SynQuest 

Laboratories, Cat # 647-42-7). The tubes were again vigorously shaken by hand and 

centrifuged at 1000xg for 1 min. The supernatant was then carefully removed from each 

tube and an additional 30 ml of 6x SSC was added vigorously to kick up the beads from 

the oil-water interface into the aqueous phase. The beads that were kicked momentarily 

into the SSC were quickly removed with a 25 ml pipette and transferred into a clean 50 

ml Falcon tube, leaving the heavier oil behind. The newly transferred beads and SSC mix 

were centrifuged again at 1000xg for 1 min. The supernatant was carefully removed 
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leaving ~ 1ml of SSC and bead sediment behind. This remaining SSC and bead mix was 

then carefully transferred into a 1.5 ml micro-centrifuge tube (Ambion, Cat # AM12450) 

and re-spun on a desktop micro-centrifuge for ~ 20 sec that generated a substantial bead 

pellet. We removed any residual oil that got transferred into the 1.5 ml tube with a p200 

pipette with low-retention pipette tip, although we found that any such residual oil did not 

appreciably affect Reverse Transcription (RT) efficiency. The beads in each tube were 

washed again in 1.5 ml of 6x SSC followed by another wash in 200 µl of 1x Maxima H- 

RT buffer (Fisher, Cat # EP0753). It is recommended to perform all washes and 

temporary storage of beads on ice. A pellet of barcoded beads in each microcentrifuge 

tube should have ~ 130,000 beads.  

We made a fresh batch of 200 µl RT mix for each barcoded bead aliquot, consisting of: 

80 µl H2O, 40 µl Maxima 5x RT Buffer, 40 µl 20% Ficoll PM-400 (Sigma, Cat # F5415-

50ML), 20 µl 10 mM dNTPs (Takara Bio, Cat # 639125), 5 µl RNase Inhibitor (Lucigen, 

Cat # 30281-2), 10 µl Maxima H-RT enzyme (Fisher, Cat # EP0753), and 5 µl 100 µM 

Template Switch Oligo, AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG (IDT, 

custom RNA oligo). After all supernatant was carefully removed from each bead pellet, 

200 µl of the above RT mix was added into each tube, and incubated under gentle 

rocking or tumbling, for 30 min at room temperature and then at 42 oC for 1.5 hr in a 

rotisserie-style hybridization oven for a total of two hours. 

 

Post RT wash, exonuclease I treatment and PCR 

Post RT, each barcoded bead has cDNA  barcoded with the bead’s unique barcode (or 

BC) bound onto it, also referred to as a STAMP5. Each STAMP pellet was washed with 
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(1) TE buffer containing 0.5% SDS (TE-SDS), once; (2) TE buffer containing 0.01% 

Tween-20 (TE-TW), twice; and (3) 10 mM Tris pH 8.0, once.  The STAMPs were then 

treated with exonuclease I (New England Biolabs, Cat # M0293L) to remove all 

unextended primers. This was followed with another round of the above mentioned TE-

SDS, and TE-TW washes, followed by a round of wash in DI water.  Beads from 

multiple collections of a given sample were pooled at this point, resuspended in 1 mL of 

H20, and counted, by mixing 10 µl of bead suspension with an equal volume of 20% PEG 

solution. Aliquots of 5,000 beads, resuspended in a PCR mix each consisting of 24.6 µl 

H2O, 0.4 µl 100 µM SMART PCR primer, AAGCAGTGGTATCAACGCAGAGT (IDT, 

custom DNA oligo), and 25 µl 2x Kapa HiFi Hotstart Readymix (Kapa Biosystems, Cat # 

KK2602), were amplified in separate wells on a skirted PCR plate, using the Eppendorf 

Thermocycler (Part # EP-950030020), with the following PCR steps: 95 oC for 3 min; 

then four cycles of: 98 oC for 20 sec, 65 oC for 45 sec, 72 oC for 3 min; then 10 cycles of: 

98 oC for 20 sec, 67 oC for 20 sec, 72 oC for 3 min; and finally, 72 oC for 5 min. 

Amplified PCR product were pooled in batches of 16 wells (for mouse samples) or 32 

wells (for human samples), each well consisting of the 5,000 STAMP aliquots, combined 

in a 1.5 ml Eppendorf tube, and cleaned with 0.6X SPRI beads (Ampure XP beads, 

Beckman Coulter, Cat # A63881).  Whole transcriptome amplified (WTA) and Nextera 

libraries from mouse cortex, human cortex and human hippocampus generated libraries 

of different sizes, summarized in Supplementary Table 1. 
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Sample  # WTA 

PCR 

wells 

pooled 

WTA 

avg 

peak 

[bp] 

WTA  

min/max 

[bp] 

NTA 

avg 

peak 

[bp] 

NTA  

min/max 

[bp] 

 

Illumina 

lib. conc. 

[pM] 

Mouse 16 2148 617.33 / 

8070 

462 189 / 

1557.4 

2.2 

Human Cortex 32 874 436 / 2520 435 185 / 1366 2.3 

Human 

Hippocampus 

32 838 418.5/2408 437 244 / 846 2.3 

 

WTA library QC and  Nextera library prep  

Purified cDNA was quantified using a Qubit dsDNA HS Assay kit (ThermoFisher 

Scientific, Cat # Q32854) and a BioAnalyzer High Sensitivity Chip (Agilent, Cat # 5067-

4626).  550 pg of each sample library was fragmented, tagged and amplified using the 

Nextera XT sample prep kit (Illumina), and custom primer that enable selective 

amplification of the 3’ end 

(AATGATACGGCGACCACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGT

ATCAACGCAGAGT*A*C, (IDT, custom DNA oligo)), according to the manufacturer’s 

instructions.  The Nextera libraries are quantified again with Qubit dsDNA HS Assay kit 

and BioAnalyzer High Sensitivity Chip (See Supplementary Table 1 for Nextera library 

sizes for human and mouse samples).   
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Sequencing 

The libraries were sequenced at 2.2 pM (mouse) and 2.3 pM (human) on an Illumina 

Next-Seq 500 sequencer. We use Next-Seq 75 cycle v3 kits to sequence 20 bp and 65 bp 

paired end reads, with Custom Read1 primer, 

GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC (IDT, custom DNA 

oligo), according to Illumina loading instructions. The sequencing cluster density and 

percent passing filter number from different experiments vary according to the quality of 

nuclei samples used, but were optimized at around a cluster density of 220 and a 90% 

passing filter. 

 

Computational data analysis 

 

Preprocessing of DroNc-Seq data 

Read filtering and alignment. Paired-end sequence reads were processed mostly as 

described before5,9. Briefly, the left read was used to infer the cell of origin based on the 

first 12 bases (the nucleus barcode or NB), and the molecule of origin based on the next 8 

bases (Unique molecular Index or UMI). Reads were first filtered to remove all pairs 

where either the NB or the UMI had one or more bases with quality score less than 10. 

The right mate of each read pair (60 bp) was trimmed to remove any portion of the 

SMART adaptor sequence or large stretches of polyA tails (6 consecutive bp or greater). 

The trimmed reads were then aligned to the genome (mouse mm10 UCSC, human hg19 

UCSC) using STAR v2.4.0a23 with the default parameter settings. Reads mapping to 

exonic regions of genes as per the mouse UCSC genome (version mm10) or the human 
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UCSC genome (version hg19) were recorded. Exonic reads that mapped to multiple 

locations or to the antisense strand were discarded. Cell barcodes were checked for 

synthesis errors and corrected when needed (as previously described9). 

Digital gene expression. Nucleus barcodes that represent genuine nuclei or cell RNA 

libraries from technical and sequencing noise were distinguished as previously 

described5,9 as true or  “core” cell barcodes, by first ordering the nucleus barcodes by the 

total number of transcripts per nucleus barcode and estimating a cutoff based on a 

“shoulder” in the corresponding plot. Only nucleus barcodes larger than this cutoff were 

used in downstream analysis. We then collapsed nucleus barcodes by defining among 

these selected barcodes  “core barcodes” or barcodes that other non-core barcodes can be 

collapsed with based on similarity (requiring at least 3,000 reads mapped to a barcode to 

qualify as a core barcode and using an edit distance of 1 to define similar barcodes). To 

account for amplification bias, we collapsed gene counts within each sample using their 

UMI sequences. The UMIs corresponding to all uniquely mapped sense reads (for a given 

gene) were recorded, and UMIs within an edit distance of 1 (substitutions only) were 

collapsed, as previously described5. The expression count for that particular gene in that 

particular nucleus was determined by counting the number of remaining unique UMIs. 

The data is assembled as a digital expression matrix (DGE) with genes as rows and nuclei 

as columns that served as the starting point for downstream analysis. 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2017. ; https://doi.org/10.1101/115196doi: bioRxiv preprint 

https://doi.org/10.1101/115196


	   26	  

Gene detections and quality controls 

Additional filtering of the expression matrix. The starting pool of nuclei was first filtered 

to remove nuclei based on their overall number of genes (minimum 100 genes). After this 

filtering we retained: (1) 1,710 cells from the 3T3 cell libraries (collected by Drop-Seq) 

across two replicates. (2) 4,442 3T3 nuclei libraries across 3 replicates. (3) 9,219 nuclei 

from the mouse brain (3,287 PFC nuclei from 3 mice and 5,932 hippocampus nuclei from 

3 mice). (4) 20,324 nuclei from the human brain (8,057 PFC nuclei from 3 replicates and 

12,267 hippocampus nuclei from 4 replicates). Note that for the species-mixing 

experiment we did not preform the additional filtering step, and we have 1,071 nuclei 

from two technical replicates. In downstream analysis we further tested gene detection 

thresholds for clustering robustness and applied thresholds on the number of reads 

associated with each nucleus barcode (20,000 reads for clustering analysis reported in the 

main figures). A gene is considered detected in a cell if it has at least two unique UMIs 

associated with it. For each analysis, we remove genes that were detected in less than 10 

nuclei.  

QC metrics. A list of quality metrics was obtained for the DroNc-seq single-cell libraries 

using Samtools (http://samtools.sourceforge.net/), Picard Tools 

(http://broadinstitute.github.io/picard/) and in-house scripts. For each single-nucleus 

library (identified based on its batch, replicate and a 12bp barcode), we calculated the 

total number of mapped reads (coding and UTR), the number of genes detected per cell, 

percentage of the total number of reads assigned to the nucleus barcode that were from: 
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(1) coding regions, (2) UTRs, (3) intronic regions, (4) intergenic regions, (5) ribosomal 

RNA (rRNA), and (6) transcripts derived from the mitochondrial genome. 

 

Comparison of Drop-Seq (cells) and DroNc-Seq (nuclei)                                                            

 

We compared between DroNc-Seq (nuclei) and Drop-Seq (cells) by several measures. (1) 

We calculated the capture rate, defined as the number of cells or nuclei recovered from a 

single run divided by the number of cells or nuclei loaded as input (300,000 for nuclei 

and 100,000 for cells): 1% for DroNc-seq and 5% capture for Drop-seq. (2) We 

compared the average and the distribution of the number of genes and transcripts detected 

for all cells and nuclei that pass our quality filter (Figure 1). (3) We compared the gene 

signatures of nuclei and cells, by computing the average expression signatures for each 

gene (mean of log UMI counts) in each replicate. We then computed the Pearson 

correlations between technical replicates of cells or nuclei (all have r=0.99+/-

stdev=0.0023), and between nuclei and cells (r=0.81+/-stdev= 0.0024). (4) We tested for 

genes differentially expressed between cells and nuclei by pooling the technical replicates 

and testing for differential expression using student’s t-test, with FDR < 0.001, log-ratio 

> 1, and average expression across all nuclei or cell samples log(UMI count) > 3, which 

resulted in 2 genes up-regulated in the nuclei (lincRNAs Malat1 and Meg3), and 57 genes 

up regulated in cells, including many mitochondrial RNAs and ribosomal protein RNAs 

(known to be stable and thus enriched in cells compared to nuclei11,12), out of which the 

most significant ones are mt-Cytb and mt-Nd1; Supplementary Table 1). (5) We 

compared the fraction of the total number of reads that were mapped to (1) coding 
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regions, (2) UTRs, (3) intronic regions, (4) intergenic regions, and (5) ribosomal RNA (as 

described above). 

PCA, clustering and tSNE visualization 

 

Dimensionality reduction using PCA. The dimension of the DGE matrix was reduced 

using principal component analysis (PCA), to project the original data to reduced linear 

dimensions where the most significant variance of the data is preserved, as determined 

based on the largest eigenvalue gap. We used the rpca function in R (package rsvd), 

which computes the top 100 principal components (or PCs) for efficiency. We then chose 

the most significant principal components (or PCs) to use as input in downstream 

analysis of clustering cells and embedding them into a 2-D space for visualization. For 

each separate run we chose the number of top PCs based on the largest eigen value gap. 

We found that the first PC is highly correlated with the number of genes detected in each 

nucleus (also when clustering individual cell type), as previously reported in many single 

cell analyses (Reviewed in Ref. 1), and is associated with highly and widely expressed 

genes. We thus excluded the first PC from the downstream analysis, which reduced the 

effects of the library quality and complexity on cluster identity. 

Graph clustering. We partitioned the nuclei profiles into transcriptionally similar clusters 

using the top significant PCs as an input to a graph based clustering algorithm, as 

previously described9. In the first step, we compute a k-nearest neighbor (k-NN) graph on 

the data, where every nucleus is connected to each of its k nearest neighbors determined 

based on Euclidean distance in PC-space (using the nng function of the igraph package in 
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R). We next used the k-NN graph as an input to the Infomap algorithm24, which 

decomposes an input graph into modules by deriving a compressive description of 

random walks on the graph. We ran Infomap using the cluster_infomap function in R. We 

compared the infomap clusters to an alternative clustering method, Louvain-Jaccard 

(using the cluster_louvain function in R) that receives as input the same k-NN graph as 

the infomap algorithm. Louvain clustering yielded a smaller set of clusters that highly 

overlap with the infomap clusters. The clustering results were visualized by coloring a 

tSNE 2-D map post hoc (below), but the tSNE embedding was not used to inform the 

clustering. We found that for detecting the major cell types, all clustering methods were 

robust and aligned with the visual separation seen in the tSNE embedding. We used the 

infomap algorithm and chose the k in the nearest neighbor graph that captured all the 

distinct point clouds in tSNE space using density clustering25 (across multiple tSNE runs 

for robustness), using k=100 for clustering of over 1,000 nuclei and k=50 otherwise . 

 

sub-clustering. To identify sub-types of cells we ran the same methods as described 

above on a specific subset of cells (one of the major clusters) to partition it to sub-

clusters. For the human GABAergic sub-clusters, after the initial clustering step which 

separated the nuclei to distinct yet not well separated clouds of nuclei, we used the 

biSNE3 bi-clustering algorithm to choose genes that are localized in expression patterns 

in the tSNE mapping and thus are likely to be informative genes that are co-expressed by 

a close sub-set or sub-type of cells. We used these genes as an input to the same methods 

above (PCA, infomap clustering and tSNE visualization) to find finer distinctions 

between cells.  
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tSNE visualization. To visualize the nuclei, clustering and gene expression, we generated 

a two-dimensional (2D) non-linear embedding of the cells using t-distributed Stochastic 

Neighbor Embedding26 (tSNE). The scores along the top significant PCs estimated above 

were used as input to the algorithm. We ran the R implementation of tSNE, using the 

Rtsne package, with maximum of 1,000 iterations, disabling the initial PCA step and 

setting the perplexity parameter to 30 for detection of the major clusters and 25 for sub-

clusters. Since tSNE can produce different visualizations in different runs, we used these 

coordinates for visualization (i.e., not to identify cell clusters). The cells in the analysis of 

both the mouse and the human brain separated into distinct point clouds in tSNE space. 

This is true for any sub-set of cells that we chose from the data indicating the robustness 

of the clustering analysis. As we lower the threshold on the filtering step of nuclei from 

the DGE matrix we find that cells still partition to distinct clouds but the borders between 

clusters become less distinct and each individual cloud is more spread. Interestingly, we 

can associate nuclei with a distinct cell type even for those with as few as 100 genes 

detected (and without any requirement on the number of reads mapped to the given cell 

barcode), suggesting that the cell-type identity in the brain can be encoded by a small set 

of genes easily detected with shallow sequencing, as previously observed in other 

systems9. To visualize the expression of marker genes previously shown to be associated 

with specific sub-types of cells (e.g., sub-types of GABAergic neurons in the 

hippocampus and cortex3,20), we visualized the average expression of the markers across 

each cluster and the distribution of the expression across cells in the tSNE space. 
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Testing for batch and technical effects. To validate that the resulting clusters are not 

driven by batch or other technical effects we checked the distribution of samples within 

each cluster and the distribution of the number of genes detected across clusters (as a 

measure of the nuclei quality). This was done both by visualizing the distribution along 

the tSNE space and by directly comparing the distributions of each of the above 

parameters between all clusters. The cells separated into distinct point clouds in tSNE 

space that were not driven by batch effects, each were an admixture of cells from all 

technical and biological replicates, with variable number of genes. Notably, there is a 

distinct difference in the number of genes between neuronal and glia nuclei in the brain, 

but cells cluster by cell type and not by the number of genes. However, when inspecting 

the tSNE maps more closely we do find that within some point clouds, there was a visible 

separation between nuclei according to the number of genes detected (but not by 

sample/batch), indicating that removing the first PC did not fully correct for these 

technical effects. In particular, cluster 11 in our human data (grey cluster in Fig. 2a) was 

associated mainly with one sample, and did not associate with specific cell type markers 

except for general neuronal markers, and expressed mitochondrial RNA, and thus it was 

discarded from further analysis. 

 

Cluster annotation, filtering, differential expression, and pathway analysis 

The major cell type clusters were identified by using a set of known cell type marker 

genes from the literature, as previously described3,20. In addition, we found for each 

cluster signatures of differentially expressed genes, which we used to further validate the 

identity of the cluster by matching these signatures with canonical cell type marker genes 
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and by testing for enriched pathways. Differentially expressed signatures were calculated 

using student’s t-test between each pair of clusters, with FDR < 0.01 and requiring an 

average expression (number of unique UMIs) across all nuclei in the cluster to be bigger 

than log(1.1). We then consider a gene to be differentially expressed in a single cluster if 

it passes these thresholds in at least 60% of the pairwise comparisons. We consider a 

gene as a marker for a given cluster if it passes these thresholds in the pairwise 

comparison with all but one (valid) clusters, and in addition require a log-ratio>1.2 

between the average expression across all nuclei in the given pair of clusters. The 

differential expression signatures and markers were tested for enriched pathways and 

gene sets using a hypergeometric test (FDR < 0.01). Pathways were taken from the 

MSigDB/GSEA resource (combining data from Hallmark pathways, REACTOME, 

KEGG, GO and BIOCARTA)27. We flagged as potential problematic clusters that are 

disregarded from downstream analysis, by two parameters: any cluster in which we could 

not find differentially expressed genes or enriched pathways; and clusters expressing 

overlapping markers of two different cells types that might be nuclei doublets. Several 

small clusters in the human and mouse brain analysis expressed overlapping markers of 

two different cells types, in most cases of neurons and oligodendrocyte cells, and were 

discarded (grey clusters, Figure 1f, 2a).  
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Supplementary Figures and legends 

 

Supplementary Figure 1. DroNc-Seq. (a) CAD schematic of DroNc-Seq microfluidics 

device. (b-d) DroNc-seq performance in 3T3 nuclei (channels are nominally 70 µm 

wide). (b) Number of detected genes. Scatter plot shows the number of detected genes (Y 

axis; defined as a gene with at least two different UMIs detected, Methods) across nuclei, 

ranked in decreasing order (X axis), using DroNc-Seq 75µm microfluidics device (blue, 
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Methods) and Drop-Seq5 125µm device (light blue). (c) Number of successfully profiled 

nuclei. Bar plot shows the number of nuclei passing library quality filter out of 1,288 

(±114) nuclei per library (Methods, Y axis), using either sNuc-Seq3 (“old”) or DroNc-

Seq (“new”) nuclei isolation protocol (Methods). (d) Single nucleus specificity in 

DroNc-seq, estimated from mixtures of human 293 and mouse 3T3 nuclei. Scatter plot 

shows the number of UMIs associated with human (Y axis) or mouse (X axis) transcripts 

for each nucleus barcode (dot). Barcodes associated with a high number of both human 

and mouse transcripts (purple) reflect nuclei doublets. We find 2.5% (27/1,064) nuclei to 

be human-mouse, and thus estimate the expected doublet rate at our current loading and 

flow parameters to be 5%. 
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Supplementary Figure 2.  DroNc-Seq identifies sub-clusters for major cell types in 

the adult human brain. (a,b) Sub-clusters of the human CA pyramidal neurons cluster. 

tSNE embedding of DroNc-Seq profiles from the human CA pyramidal neurons cluster 

(cluster 2 in Fig. 2a; inset), color coded by sub-clusters (a) or by the expression of genes 

differentially expressed between the CA sub-clusters (b), with the known anatomical 

position of the gene according to the human Allen Brain Atlas28 noted in parentheses. 
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Genes are: GABRA1 (highest in the CA1 and subiculum), SCN9A (subiculum), 

SPOCK1 (CA3 and hilus), and CL5A2 (CA1 based on the mouse Allen Brain Atlas29), 

showing that DroNc-Seq can distinguish between pyramidal neurons that are spatially 

separated along the anatomical sub-regions of the CA. (c,d) Sub-clusters of the human 

prefrontal cortex (PFC) pyramidal neurons cluster. (c) tSNE embedding of DroNc-Seq 

nuclei profiles from the human prefrontal cortex (PFC) pyramidal neurons cluster (cluster 

1 in Fig. 2a, inset), color coded by sub-clusters. (d) Number of nuclei (Y axis) from each 

sample (color code) associated with each cluster (X axis), showing that each cluster is 

supported by multiple samples. 
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Supplementary Figure 3. Sub-clusters of GABAergic neurons in the human brain. 

tSNE embedding (as in Fig. 2g) of DroNc-Seq nuclei profiles from the human 

GABAergic neuron cluster (cluster 3 in Fig. 2a, inset). (a) Color coded by the sample of 

origin, showing that each cluster is supported by multiple samples. (b) Colored by the 

expression level of known GABAergic marker genes or genes differentially expressed 

between the sub-clusters, showing unique combinatorial expression of patterns across 

clusters. 
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