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Abstract10

1. Phylogenomic datasets have emerged as an important tool and have been used for11

addressing questions involving evolutionary relationships, patterns of genome12

structure, signatures of selection, and gene and genome duplications. Here, we13

examine these data sources for their utility in the estimation of divergence-times.14

Divergence-time estimation can be complicated by the heterogeneity of molecular15

rates among lineages and through time. Despite the recent explosion of phylogenomic16

data, it is still unclear what the distribution of gene- and lineage-specific rate17

heterogeneity is over these genomic and transcriptomic datasets.18

2. Here, we examine rate heterogeneity across genes and determine whether clock-like or19

nearly clock-like genes are present in phylogenomic datasets that could be used to20

reduce error in divergence-time estimation. We address these questions with six21

published phylogenomic datasets including Birds, carnivorous Caryophyllales, broad22

Caryophyllales, Millipedes, Hymenoptera, and Vitales. We introduce a simple and23

fast method for identifying useful genes for constructing divergence-time estimates24
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and conduct exemplar Bayesian analyses under both clock and uncorrelated25

log-normal (UCLN) models.26

3. We used a “gene shopping” approach (implemented in SortaDate) to identify genes27

with minimal conflict, lower root-to-tip variance, and discernible amounts of28

molecular evolution. We find that every empirical dataset examined includes genes29

with clock-like, or nearly clock-like, behavior. Many datasets have genes that are not30

only clock-like, but also have reasonable evolutionary rates and are mostly31

compatible with the species tree. We used these data to conduct basic32

divergence-time analyses under strict clock and UCLN models. These exemplar33

divergence-time analyses show overlap in age estimates when using either clock or34

UCLN models, but with much larger credibility intervals for UCLN models.35

4. We find that “gene shopping” can be productive and successful in finding gene regions36

that minimize lineage-specific heterogeneity. By doing relatively simple assessments37

of root-to-tip variance and bipartition conflict, we not only explore datasets more38

thoroughly but also may estimate ages on phylogenies with lower error. We also39

suggest the need to explore more detailed and informative approaches to determine fit40

and deviation from a molecular clock, as existing approaches are exceedingly strict.41

Introduction42

Divergence-time estimation is a complicated, but often essential, step for many43

phylogenetic analyses. The sources of error include the ambiguous nature of fossil44

placement, model mis-specification (e.g., involving significant variation in the branchwise45

and/or sitewise rates of evolution), uncertainty in the phylogenetic tree, topological46

dissonance amongst gene trees due to incomplete lineage sorting, and complexity of the47

model for the molecular clock (e.g., Smith et al. 2010; Dornburg et al. 2012; Parham et al.48

2012; Heath and Moore 2014; Beaulieu et al. 2015; Kumar and Hedges 2016). While fossils49

give the only available information for absolute age, their placement and age carry50
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uncertainty. Multiple fossil calibrations and complicated tree shape priors can interact to51

further complicate molecular dating (Zhu et al. 2015; Heled and Drummond 2015; Rannala52

2016; dos Reis 2016; Brown and Smith 2017). Rate variation is common among individual53

branches of a phylogeny and can constitute extensive deviations from the molecular clock.54

As a result, complex models have been developed to accommodate for these deviations55

(Sanderson 2002; Drummond et al. 2006; Drummond and Suchard 2010). However, these56

more parameter-rich models also carry with them significant uncertainty and can, when the57

data deviate significantly from the model, lead to biased results (e.g., Worobey et al. 2014).58

Despite these difficulties, researchers continue to use divergence-time estimates extensively59

as they remain essential for many downstream evolutionary and comparative analyses.60

Datasets based on thousands of genes from genomes and transcriptomes have61

emerged as a major tool in addressing broad evolutionary questions including, but not62

limited to, phylogenetic reconstruction, gene and genome duplication, and inference of63

molecular evolutionary patterns and processes. And while these datasets have been used64

for divergence-time estimation (e.g., Jarvis et al. 2014b; Prum et al. 2015), their overall65

utility for divergence-time analyses has not been fully examined. In particular, it is unclear66

whether within these enormous datasets there exist nearly clock-like gene regions that may67

aid in producing lower error divergence-time estimates. While some authors of recent large68

genomic analyses, such as Jarvis et al. (2014b), have suggested choosing clock-like genes, a69

repeatable and fast procedure to identify these genes has not been explored for70

phylogenomics and an examination of the frequency of these genes in empirical datasets71

has not been conducted.72

Researchers can take steps to ease sources of errors for divergence-time analyses. For73

example, better use of fossils in temporal calibrations can dramatically improve estimations74

(e.g., Parham et al. 2012; Ksepka et al. 2015), as does better accounting for rate variation75

in the molecular models by improving model fit. Several relaxed clock models have been76

introduced over the last few decades to accommodate rate heterogeneity because most data77

do not conform to a strict clock. The most commonly used relaxed clock methods include78
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penalized likelihood (PL, Sanderson 2002) as implemented in r8s (Sanderson 2003) (and79

more recently in treePL (Smith and O’Meara 2012)), and Bayesian uncorrelated rate80

models (e.g., the uncorrelated lognormal (UCLN) model; Drummond et al. (2006)) as81

implemented in BEAST (Drummond and Rambaut 2007) and MrBayes (Ronquist et al.82

2012), although many other methods have been developed and new ones are continually83

released (e.g., Takezaki et al. 1995; Thorne and Kishino 2002; Lartillot and Philippe 2004;84

Britton et al. 2007; Lepage et al. 2007; Rannala and Yang 2007; Drummond and Suchard85

2010; Tamura et al. 2012; Heath et al. 2014; Ronquist et al. 2016; Lartillot et al. 2016).86

The diversity of techniques is matched with a variety of different inputs. For example, PL87

implementations minimally require an estimated phylogram, calibration, smoothing88

penalty value, and alignment size, while full Bayesian methods minimally require an89

alignment and priors to be set for each parameter, including any fossil calibrations.90

Bayesian methods that use relaxed clock models, such as those implemented in91

BEAST, MrBayes, and PhyloBayes (Lartillot and Philippe 2004), simultaneously estimate92

phylogenetic relationships and divergence times, and so may be preferred over other93

approaches as Bayesian methods incorporate uncertainty more easily and explicitly.94

However, the computational burden of these simultaneous reconstruction methods limit95

their use to smaller datasets (i.e., excluding entire genomes and transcriptomes).96

Fortunately, a prescient solution to this dilemma was proffered two decades ago with the97

concept of “gene shopping” (Hedges et al. 1996; Kumar and Hedges 1998), wherein98

available genes are filtered by how well they conform to a molecular clock. [A related99

procedure, “taxon-shopping” (Takezaki et al. 1995; van Tuinen and Hedges 2001; van100

Tuinen and Dyke 2004), prunes taxa from an alignment until the dataset no longer rejects101

a molecular clock test. We do not consider this approach here.]. Using “gene shopping”, it102

should be possible to reduce larger datasets to alignments that are capable of being103

analyzed by Bayesian methods. However, despite the having been available for decades,104

“gene shopping” has not been widely applicable before the recent development of105

next-generation sequencing techniques because of the relatively small number of genes106
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available for any single clade (outside of model organisms). However, as genomic and107

transcriptomic datasets have become more readily available, “gene shopping” holds108

tremendous promise as a tool for inferring phylogenetic timescales. Nevertheless, the utility109

of these large genomic datasets for divergence-time estimation and the distribution of110

lineage-specific rate heterogeneity has yet to be fully explored.111

Next generation sequencing techniques have dramatically increased the number of112

gene regions available for phylogenetic analysis. This has stimulated research into questions113

that are specifically pertinent to datasets with hundreds or thousands of genes. What is114

the best method for reconstructing the species tree (e.g., Gatesy and Springer 2014;115

Mirarab et al. 2014; Roch and Warnow 2015)? How many genes support the dominant116

species tree signal (e.g., Salichos et al. 2014; Smith et al. 2015)? Genomic datasets also117

allow us to examine the extent of molecular rate variation in genes, genomes, and lineages.118

For example, Yang et al. (2015) explored the distribution of lineage-specific rate119

heterogeneity throughout transcriptomes of the plant clade Caryophyllales as it relates to120

life history. Jarvis et al. (2014b), analyzing a genomic dataset of birds, explored rate121

heterogeneity and selection as it relates to errors in phylogeny reconstruction in a genomic122

dataset of birds. Recently, the clock-likeness of phylogenomic datasets has come of interest123

to the community. For example, Doyle et al. (2015) attempt to identify strictly clock-like124

genes in order to avoid long branch attraction artifacts in phylogenetic inference. Jarvis125

et al. (2014b) recently filtered gene regions by inferred mean coefficient of rate variation (a126

measure of clock-likeness) from full Bayesian analyses of each gene, to identify “clock-like”127

genes explicitly for divergence-time estimation. However, while these authors have128

conducted filtering analysis on their genomic data, a thorough examination of129

lineage-specific rate heterogeneity across clades for divergence-time estimation has not been130

conducted. Nevertheless, the availability of full genomes and transcriptomes makes131

identifying genes with lower rate variation possible and so are more suitable for132

divergence-time estimation.133

Here we present one means of utilizing genomic data for estimating divergence time134
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by introducing a simple sorting procedure to identify informative (i.e., does not conflict135

strongly with an existing species tree hypothesis, and possesses appreciable tree length)136

and nearly clock-like (i.e., low variance) genes. Genes that fit these criteria may simplify a137

convenient divergence-time estimation for large datasets as methods such as clock138

partitioning are difficult when dealing with dozens, hundreds, or even thousands of genes139

Duchêne et al. (2013). Additionally, this procedure can be used to examine the overall140

distribution of evolution, rate heterogeneity, bipartition concordance, and potential utility141

of genes for divergence-time analysis. It is assumed that a researcher will possess a142

phylogenetic hypothesis of their taxon, inferred (in some manner) from the entire corpus of143

available genetic sequences. Thus, the procedure described here is aimed at dating an144

existing phylogenetic hypothesis using a subset of the genetic data. The procedure holds145

promise that, while various relaxed clock models are available (conducive to146

accommodating different forms of rate heterogeneity), data that do not require extensive147

rate modelling will enable fast, accurate, and precise divergence time estimates (see also To148

et al. 2015). Finally, we examine six genomic and transcriptomic datasets across animals149

and plants and with different temporal and taxonomic scopes to examine the extent of150

lineage-specific rate heterogeneity. We investigate the distribution of variation in the151

branchwise rates of evolution across thousands of genes to understand whether these new152

genomic resources may improve divergence-time estimation by allowing for simpler models153

of molecular evolution.154

Materials and Methods155

Availability of procedures.— The analyses performed below can be conducted using the156

SortaDate package (with source code and instructions available at157

https://github.com/FePhyFoFum/sortadate). This package is written in Python and158

available as an Open Source set of procedures. In some cases, external programs are used159

(e.g., those found in the Phyx package (Brown et al. 2017)) that are also Open Source and160

freely available.161
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Dataset processing.— We used six published datasets to examine rate heterogeneity: Birds162

(BIR, Jarvis et al. 2014b), carnivorous Caryophyllales (CAR, Walker et al. 2017), the163

broader Caryophyllales (CARY, Yang et al. 2015), Vitales (VIT, Wen et al. 2013),164

Hymenoptera (HYM, Johnson et al. 2013), and Millipedes (MIL, Brewer and Bond 2013).165

The range in datasets spans different taxonomic groups, datasets sizes (e.g., CAR vs166

CARY), and age (e.g., from hundreds of millions of years to within the last hundred million167

years). Where possible, we used orthologs that were identified using the Maximum168

Inclusion method of Yang and Smith (2015). This was the case with every dataset but BIR169

for which we used the exon alignments available online (Jarvis et al. 2014a;170

http://gigadb.org/dataset/101041). For each ortholog, we have an estimated gene tree,171

based on maximum likelihood (ML) analyses, and alignments, from the original studies.172

Gene trees, regardless of the source of orthologs, were then rooted and SH-like tests were173

performed to assess confidence in edges (Anisimova and Gascuel 2006). We note that gene174

tree rooting is a requirement of the SortaDate procedure. This is typically performed using175

outgroups.176

Gene tree analyses.— Because deviation from the clock is empirically manifest in a177

phylogram as variation in root-to-tip length among tips within a tree, we measured the178

variance of root-to-tip lengths for each tree. This was performed on each rooted ortholog,179

for which outgroups were removed, with the pxlstr program of Phyx package (Brown180

et al. 2017). We performed the standard clock test for each ortholog (Muse and Weir181

1992), with outgroup removed, using PAUP* v4.0a151 (Swofford 2001) by calculating the182

ML score for a gene both with and without assuming a clock, and then performing a183

likelihood ratio test. In addition to assessing the clock-likeness of genes, we also compared184

gene tree topologies to the corresponding published species tree topology. Branch lengths185

were not available for some species trees. To compare the individual gene trees to their186

corresponding species trees, we conducted bipartition comparison analyses on each gene187

tree using pxbp from the Phyx package (procedure described in Smith et al. 2015).188

Simulations.— We conducted simulations to examine expectations of rate variation given189
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clock-like, noisy clock-like, and uncorrelated lognormal data. We first generated simulated190

clock-like data using Indelible v1.03 (Fletcher and Yang 2009) using the WAG model191

with 500 characters for amino acid datasets, and JC with 1500 characters for nucleotide192

datasets, on each of the empirical species tree topologies. For these data simulations,193

because the species tree often had no branch lengths available, node heights were first194

simulated randomly using Indelible and then the tree was rescaled to a height of 0.25,195

0.5, or 0.75. We used the trees generated by Indelible to further simulate 100 noisy clock196

(rate=1.0, noise=0.25, and rate=1.0, noise=0.75) and uncorrelated lognormal (UCLN)197

trees (mean.log=-0.5, stdev.log=0.5, and mean.log=-0.5, stdev.log=1.0) using NELSI v0.21198

(Ho et al. 2015). We note the ‘noise’ in NELSI corresponds to the standard deviation of a199

normal distribution with mean = 0. For the noisy clock, branch-specific rates are a sum of200

the global rate (here, 1.0) and a draw from this normal distribution. The simulations with201

noise=0.75 thus are only loosely clock-like, and serve as a comparison between the more202

clock-like (noise=0.25) and UCLN analyses. We used RAxML v8.2.3 (Stamatakis 2014) to203

reconstruct each of these datasets. For each simulation, we examined the rate variation and204

the root-to-tip length variation on the reconstructed phylograms.205

While the focus of this study is not the performance of divergence-time estimation206

methods, we still wanted to examine an exemplar from the simulations to ascertain the207

variation in the results given different clock models. We used one random realization of208

node heights as simulated from the Indelible analyses as mentioned above to generate209

two datasets with NELSI. One dataset had three genes generated from a clock rate of 1 and210

noise at 0.25, and the other dataset had three genes generated from a UCLN model and211

mean.log at -0.5 and sd.log=1. As above, each amino acid gene consisted of 500 residues,212

while DNA genes consisted of 1500 nucleotides. For each simulation, all three genes shared213

a common topology (but with different edge lengths, as our filtering procedure involves a214

single focal topology). For both the noisy clock-like and UCLN datasets, we conducted215

BEAST analyses with both a clock model and a UCLN model. A birth-death tree prior was216

used as the prior for all node heights, and runs were conducted for 10 million generations217
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with the first 10% discarded as burnin. Results were summarized using treeannotator218

from the BEAST package. Median node heights as well as 95% HPD node heights were219

compared between the simulated datasets and the tree used to generate these datasets.220

Sorting and dating analyses on real data.— In addition to these analyses on simulated221

datasets, we conducted divergence-time analyses on a subset of the empirical datasets.222

Because these datasets consist of hundreds to thousands of genes, we developed a sorting223

procedure intended to mimic that which would be performed as a “gene shopping”224

analysis. The sorting procedure relies on the root-to-tip variance statistic, bipartition225

calculation to determine the similarity to the species tree, and total treelength. We sorted226

first by the similarity to the species tree, then root-to-tip variance, and finally treelength.227

For these examples we limited the results to the top three genes reported from the sorting228

procedure, although for empirical analyses one should choose the number of genes by229

carefully examining the filtering results. Because we filtered for genes that were consistent230

with the species tree, these genes were then concatenated and the topology was fixed to be231

consistent with the species tree. We applied individual substitution models to each gene232

within a data set. However, given that the genes were filtered both to match the species233

tree and for clock-likeness, we modelled all genes with a single molecular clock (albeit with234

gene-specific relative rates). For each of these datasets, we conducted two BEAST analyses,235

one assuming a strict clock and the other assuming a UCLN model. Because specific dates236

were not the focus of this examination, the birth-death tree prior was used instead of fossil237

priors for nodes. The analyses were run in duplicate for 10 million generations (the BIR238

and CARY UCLN analyses took longer to reach convergence, and so was run for 50 million239

generations) with the first 10% discarded as burnin. Replicate MCMC logs were240

concatenated while removing burnin using the pxlog program from the Phyx package, and241

finally summarized using treeannotator as above. Median node heights and 95% HPD242

node heights were compared between the clock and UCLN runs as the node heights on the243

true phylogeny are unknown.244
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Results and Discussion245

A fundamental question for each of the empirical datasets is: are there clock-like gene246

regions present within the genome? Results were varied, from 0.4% of genes passing the247

clock test for the VIT dataset to 17% for the MIL dataset (see Table 1). These results are248

not surprising, as even with clock-like genes it is expected that stochastic differences will249

accumulate with both increased sampling (i.e., more edges) and older trees (i.e., longer250

edges). As for size, the CAR dataset has 7 taxa that are not included in the CARY dataset251

but otherwise overlaps partially and has far fewer taxa in total. The CARY dataset, in252

addition to being much larger, also contains known shifts in life history (Yang et al. 2015).253

These differences may account for the variation between these two datasets. As for clade254

age, HYM and MIL are significantly older than the other datasets, which may account for255

their rate variation. Nevertheless, each dataset indeed had at least a few orthologs that256

passed a strict clock test even if these orthologs were in the small minority.257

Because passing a clock test does not necessarily indicate that the gene would be258

good for phylogenetic reconstruction, we also measured treelength and root-to-tip variance259

for each ortholog (see Figures 2-3). Clock tests are stringent in their need to conform to260

the clock (see below) and so by examining the root-to-tip variation and lineage-specific261

variation, we are more directly examining the deviation from ultrametricity. Although this262

is primarily descriptive and does not include a formal test, this provides an easily263

interpretable characterization of rate variation. We found that the datasets vary264

dramatically with no discernible general pattern for both root-to-tip variance and265

treelength. For example, the BIR dataset demonstrates very little molecular evolution as266

demonstrated by the short treelengths. For this dataset, we analyzed nucleotides (rather267

than amino acids) to maximize treelengths as Jarvis et al. (2014b) demonstrated low rates268

of evolution, especially deep in the phylogeny. However, the inferred rates of evolution (as269

determined by overall tree length) were still low. Given the difficulty in resolving the avian270

phylogeny, this pattern is perhaps to be expected (Jarvis et al. 2014b). This same pattern271

is present in the VIT dataset, though this was not explored as thoroughly in the original272
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publication. Both the CAR and CARY datasets show a pattern of increasing variance with273

greater treelength (Figures 2). This contrasts with the HYM and MIL datasets that are274

clock-like even with longer treelengths (Figure 3). Lineage-specific rate variation in each275

dataset was idiosyncratic with most extreme variation in the outgroups. While outgroups276

were excluded for clock tests and in determining root-to-tip variance for “gene shopping”,277

we allowed outgroups to remain for lineage-specific rate variation analyses as in the right278

handed plots of Figure 3. The VIT dataset was an exception with several lineages other279

than the outgroup having high rates. In each dataset, there were genes that fell within the280

distribution of simulated trees that are clock-like or clock-like with low noise.281

One potential benefit of identifying orthologs with lower lineage-specific rate282

variation within phylogenomic datasets is to use these, or a subset of these, orthologs to283

conduct divergence-time analyses. The hope is that by using clock-like genes, we may284

overcome or lessen the impact of lineage-specific rate variation on the error of divergence285

time analyses. The non-identifiability of rates and dates (e.g., longer branch lengths may286

be the result of a long time or fast evolution) is exacerbated by lineage-specific rate287

heterogeneity. We used a subset of orthologs to conduct divergence time analyses and we288

implemented a sorting procedure (packed in SortaDate) to (i) filter the genes that best289

reflect the species tree (i.e., higher bipartition concordance with the species tree), (ii) have290

lower root-to-tip variance (i.e., most clock-like), and discernible amounts of molecular291

evolution (i.e., greater tree length; Figure 1). For each empirical dataset, we generated292

such an alignment (see Table 2). The genes that were filtered and used for divergence-time293

analyses for the BIR, CARY, VIT, and HYM datasets rejected the clock. The genes for the294

CAR and MIL datasets either didn’t or weakly rejected the clock. Resulting HPD trees295

were rescaled so that the root heights were equivalent to allow for easier comparisons296

between datasets. Typically, fossil placements would be used for scaling but because these297

are not intended to be runs for future use, we eliminated fossil placements as one source of298

variation. We found rough correspondence of node heights between the clock and UCLN299

analyses, especially for the four smallest datasets (see Figure 4). The UCLN analyses, as300
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expected, had far greater variance in the 95% HPDs for node ages. We found the greatest301

differences in the larger BIR and CARY datasets (see Table 3) where there are major302

differences in tree heights. This may reflect the size of the dataset or the underlying rate303

variation in the datasets. In general, strict clock estimates resulted in younger median node304

ages than analogous UCLN estimates, as well as younger maximum and older minimum305

95% HPD values (see Table 3). The coefficient of rate variation statistics (an measure of306

clock-likeness) for UCLN runs ranged from the lowest mean values of 0.2358307

(stErr=0.0347) in HYM to the highest of 1.2464 (stErr=0.1135) in CARY.308

As is always the problem with real datasets, the true divergence-times are unknown.309

So we conducted exemplar analyses. For each empirical dataset, we simulated data for310

three genes under both noisy clock and UCLN models to examine the variation in the311

resulting divergence-time analyses where the true dates were known. For these simulated312

datasets, a strict clock was rejected in each case, including those datasets that were313

simulated under a clock with noise. We compared the resulting node heights from the314

divergence time analyses under clock and UCLN models with the tree used for simulation315

(see Tables 4-5 and Figure 5). For the datasets generated under a noisy clock model, more316

of the true node heights were found in the 95% HPD interval when using the UCLN model317

for inference than the strict clock model for inference. However, the precision as measured318

by the total width of the 95% HPD interval for the UCLN runs were much lower than the319

clock runs (see Tables 4-5). Those nodes that were not within the interval of the 95% HPD320

when using the strict clock model for reconstruction, were close to the true value. So, while321

fewer true node ages were contained in the strict clock HPDs, the overall error rate was322

lower. For example, in the CARY dataset, while fewer nodes in the clock estimate were323

found to be within the interval (52 vs 67 for the UCLN), the distance of the interval from324

the estimate was lower for the clock dataset for both the high and low value for the 95%325

HPD. Stated another way, the UCLN intervals were large enough that the true age was326

often included, but this was at the cost of far lower precision. Because of this error relative327

to the strict clock, the UCLN perhaps should not be the preferred model, especially if the328
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researcher is going to use a single summary tree for future analyses.329

Several gene trees from the examples discussed fail a standard strict clock test but330

have low root-to-tip variance. To explore this further, we simulated strict clock amino acid331

and nucleotide data on orthologs from each empirical dataset and examined the frequency332

of incorrectly rejecting a strict clock. The false rejection rate for clock tests using amino333

acid data and a strict clock were between 5% and 8%. For the two nucleotide datasets, the334

rejection rate was much higher at 23% and 46%. This suggests that for amino acid data,335

the false rejection rate was near the nominal value, while for the nucleotide datasets the336

false rejection rate was unreliable. Both nucleotide datasets (BIR and CARY) also had the337

largest number of species and so the rejection rate may be a function of the number of taxa338

(i.e., with a greater number of sampled lineages, cumulative stochastic variation for even339

clock-like data can lead to the rejection of a strict clock). Sensitivity of the clock-test to340

nucleotide data is not the focus of this study, but should be examined in more detail. Also,341

it would be more informative to examine the deviation from the clock instead of a boolean342

test of significant fit. In regard to divergence time estimation, if a strict or stricter clock343

can be used, molecular phylogenies may be dated with significantly lower error. As an344

added benefit, fewer fossils would be necessary to calibrate nodes (and indirectly, rates).345

We suggest that the community explore model fit to relaxed clock models as well as346

potential alternatives to the prevailing strict clock test that may be more beneficial for347

divergence time estimates and more informative in regard to rate heterogeneity in348

phylogenomic datasets.349
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Tables533

Dataset Orthologs Clocklike (%)
BIR 7116 440 (6.18)
CAR 3767 274 (7.27)

CARY 583 3 (0.51)
HYM 1161 22 (1.89)
MIL 152 26 (17.10)
VIT 2267 8 (0.35)

Table 1: Dataset size and results of likelihood ratio tests for strict clock-like gene behavior.
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Gene name Variance Tree length Bipartition proportion
BIR
12969 0.000791644 2.73068 0.5
1173 0.00205589 3.01712 0.457
12123 8.32228e-05 0.825943 0.413
CAR

cluster259MIortho7 9.07832e-05 0.346618 1.0
cluster3790MIortho1 0.000245644 0.739886 1.0
cluster234MIortho1 0.0004849 1.19575 1.0

CARY
cc7674-1-1to1ortho 0.0183029 10.9821 0.701
cc4427-1MIortho1 0.0093838 8.7827 0.657
cc7873-1MIortho1 0.0206222 10.4773 0.657

HYM
cluster3024-1-1ortho1 0.00159156 2.64137 0.706
cluster5160-1-1ortho1 0.00294197 2.0815 0.706
cluster1251-1-1ortho1 0.00621115 4.99913 0.706

MIL
cluster89-1-1ortho1 0.00200945 0.909593 0.875

cluster1437-1-1ortho1 0.00872612 2.96511 0.875
cluster1615-1-1ortho1 0.010942 3.56434 0.875

VIT
cluster9579-1MIortho1 0.000978163 0.519373 1.0
cluster1236-1MIortho1 0.00106778 0.547562 1.0
cluster461-1MIortho1 0.001227 0.607536 1.0

Table 2: Properties of the genes used in the empirical dating analyses. Variance regards the
root-to-tip paths. Tree length is measured in units of expected substitutions per site across
all branches. Bipartition proportion measures agreement to the species tree topology (1.0
indicates complete concordance).

Dataset Height Lower Higher
BIR -0.26 0.27 -1.49
CAR -0.004 0.04 -0.2
CARY -3.93 0.52 -8.56
HYM -0.12 0.1 -0.63
MIL -0.09 0.04 -1.12
VIT -0.02 0.08 -0.56

Table 3: The cumulative difference in the height, lower 95% HPD, and higher 95% HPD
of each node comparing the UCLN estimates to the clock estimates from the individual
empirical dating analyses. A value lower than 0 results when the cumulative difference in
the clock values of height or HPD are younger than the associated UCLN values.
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Height Lower Higher Nodes Error
Dataset CL UC CL UC CL UC CL UC CL UC
BIR 0.63 0.5 0.48 0.69 0.96 1.33 16 39 1.44 2.02
CAR 0.26 0.2 0.37 0.85 0.25 0.63 5 12 0.62 1.49
CARY 0.54 0.63 1.23 2.12 0.64 1.11 52 67 1.88 3.24
HYM 0.16 0.76 0.21 0.65 0.38 0.94 15 3 0.58 1.59
MIL 0.17 0.42 0.12 0.45 0.33 0.46 5 3 0.44 0.91
VIT 0.27 0.26 0.42 0.32 0.2 0.27 5 8 0.62 0.59

Table 4: Assessment of dating error for the clock (CL) and UCLN (UC) analyses of the sim-
ulated clock data. All measures involve distance from the true node age, and are cumulative
sums across all nodes. Height is the inferred node age. Lower and Higher regard the 95%
HPD node age bounds. Nodes indicates the number of true node ages contained within the
HPD interval. Error is the total error involved, equivalent to Low + High.

Height Lower Higher Nodes Error
Dataset CL UC CL UC CL UC CL UC CL UC
BIR 1.26 3.21 1.26 6.43 1.37 1.52 12 24 2.64 7.95
CAR 0.76 0.69 0.89 1.59 0.68 0.58 2 9 1.57 2.17
CARY 2.29 3.51 2.37 8.98 2.38 4.97 15 55 4.75 13.95
HYM 0.14 0.91 0.61 3.01 0.61 1.58 18 16 1.22 4.65
MIL 0.14 0.61 0.32 1.6 0.57 1.17 11 10 0.89 2.77
VIT 0.29 1.12 0.82 2.43 0.29 0.73 14 9 1.11 3.16

Table 5: Assessment of dating error for the clock (CL) and UCLN (UC) analyses of the sim-
ulated ucln data. All measures involve distance from the true node age, and are cumulative
sums across all nodes. Height is the inferred node age. Lower and Higher regard the 95%
HPD node age bounds. Nodes indicates the number of true node ages contained within the
HPD interval. Error is the total error involved, equivalent to Low + High.
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Figure 1: Measures used for sorting genes for use in dating analyses. The order presented
here is arbitrary.
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Figure 2: Plots of gene tree properties (left, including root-to-tip variance and treelength for
simulated and empirical datasets) and tip-specific root-to-tip variance for empirical datasets
(right). When the outgroup is present, the taxa are labeled with a red dot.
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Figure 3: Plots of gene tree properties (left, including root-to-tip variance and treelength for
simulated and empirical datasets) and tip-specific root-to-tip variance for empirical datasets
(right). When the outgroup is present, the taxa are labeled with a red dot.
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Figure 4: A comparison of strict clock and UCLN estimates of node ages for the six curated
empirical datasets.
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Figure 5: A comparison of strict clock and UCLN estimates of node ages for the simulated
clock and ucln datasets. Red and pink are scenarios where the generating and inference are
identical, while green and blue are where the models are mismatched.
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