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Abstract 

Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care. 

Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient 

cohorts is lacking. To fill in this gap, we present a deep learning (DL) based model on HCC that robustly 

differentiates survival subpopulations of patients in six cohorts. We train the DL based, survival-sensitive model 

on 360 HCC patient data using RNA-seq, miRNA-seq and methylation data from TCGA. This model provides 

two optimal subgroups of patients with significant survival differences (P=7.13e-6) and good model fitness (C-

index=0.68). More aggressive subtype is associated with frequent TP53 inactivation mutations, higher 

expression of stemness markers (KRT19, EPCAM) and tumor marker BIRC5, and activated Wnt and Akt 

signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-

JP cohort (n=230, c-index=0.75), NCI cohort (n=221, c-index=0.67), Chinese cohort (n=166, c-index=0.69), E-

TABM-36 cohort (n=40, c-index=0.77), and Hawaiian cohort (n=27, c-index=0.82). This is the first study to 

employ deep learning to identify multi-omics features linked to the differential survival of HCC patients. Given 

its robustness over multiple cohorts, we expect this model to be clinically useful for HCC prognosis prediction. 
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Introduction 

Hepatocellular carcinoma (HCC) is the most prevalent type (70-90%) of liver cancer, and 2nd leading cancer 

responsible for the mortality in men1. In USA, it has the 2nd highest incidence rate and highest mortality rate2. 

HCC is aggravated by various risk factors, including HBV/HCV infection, nonalcoholic steatohepatitis (NASH), 

alcoholism, and smoking. These confounding factors along with high level of heterogeneity have rendered HCC 

prognosis a much challenging task3,4. HCC is a detrimental disease with poor prognosis in general, where 

median survival is less than 2 years5. In particular, 5-year survival rate of HBV-associated HCC is less than 30% 

in multiple studies5-8. Treatment strategies in HCC are very limited, imposing additional urgent needs for 

developing tools to predict patient survival9. 

To understand the HCC heterogeneity among patients, a considerable amount of work has been done to identify 

the HCC molecular subtypes10-16. A variety of numbers of subtypes were identified, ranging from 2 to 6, based 

on various omics data types, driving hypotheses and computational methods. Besides most commonly used 

mRNA gene expression data, a recent study integrated copy number variation (CNV), DNA methylation, mRNA 

and miRNA expression to identify the 5 HCC molecular subtypes from 256 TCGA samples17. However, most of 

these studies explored the molecular subtypes without relying on survival during the process of defining 

subtypes. Rather, survival information was used post hoc to evaluate the clinical significance of these subtypes17. 

As a result, some molecular subtypes showed converging and similar survival profile, making them redundant 

subtypes in terms of survival differences13. New approaches to discover survival-sensitive and multi-omics data 

based molecular subtypes are much needed in HCC research.  

To address these issues, for the first time, we have utilized deep learning (DL) computational framework on 

multi-omics HCC data sets. We chose autoencoder framework as the implementation of DL for multi-omics 

integration. Autoencoders have already been proved to be efficient approaches to produce features linked to 

clinical outcomes18. And it was successfully applied to analyze high-dimensional gene expression data19,20, and 

to integrate heterogeneous data21,22. Notably, autoencoder transformation tends to aggregate genes sharing 

similar pathways23, therefore making it appealing to interpret the biological functions. The contributions of this 

study to HCC field is not only manifested in its thorough and integrative computational rigor, but also unify the 
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discordant molecular subtypes into robust subtypes that withstand the testing of various cohorts, even when they 

are in different omics forms.  

We derived the model from 360 HCC samples in TCGA multi-omics cohort, which have mRNA expression, 

miRNA expression, CpG methylation and clinical information. We discovered two subtypes with significant 

differences in survival. These subtypes hold independent predictive values on patient survival, apart from 

clinical characteristics. Most importantly, the two subtypes obtained from our DL framework are successfully 

validated in five independent cohorts, which have miRNA or mRNA or DNA methylation results. Functional 

analysis of these two subtypes identified that gene expression signatures (KIRT19, EPCAM and BIRC5) and Wnt 

signaling pathways are highly associated with poor survival. In summary, the survival-sensitive subtypes model 

reported here is significant for both HCC prognosis prediction and therapeutic intervention.  

Results 

Two differential survival subtypes are identified in TCGA multi-omics HCC data 

From the TCGA HCC project, we obtained 360 tumor samples that had coupled RNA-seq, miRNA-seq and 

DNA methylation data. For these 360 samples, we pre-processed the data as described in the ‘Materials and 

Methods’ section, and obtained 15,629 genes from RNA-seq, 365 miRNAs from miRNA-seq, and 19,883 genes 

from DNA methylation data as input features. These three types of omics features were stacked together using 

autoencoder, a deep learning framework24. The architecture of autoencoder is shown in Figure 1A. It has 5 layers 

of nodes: an input layer, a hidden layer for encoding, a bottleneck layer, a hidden layer for decoding, and an 

output layer. We used tanh function for activation and retrieved 100 new transformed features from the 

bottleneck layer. We then conducted univariate Cox-PH regression on each of the 100 features, and identified 37 

features significantly (log-rank p-value <0.05) associated with survival. These 37 features were subjective to K-

means clustering, with cluster number K ranging from 2 to 6 (Figure 1B). Using silhouette index and the 

Calinski-Harabasz criterion, we found that K=2 was the optimum with the best scores for both metrics 

(Supplementary Fig. 1A). Further, the survival analysis on the full TCGA HCC data shows that the survivals in 

the two sub-clusters are drastically different (log-rank p-value =7.13e-6, Figure 2A). Moreover, K=2 to 6 yielded 
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KM survival curves that essentially represent 2 significantly different survival groups (Supplementary Fig. 1B). 

Thus, we determined that K=2 was the classification labels for the subsequent supervised machine learning 

processes. 

We next used the 2 classes determined above as the labels to build a classification model using the support 

vector machine (SVM) algorithm with cross-validation (CV) (Fig. 1B). We split the 360 TCGA samples into 10 

folds using 60/40 ratio for training and testing data. We chose 60/40 split, rather than a conventional 90/10 split, 

in order to have sufficient testing samples for sensible log-rank p-values in the survival analysis (see ‘Materials 

and Methods’). Additionally, we assessed the accuracy of the survival subtype predictions using C-index, which 

measures the fraction of all pairs of individuals whose predicted survival times are ordered correctly25. We also 

calculated the error of the model fitting on survival data using Brier score26. On average, the training data 

generated high C-index (0.70±0.04), low brier score (0.19±0.01), and significant average log-rank p-value 

(0.001) on survival difference (Table 1). Similar trend was observed for the 3-omics held-out testing data, with 

C-index=0.69±0.08, Brier score=0.20±0.02, and average survival p-value=0.005 (Table 1). When tested on each 

single omic layer of data, this multi-omics model also has decent performances, in terms of C-index, low Brier 

scores and log-rank p-values (Table 1). These results demonstrate that the classification model using cluster 

labels is robust to predict survival-specific clusters. 

The performance of the model described in Fig. 1B is superior to the alternative model, where autoencoder is 

replaced by traditional dimension reduction approach namely Principal Component Analysis (PCA). The PCA 

approach failed to give significant log-rank p-value (α=0.05) in survival subgroups. It also yielded significantly 

lower C-indices for both the training (0.63, p-value<0.01) and testing (0.62, p-value < 0.05) data (Supplementary 

Table 1), as compared to the model using autoencoder. Worth noticing, the 3-omics based DL model gives better 

prediction metrics in CV, when compared to single-omics based DL models (Supplementary Table 2), 

suggesting that indeed multi-omics data are better than single-omics data for model building.  

The survival subtypes are robustly validated in five independent cohorts 

To demonstrate the robustness of the classification model at predicting survival outcomes, we validated the 

model on a variety of five independent cohorts, each of which had only mRNA, or miRNA or methylation omics 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2017. ; https://doi.org/10.1101/114892doi: bioRxiv preprint 

https://doi.org/10.1101/114892


6 
 

data (Table 2 and Fig. 2 B-F). LIRI-JP dataset is the RNA-seq data set with the most number of patients 

(n=230); we achieved a good C-index 0.75, a low Brier error rate of 0.16 and the log-rank p-values of 4.4e-4 

between the two subtypes. For the second largest (n=221) NCI cohort (GSE14520), the two subgroups have 

decent C-index of 0.67 and low Brier error rate of 0.18 with log-rank p-value of 1.05e-3 (Table 2). For Chinese 

cohort (GSE31384), the miRNA array data with 166 samples, the two subgroups have C-index of 0.69, low Brier 

error rate of 0.21, and log-rank p-value of 8.49e-4 (Table 2). Impressively, the C-indices for the two smallest 

cohorts, E-TABM-36 (40 samples) and Hawaiian cohorts (27 samples) are very good, with values of 0.77 and 

0.82, respectively. The p-values obtained for the small cohorts after resampling are also significant, with values 

of 3.06e-4 and 1.19e-8, respectively (Fig. 2B-F).  

Adding clinical information does not improve DL-based multi-omics model 

It remains to see if the DL based multi-omics model will improve the predictability, by adding clinical 

information. Therefore, we assessed the performance of alternative models with clinical variables as the features, 

either alone or in combination with previous DL-based multi-omics model (Table 3). When clinical features 

were used as the sole feature set for survival prediction, the models’ performances were much poorer (Table 3), 

when compared to the DL-based genomic model (Table 2). Then we combined the clinical features with the 3 

omics layers before the k-means clustering step in Fig. 1B. Surprisingly, the C-indices of the combined model 

were not better on the validation cohorts with larger sample sizes (LIRI-JP, NCI and E-TABM-36 cohorts), 

compared to those of DL-based multi-omics model. C-index and p-value were only slightly but not statistically 

significantly better for the Hawaiian cohort, which has only 27 samples. We thus conclude that the DL-based 

multi-omics model performs sufficiently well even without clinical features. We speculate the reason is due to 

the unique advantage of DL neural network, which can capture the redundant contributions of clinical features 

through their correlated genomic features. 

Associations of survival-subgroups with clinical covariates  

We performed the Fisher’s exact test between the two survival subgroups and the clinical variables from TCGA 

cohort, and found that only grade (P=0.0004) and stage (P=0.002) were significantly associated with survival, as 
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expected. Since HCC is aggravated by the multiple risk factors including HBC, HCV, and alcohol, we also 

tested our model within subpopulations stratified by individual risk factors (Table 4). Impressively, our model 

performed very well on all the risk factor categories with C-indices ranging from 0.69-0.79, and Brier scores 

between 0.19 and 0.20. Log-rank P-values were significant in HBV infected patients (P=0.04), alcohol 

consumers (P=0.005) and other category (P=0.0035). The only non-significant p-value (P=0.20) was obtained 

from the HCV infected patients, probably attributed to the small group size (n=31).  

TP53 is one of the most frequently mutated genes in HCC, and its inactivation mutations have been reported to 

be associated with poor survival in the HCC27. Between the 2 survival subgroups S1 and S2 in TCGA samples, 

TP53 is more frequently mutated in the aggressive subtype S1 (Fisher’s test p-value=0.042). Further, TP53 

inactivation mutations are associated with the aggressive subtype S1 in LIRI-JP cohort, where whole genome 

sequencing data are available (p-value=0.024). 

Functional analysis of the survival-subgroups in TCGA HCC samples 

We used DESeq2 package28 for differential gene expression between the two identified subtypes. After applying 

the filter of log2 fold change >1 and FDR <0.05, we obtained 820 up-regulated and 530 down-regulated genes in 

the aggressive sub-cluster S1. Fig. 3 shows the comparative expression profile of these 1350 genes after 

normalization. The up-regulated genes in the S1 cluster include the stemness marker gene, EPCAM (P=5.7e-6), 

KRT19 (P=6.7e-15) and tumor marker BIRC5 (P=1.2e-13) genes, which were also reported earlier to be 

associated with aggressive HCC subtype29-31. Additionally, 18 genes (ADH1B, ALDOA, APOC3, CYP4F12, 

EPHX2, KHK, PFKFB3, PKLR, PLG, RGN, RGS2, RNASE4, SERPINC1, SLC22A7, SLC2A2, SPHK1, 

SULT2A1, TM4SF1) differentially expressed in the two subtypes have similar trends of expression as in the 

previous study, where a panel of 65-gene signature was associated with the HCC survival32. 

Using the differentially expressed genes above, we conducted KEGG pathway analysis to pinpoint the pathways 

enriched in two subtypes. These subtypes have different and (almost) disjoint active pathways, confirming that 

they are distinct subgroups at the pathway level (Fig. 4). Aggressive subtype S1 is enriched with cancer related 

pathways, Wnt signaling pathway, PI3K-Akt signaling pathway etc. (Fig. 4A). Wnt signaling pathway was 

reported being associated with aggressive HCC previously33. In contrast, the moderate subtype S2 has activated 
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metabolism related pathways including drug metabolism, amino acid and fatty acid metabolism etc. (Fig. 4B). 

We performed similar differential analysis for miRNA expression and methylation data, and detected 23 

miRNAs and 55 genes’ methylation statistically different between the two subgroups (Supplementary Fig. 2 and 

File 1).  

Discussion 

Heterogeneity is one of the bottlenecks for understanding the HCC etiology. Though there are many studies for 

subtype identification of the HCC patients, embedding survival outcome of the patients as part of the procedure 

of identified subtypes has not been reported before. Moreover, most reported HCC subtype models have either 

no or very few external validation cohorts. This calls for better strategies, where the identified subtypes could 

reflect the phenotypic outcome of the patients i.e. the survival directly. Present work includes the integration of 

the multi-omics data from the same patients, giving an edge by exploiting the improved signal-to-noise ratio. To 

our knowledge, we are the first to use the deep learning framework to integrate multi-omics information in HCC. 

It propels deep learning to develop risk stratification model, not only for prognostication but also instrumental 

for improvising risk-adapted therapy in HCC. 

We have identified two subtypes from the molecular level. This model is robust and perhaps more superior than 

other approaches, manifested in several levels. First, CV results gave the consistent performance in TCGA HCC 

testing samples, implying the reliability and robustness of the model. Secondly, deep-learning technique used in 

the model has captured sufficient variations due to potential clinical confounders, such that it performs as 

accurately or even better than, having additional clinical features in the model. Thirdly, autoencoder framework 

has much more efficiency to infer features linked to survival, compared to PCA. Lastly and most importantly, 

this model is repetitively validated in five additional cohorts, ranging from RNA-seq, mRNA microarray, 

miRNA array, and DNA methylation platforms.  

In association with clinical characteristics, the more aggressive subtype (S1) has consistent trends of association 

with higher TP53 inactivation mutation frequencies in the TCGA and LIRI-JP cohorts, which is in concordance 

with the previous study27. Association of stemness markers (KRT19, EPCAM) with S1 subtype is also in 
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congruence with the literature29,30. Moreover, S1 subtype is enriched with activated Wnt signaling pathway33. 

Despite our effort, the one to one comparison with the previous studies is not feasible due to the absence of 

cluster label information in original reports, and lack of survival data in some cases. Fortunately, we were able to 

identify five external validation cohorts encompassing different omic dataset, and succeeded in validating the 

subtypes among them. These results gave enough confidence that the 2 survival subtype model proposed in this 

report is of direct clinical importance, and maybe useful to improve HCC patients survival.  
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Methods  

Datasets 

TCGA Training dataset: We trained the model on multi-omics HCC data from the TCGA portal (https://tcga-

data.nci.nih.gov/tcga/). We used R package TCGA-assembler (v1.0.3)34 and obtained 360 samples with RNA-

seq data (UNC IlluminaHiSeq_RNASeqV2; Level 3), miRNA-seq data (BCGSC IlluminaHiSeq_miRNASeq; 

Level 3), DNA methylation data (JHU-USC HumanMethylation450; Level 3), and the clinical information. For 

the DNA methylation, we mapped CpG islands within 1500 bp of transcription start sites (TSS) of genes and 

averaged their methylation values. In dealing with the missing values (preprocessing of data), three steps were 

performed as elsewhere35. First, the biological features (e.g. genes) were removed if having zero value in more 

than 20% of patients. The samples were removed if missing across more than 20% features. Then we used 

impute function from R impute package36, to fill out the missing values. Lastly, we removed genes with zero 

values across all samples. 

Validation dataset 1 (LIRI-JP cohort, RNA-seq): 230 samples with RNA-seq data were obtained from ICGC 

portal (https://dcc.icgc.org/projects/LIRI-JP). These samples belong to Japanese population primarily infected 

with HBV/HCV37. We used the normalized read count values given in the gene expression file.  

Validation dataset 2 (NCI cohort, GSE14520-microarray gene expression): 221 samples with survival 

information were chosen from GSE14520 Affymetrix high-throughput GeneChip HG-U133A microarray 

dataset, from an earlier study of HCC patients38. This is a Chinese population primarily associated with HBV 

infection. Log2 Robust Multi-array Average (RMA)-calculated signal intensity values provided by the authors 

were used for analysis. 

Validation dataset 3 (Chinese cohort, GSE31384-miRNA expression): 166 pairs of HCC/matched 

noncancerous normal tissue samples were downloaded, with CapitalBio custom Human miRNA array data 

(GSE31384)39. Since the data were already log2 transformed, we used unit-scale normalization.  
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Validation dataset 4 (E-TABM-36-microarray gene expression): 40 HCC samples were used, with survival 

information and transcriptional profiling from Affymetrix HG-U133A GeneChips arrays platform13. We used the 

CHPSignal values for the further processing as a measure of gene expression.  

Validation dataset 5 (DNA Methylation): 27 samples were used, with genome-wide methylation profiling 

from Illumina HumanMethylation450 BeadChip platform40. Probe to gene conversion was done the same way as 

for TCGA HCC methylation data. 

All the available clinical information for the validation cohorts is listed in Supplementary Table 3. 

 

Deep Learning framework 

We used the 3 pre-processed TCGA HCC omics data sets as the input for the autoencoders framework. We 

stacked the 3 matrices that are unit-norm scaled by sample, in order to form a unique matrix as reported before41. 

An autoencoder is a feedforward, non-recurrent neural network24. Given an input layer x, the objective of an 

autoencoder is to reconstruct x by the output layer x’ (x and x’ have the same dimension), via transforming x 

through successive hidden layers. For a given layer i, we used tanh as activation function between input layer x 

and output layer y. That is: 

� � ����� � ��	
���� � ��� 

Where Wi is the coefficient matrix and bi the intercept. For an autoencoder with k layers, x’ is then given by: 

�� �  ������� �  ��° … °����� 

We chose logloss as objective function: 

���������, ��� � ���� log����� � �1 � ��� log�1 �  �����
�

���

 

In order to control overfitting, we added a L1 regularization penalty on the coefficient weight Wi, and a L2 

regularization penalty on the hidden nodes activities: �������. Thus the objective function to minimize 

becomes: 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 8, 2017. ; https://doi.org/10.1101/114892doi: bioRxiv preprint 

https://doi.org/10.1101/114892


12 
 

���, ��� � ���������, ��� �  ����
���

� � � �	
���������




�

�

���

 

New feature selection and K-means clustering 

We used the bottleneck layer of the autoencoder to select features linked to survival. For each node of this layer, 

we computed the activity of the node for every sample from the training set and built a Cox-PH model using the 

survival data. We selected nodes from which a significant Cox-PH model is obtained (log-rank p-value < 0.05). 

We then used these new features to cluster the samples using the k-means clustering algorithm. We determined 

the optimal number of clusters with two metrics: Silhouette index42 and Calinski-Harabasz criterion43. We used 

the scikit-learn package as the K-Means implementation44. 

Supervised classification 

Using the labels obtained from K-means clustering, we built a supervised classification model using Support 

Vector machine (SVM) algorithm. We first selected common features between the training and the validation 

datasets. We then applied robust-scaling on the validation dataset, using the means and the standard deviations of 

the training dataset45. Finally, we selected the top N features which are most correlated with the cluster labels, 

using ANOVA F-values. We set default N values as 200 for mRNAs, 200 for methylation and 50 for miRNAs. 

We used grid search approach to find the best hyperparameters of the SVM classifier, using 5-fold CV for each 

set of parameters. We used the scikit-learn package to build the SVM models, perform the grid search and 

compute the ANOVA44. 

Robustness assessment 

We performed robustness assessment using a CV like procedure. We used a 60/40% split (training/test sets) of 

the TCGA data, in order to have sufficient number of test samples that generate evaluation metrics. We first 

randomly split the 360 samples from TCGA into 5 folds and used each pair of folds as a new fold (40% of the 

data), thus obtaining 10 new folds. For each fold, we constructed a model using the 60% remaining samples and 

predicted the labels for the sample from the fold. 
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Evaluation metrics for models 

The metrics used closely reflects the accuracy of survival prediction in the subgroups identified. Three sets of 

evaluation metrics were used.  

Concordance index (C-index): The c-index can be seen as the fraction of all pairs of individuals whose predicted 

survival times are correctly ordered25 and is based on Harrel’s C statistics46. A C-index score around 0.70 

indicates a good model, whereas a score around 0.50 means random background. 

To compute the c-index, we first built a Cox-PH model using the training dataset (cluster labels and survival 

data) and predict survival using the labels of the test/validation dataset. We then calculated the concordance 

index (c-index) using function concordance.index in R survcomp package 47. To compute the C-index using the 

multiple clinical features, we built a Cox-PH using the glmnet package 48 instead, which enables penalization 

through ridge regression. Before building the Cox-PH model, we performed a 10-fold cross-validation to find the 

best lambda.  

Log-rank p-value of Cox-PH regression: We plotted the Kaplan-Meier survival curves of the two risk groups, 

and calculated the log-rank p-value of the survival difference between them.  We used Cox proportional hazards 

(Cox-PH) model for survival analysis49, similar to described before50,51, using R survival package52. For the two 

datasets with a low number of samples, E-TABM-36 (40 samples) and the Hawaiian methylation dataset (27 

samples), we amplified the number of samples by randomly selecting with 200 replacement samples, in order to 

obtain the reliable statistical power.  

Brier score: It is another score function that measures the accuracy of probabilistic prediction26. In survival 

analysis, the brier score measures the mean of the difference between the observed and the estimated survival 

beyond a certain time53. The score ranges between 0 and 1 and a larger score indicates higher inaccuracy. We 

used the implementation of Brier score from R survcomp package. 

Functional analysis 

A number of functional analyses were performed to understand the characteristics of 2 survival risk subtypes of 

TCGA HCC samples. 
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TP53 mutation analysis: We analyzed the somatic mutation frequency distributions in the survival subtypes for 

the TP53 gene, among TCGA and LIRI-JP cohorts. TCGA and LIRI-JP cohorts have exome sequencing and 

whole genome sequencing data for 186 and 230 samples with survival data, respectively. We performed Fisher’s 

test on TP53 mutation between two survival risk groups.  

Clinical covariate analysis: We tested the associations of our identified subtypes with other clinical characters, 

including gender, race, grade, stage and risk factors, using Fisher’s exact tests. To test if the two survival risk 

subtypes have prognostic values in addition to clinical characteristics, we built a combined Cox-PH model with 

survival risk classification and clinical data, and compared it to the one with only clinical data (stage, grade, 

race, gender, age and risk factor). 

Differential Expression: In order to identify the differential expressed genes between the two survival risk 

subtypes, we performed the differential expression analysis for the mRNA, miRNA expression and methylation 

genes. We used DESeq2 package28 to identify the differential gene and miRNA expression between the 2 

subtypes (false discovery rate, or FDR <0.05). Additionally, we used log2 fold change greater than 1 as filtering 

for mRNA/miRNA. For methylation data, we transformed the beta values into M values as elsewhere54,55 using 

the lumi package in R56. We fit the linear model for each gene using lmFit function followed by empirical Bayes 

method, using limma package in R57. It uses moderate t-tests to determine significant difference in methylation 

for each gene between S1 and S2 subtypes (Benjamin-Hochberg corrected P<0.05). Additionally, we used 

averaged M value differences greater than 1 as filtering. We used volcano plot to show the differentially 

methylated genes in two subtypes. 

Enriched pathway analysis: We used upregulated and downregulated genes for the KEGG pathway analysis, 

using the functional annotation tool from the online DAVID interface58,59. We used a p-value threshold of 0.10 to 

consider a pathway significant. We plot the gene-pathway network using Gephi60. 
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Figure Legends 

Figure 1: Overall workflow  

(A) Autoencoder architecture used to integrate 3 omics of HCC data. (B) Workflow combining deep learning 

and machine learning techniques to infer HCC subtypes in an unsupervised manner. 

Figure 2: Significant survival differences for TCGA and external validation cohorts 

(A) TCGA cohort, (B) LIRI-JP cohort, (C) NCI cohort, (D) Chinese cohort, (E) E-TABM-36 cohort, and (F) 

Hawaiian cohort. 

Figure 3: Differentially expressed genes and their enriched pathways in the two subtypes from TCGA 

cohort 

S1: aggressive (higher-risk survival) subtype; S2: moderate (lower-risk survival) subtype. 

Figure 4: Bipartite graph for significantly enriched KEGG pathways and upregulated genes in two 

subtype. 

Enriched pathway-gene analysis for upregulated genes in the (A) S1 aggressive tumor sub-group and (B) less 

aggressive S2 sub-group. 
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Tables 

Table 1: Cross-validation based performance robustness of SVM classifier on training and testing dataset in 
TCGA cohort. 

 

Dataset 10-folds CV C-index Brier score Log-rank p-value 
(geo. mean) 

Train 3-omics train (60%) 0.70 (± 0.04) 0.19 (± 0.01) 0.001  

Test 

3-omics test (40%) 0.69 (± 0.08) 0.20 (± 0.02) 0.005  
RNA only 0.68 (± 0.07) 0.20 (± 0.02) 0.01  
MIR only 0.69 (± 0.07) 0.20 (± 0.02) 0.003  

METH only 0.66 (± 0.07) 0.20 (± 0.02) 0.031  
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Table 2: Performance of classifier for the five external validation dataset. 
 

Validation 
cohort 

Omics 
Data  
type 

Reference # samples 
 C-index  

 
Brier score Log-rank 

p-value 

LIRI-JP  RNA-Seq 37 230 0.75 0.16 4.4e-4 

NCI 
mRNA 

microarray 
38 221 0.67 0.18 1.05e-3 

Chinese 
miRNA  

array 
39 166 0.69 0.21 8.49e-4 

E-TABM-36 
mRNA 

microarray 
13 40 0.77 0.19 3.06e-4* 

Hawaiian 
DNA 

methylation 
40 27 0.82 0.19 1.19e-8* 

*p-value obtained after resampling, due to small sample sizes. 
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Table 3: Performance of the model using clinical features on validation datasets. 
 

Validation 
cohort 

C-index 
(clinic 
only) 

C-index  
(Combined#) Brier 

score  
Log-rank 
p-value  

LIRI-JP 0.55 0.74 0.16 0 
NCI 0.45 0.65 0.19 0.007 

E-TABM-36 0.50 0.75 0.19 0.007* 
Hawaiian 0.70 0.87 0.19 4.05e-11* 

#Combined = clinical + DL-based class labels 
*p-value obtained using resampling datasets 
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Table 4: Full model performance within each subpopulation stratified by the clinical confounders in TCGA 
cohort. 
 

Confounder # samples C-index  Brier score 
Log-rank 
p-value 

HBV 74 0.74 0.20 0.04 
HCV 31 0.69 0.19 0.20 

Alcohol 67 0.79 0.20 0.005 
Others 59 0.77 0.19 0.0035 
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Supplementary Materials 

Supplementary Figure 1: (A) Selection of the best subcluster K according to Silhouette score and Calinski-

Harabasz score. (B) Kaplan-Meier plots show the separation of subtypes in terms of survival profiles from K=2 

to 6. 

Supplementary Figure 2: Differential tests for miRNAs and Methylation (A) heatmap shows the differentially 

expressed miRNAs in two subtypes and (B) Volcano plot showing the differentially methylated genes in two 

subtypes. Red dotted line: BH adjusted p-value=0.05; blue dotted line: p-value=0.05 without adjustment. Red 

color: genes differentially methylated with BH adjusted p-value <0.05 and absolute mean difference >1 between 

the two subtypes. 

Supplementary Table 1: Performance of PCA on training and testing dataset on different metrics. 

Supplementary Table 2: Performance of Models constructed with one omic only. 

Supplementary Table 3: Clinical Characteristics of the HCC cohorts used in this study. 
 

Supplementary File 1: Description of results on differential tests of miRNAs and methylation.  
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