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Abstract

Identifying robust survival subgroups of hepatocellular carcinoma (HCC) will significantly improve patient care.
Currently, endeavor of integrating multi-omics data to explicitly predict HCC survival from multiple patient
cohorts is lacking. To fill in this gap, we present a deep learning (DL) based model on HCC that robustly
differentiates survival subpopulations of patients in six cohorts. We train the DL based, survival-sensitive model
on 360 HCC patient data using RNA-seq, miRNA-seq and methylation data from TCGA. This model provides
two optimal subgroups of patients with significant survival differences (P=7.13e-6) and good model! fitness (C-
index=0.68). More aggressive subtype is associated with frequent TP53 inactivation mutations, higher
expression of stemness markers (KRT19, EPCAM) and tumor marker BIRCS5, and activated Wnt and Akt
signaling pathways. We validated this multi-omics model on five external datasets of various omics types: LIRI-
JP cohort (n=230, c-index=0.75), NCI cohort (n=221, c-index=0.67), Chinese cohort (n=166, c-index=0.69), E-
TABM-36 cohort (n=40, c-index=0.77), and Hawaiian cohort (n=27, c-index=0.82). This is the first study to
employ deep learning to identify multi-omics features linked to the differential survival of HCC patients. Given

its robustness over multiple cohorts, we expect this model to be clinically useful for HCC prognosis prediction.
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| ntroduction

Hepatocellular carcinoma (HCC) is the most prevalent type (70-90%) of liver cancer, and 2™ leading cancer
responsible for the mortality in men®. In USA, it has the 2" highest incidence rate and highest mortality rate’.
HCC is aggravated by various risk factors, including HBV/HCV infection, nonalcoholic steatohepatitis (NASH),
acoholism, and smoking. These confounding factors along with high level of heterogeneity have rendered HCC
prognosis a much challenging task®*. HCC is a detrimental disease with poor prognosis in genera, where
median survival islessthan 2 years’. In particular, 5-year survival rate of HBV -associated HCC is less than 30%
in multiple studies™. Treatment strategies in HCC are very limited, imposing additional urgent needs for
developing tools to predict patient survival®.

To understand the HCC heterogeneity among patients, a considerable amount of work has been done to identify
the HCC molecular subtypes'®*®. A variety of numbers of subtypes were identified, ranging from 2 to 6, based
on various omics data types, driving hypotheses and computational methods. Besides most commonly used
MRNA gene expression data, a recent study integrated copy number variation (CNV), DNA methylation, mMRNA
and miRNA expression to identify the 5 HCC molecular subtypes from 256 TCGA samples™’. However, most of
these studies explored the molecular subtypes without relying on survival during the process of defining
subtypes. Rather, survival information was used post hoc to evaluate the clinical significance of these subtypes®.
As aresult, some molecular subtypes showed converging and similar survival profile, making them redundant
subtypes in terms of survival differences™. New approaches to discover survival-sensitive and multi-omics data
based molecular subtypes are much needed in HCC research.

To address these issues, for the first time, we have utilized deep learning (DL) computationa framework on
multi-omics HCC data sets. We chose autoencoder framework as the implementation of DL for multi-omics
integration. Autoencoders have already been proved to be efficient approaches to produce features linked to

clinical outcomes'®. And it was successfully applied to analyze high-dimensional gene expression data™®?,

and
to integrate heterogeneous data®>?. Notably, autoencoder transformation tends to aggregate genes sharing
similar pathways?, therefore making it appealing to interpret the biological functions. The contributions of this

study to HCC field is not only manifested in its thorough and integrative computational rigor, but also unify the
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discordant molecular subtypes into robust subtypes that withstand the testing of various cohorts, even when they
arein different omics forms.

We derived the model from 360 HCC samples in TCGA multi-omics cohort, which have mRNA expression,
mMiRNA expression, CpG methylation and clinical information. We discovered two subtypes with significant
differences in survival. These subtypes hold independent predictive values on patient survival, apart from
clinical characteristics. Most importantly, the two subtypes obtained from our DL framework are successfully
validated in five independent cohorts, which have miRNA or mRNA or DNA methylation results. Functional
analysis of these two subtypes identified that gene expression signatures (KIRT19, EPCAM and BIRC5) and Wnt
signaling pathways are highly associated with poor survival. In summary, the survival-sensitive subtypes model

reported hereis significant for both HCC prognosis prediction and therapeutic intervention.

Results

Two differential survival subtypesareidentified in TCGA multi-omics HCC data

From the TCGA HCC project, we obtained 360 tumor samples that had coupled RNA-seq, miRNA-seq and
DNA methylation data. For these 360 samples, we pre-processed the data as described in the ‘Materias and
Methods' section, and obtained 15,629 genes from RNA-seq, 365 miRNAs from miRNA-seq, and 19,883 genes
from DNA methylation data as input features. These three types of omics features were stacked together using
autoencoder, a deep learning framework®. The architecture of autoencoder is shown in Figure 1A. It has 5 layers
of nodes: an input layer, a hidden layer for encoding, a bottleneck layer, a hidden layer for decoding, and an
output layer. We used tanh function for activation and retrieved 100 new transformed features from the
bottleneck layer. We then conducted univariate Cox-PH regression on each of the 100 features, and identified 37
features significantly (log-rank p-value <0.05) associated with survival. These 37 features were subjective to K-
means clustering, with cluster number K ranging from 2 to 6 (Figure 1B). Using silhouette index and the
Calinski-Harabasz criterion, we found that K=2 was the optimum with the best scores for both metrics
(Supplementary Fig. 1A). Further, the survival analysis on the full TCGA HCC data shows that the survivalsin

the two sub-clusters are drastically different (log-rank p-value =7.13e-6, Figure 2A). Moreover, K=2 to 6 yielded
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KM survival curves that essentially represent 2 significantly different survival groups (Supplementary Fig. 1B).
Thus, we determined that K=2 was the classification labels for the subsequent supervised machine learning
processes.

We next used the 2 classes determined above as the labels to build a classification model using the support
vector machine (SVM) algorithm with cross-validation (CV) (Fig. 1B). We split the 360 TCGA samplesinto 10
folds using 60/40 ratio for training and testing data. We chose 60/40 split, rather than a conventional 90/10 split,
in order to have sufficient testing samples for sensible log-rank p-values in the survival analysis (see ‘Materials
and Methods'). Additionally, we assessed the accuracy of the survival subtype predictions using C-index, which
measures the fraction of al pairs of individuals whose predicted survival times are ordered correctly”®. We also
calculated the error of the mode fitting on survival data using Brier score”®. On average, the training data
generated high C-index (0.70+0.04), low brier score (0.19+0.01), and significant average log-rank p-value
(0.001) on survival difference (Table 1). Similar trend was observed for the 3-omics held-out testing data, with
C-index=0.69+0.08, Brier score=0.20+0.02, and average survival p-value=0.005 (Table 1). When tested on each
single omic layer of data, this multi-omics model also has decent performances, in terms of C-index, low Brier
scores and log-rank p-values (Table 1). These results demonstrate that the classification model using cluster
labelsisrobust to predict survival-specific clusters.

The performance of the model described in Fig. 1B is superior to the aternative model, where autoencoder is
replaced by traditional dimension reduction approach namely Principa Component Analysis (PCA). The PCA
approach failed to give significant log-rank p-value (¢=0.05) in survival subgroups. It aso yielded significantly
lower C-indices for both the training (0.63, p-value<0.01) and testing (0.62, p-value < 0.05) data (Supplementary
Table 1), as compared to the model using autoencoder. Worth noticing, the 3-omics based DL model gives better
prediction metrics in CV, when compared to single-omics based DL models (Supplementary Table 2),

suggesting that indeed multi-omics data are better than single-omics data for model building.
The survival subtypesarerobustly validated in five independent cohorts

To demonstrate the robustness of the classification model at predicting survival outcomes, we validated the

model on avariety of five independent cohorts, each of which had only mRNA, or miRNA or methylation omics
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data (Table 2 and Fig. 2 B-F). LIRI-JP dataset is the RNA-seq data set with the most number of patients
(n=230); we achieved a good C-index 0.75, a low Brier error rate of 0.16 and the log-rank p-values of 4.4e-4
between the two subtypes. For the second largest (n=221) NCI cohort (GSE14520), the two subgroups have
decent C-index of 0.67 and low Brier error rate of 0.18 with log-rank p-value of 1.05e-3 (Table 2). For Chinese
cohort (GSE31384), the miRNA array data with 166 samples, the two subgroups have C-index of 0.69, low Brier
error rate of 0.21, and log-rank p-vaue of 8.49e-4 (Table 2). Impressively, the C-indices for the two smallest
cohorts, E-TABM-36 (40 samples) and Hawaiian cohorts (27 samples) are very good, with values of 0.77 and
0.82, respectively. The p-values obtained for the small cohorts after resampling are also significant, with values

of 3.06e-4 and 1.19e-8, respectively (Fig. 2B-F).

Adding clinical infor mation does not improve DL -based multi-omics model

It remains to see if the DL based multi-omics model will improve the predictability, by adding clinical
information. Therefore, we assessed the performance of alternative models with clinical variables as the features,
either alone or in combination with previous DL-based multi-omics model (Table 3). When clinical features
were used as the sole feature set for survival prediction, the models' performances were much poorer (Table 3),
when compared to the DL-based genomic model (Table 2). Then we combined the clinical features with the 3
omics layers before the k-means clustering step in Fig. 1B. Surprisingly, the C-indices of the combined model
were not better on the validation cohorts with larger sample sizes (LIRI-JP, NCI and E-TABM-36 cohorts),
compared to those of DL-based multi-omics model. C-index and p-value were only slightly but not statistically
significantly better for the Hawaiian cohort, which has only 27 samples. We thus conclude that the DL-based
multi-omics model performs sufficiently well even without clinical features. We speculate the reason is due to
the unique advantage of DL neura network, which can capture the redundant contributions of clinical features

through their correlated genomic features.
Associations of survival-subgroupswith clinical covariates

We performed the Fisher’s exact test between the two survival subgroups and the clinical variables from TCGA

cohort, and found that only grade (P=0.0004) and stage (P=0.002) were significantly associated with survival, as
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expected. Since HCC is aggravated by the multiple risk factors including HBC, HCV, and acohol, we aso
tested our model within subpopulations stratified by individual risk factors (Table 4). Impressively, our model
performed very well on al the risk factor categories with C-indices ranging from 0.69-0.79, and Brier scores
between 0.19 and 0.20. Log-rank P-values were significant in HBV infected patients (P=0.04), acohol
consumers (P=0.005) and other category (P=0.0035). The only non-significant p-value (P=0.20) was obtained
from the HCV infected patients, probably attributed to the small group size (n=31).

TP53 is one of the most frequently mutated genes in HCC, and its inactivation mutations have been reported to
be associated with poor survival in the HCC?. Between the 2 survival subgroups S1 and S2 in TCGA samples,
TP53 is more frequently mutated in the aggressive subtype S1 (Fisher's test p-value=0.042). Further, TP53
inactivation mutations are associated with the aggressive subtype S1 in LIRI-JP cohort, where whole genome

sequencing data are available (p-value=0.024).
Functional analysis of the survival-subgroupsin TCGA HCC samples

We used DESeq2 package®™ for differential gene expression between the two identified subtypes. After applying
the filter of log2 fold change >1 and FDR <0.05, we obtained 820 up-regulated and 530 down-regulated genesin
the aggressive sub-cluster S1. Fig. 3 shows the comparative expression profile of these 1350 genes after
normalization. The up-regulated genes in the S1 cluster include the stemness marker gene, EPCAM (P=5.7e-6),
KRT19 (P=6.7e-15) and tumor marker BIRC5 (P=1.2e-13) genes, which were aso reported earlier to be
associated with aggressive HCC subtype®®!. Additionally, 18 genes (ADH1B, ALDOA, APOC3, CYP4F12,
EPHX2, KHK, PFKFB3, PKLR, PLG, RGN, RGSR2, RNASE4, SERPINC1, S .C22A7, S C2A2, SPHK1,
SULT2A1, TM4SF1) differentialy expressed in the two subtypes have similar trends of expression as in the
previous study, where a panel of 65-gene signature was associated with the HCC survival ®.

Using the differentially expressed genes above, we conducted KEGG pathway analysis to pinpoint the pathways
enriched in two subtypes. These subtypes have different and (almost) disjoint active pathways, confirming that
they are distinct subgroups at the pathway level (Fig. 4). Aggressive subtype S1 is enriched with cancer related
pathways, Wnt signaling pathway, PI3K-Akt signaling pathway etc. (Fig. 4A). Wnt signaling pathway was

reported being associated with aggressive HCC previously®. In contrast, the moderate subtype S2 has activated
7
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metabolism related pathways including drug metabolism, amino acid and fatty acid metabolism etc. (Fig. 4B).
We performed similar differential analysis for miRNA expression and methylation data, and detected 23
mMiRNAs and 55 genes' methylation statistically different between the two subgroups (Supplementary Fig. 2 and

File 1).
Discussion

Heterogeneity is one of the bottlenecks for understanding the HCC etiology. Though there are many studies for
subtype identification of the HCC patients, embedding survival outcome of the patients as part of the procedure
of identified subtypes has not been reported before. Moreover, most reported HCC subtype models have either
no or very few externa validation cohorts. This calls for better strategies, where the identified subtypes could
reflect the phenotypic outcome of the patientsi.e. the surviva directly. Present work includes the integration of
the multi-omics data from the same patients, giving an edge by exploiting the improved signal-to-noise ratio. To
our knowledge, we are the first to use the deep learning framework to integrate multi-omics information in HCC.
It propels deep learning to develop risk stratification model, not only for prognostication but also instrumental
for improvising risk-adapted therapy in HCC.

We have identified two subtypes from the molecular level. This model is robust and perhaps more superior than
other approaches, manifested in several levels. First, CV results gave the consistent performance in TCGA HCC
testing samples, implying the reliability and robustness of the model. Secondly, deep-learning technique used in
the model has captured sufficient variations due to potential clinical confounders, such that it performs as
accurately or even better than, having additional clinical features in the model. Thirdly, autoencoder framework
has much more efficiency to infer features linked to survival, compared to PCA. Lastly and most importantly,
this model is repetitively validated in five additional cohorts, ranging from RNA-seq, mMRNA microarray,
miRNA array, and DNA methylation platforms.

In association with clinical characteristics, the more aggressive subtype (S1) has consistent trends of association
with higher TP53 inactivation mutation frequencies in the TCGA and LIRI-JP cohorts, which is in concordance

with the previous study”’. Association of stemness markers (KRT19, EPCAM) with S1 subtype is aso in
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congruence with the literature”*. Moreover, S1 subtype is enriched with activated Wnt signaling pathway®.
Despite our effort, the one to one comparison with the previous studies is not feasible due to the absence of
cluster label information in original reports, and lack of survival datain some cases. Fortunately, we were able to
identify five external validation cohorts encompassing different omic dataset, and succeeded in validating the
subtypes among them. These results gave enough confidence that the 2 survival subtype model proposed in this

report is of direct clinical importance, and maybe useful to improve HCC patients survival.
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M ethods

Datasets

TCGA Training dataset: We trained the model on multi-omics HCC data from the TCGA portal (https.//tcga-
data.nci.nih.gov/tcgal). We used R package TCGA-assembler (v1.0.3)* and obtained 360 samples with RNA-
seq data (UNC IlluminaHiSeq RNASeqV2; Level 3), miRNA-seq data (BCGSC IlluminaHiSeq miRNASeq;
Level 3), DNA methylation data (JHU-USC HumanMethylation450; Level 3), and the clinical information. For
the DNA methylation, we mapped CpG islands within 1500 bp of transcription start sites (TSS) of genes and
averaged their methylation values. In dealing with the missing values (preprocessing of data), three steps were
performed as elsewhere®. First, the biological features (e.g. genes) were removed if having zero value in more
than 20% of patients. The samples were removed if missing across more than 20% features. Then we used
impute function from R impute package™, to fill out the missing values. Lastly, we removed genes with zero

values across all samples.

Validation dataset 1 (LIRI-JP cohort, RNA-seq): 230 samples with RNA-seq data were obtained from ICGC
portal (https://dcc.icgc.org/projects/LIRI-JP). These samples belong to Japanese population primarily infected

with HBV/HCV®". We used the normalized read count values given in the gene expression file.

Validation dataset 2 (NCI cohort, GSE14520-microarray gene expression): 221 samples with survival
information were chosen from GSE14520 Affymetrix high-throughput GeneChip HG-U133A microarray
dataset, from an earlier study of HCC patients®. This is a Chinese population primarily associated with HBV
infection. Log2 Robust Multi-array Average (RMA)-calculated signal intensity values provided by the authors

were used for analysis.

Validation dataset 3 (Chinese cohort, GSE31384-miRNA expression): 166 pairs of HCC/matched
noncancerous normal tissue samples were downloaded, with CapitalBio custom Human miRNA array data

(GSE31384)*. Since the data were aready log2 transformed, we used unit-scale normalization.
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Validation dataset 4 (E-TABM-36-microarray gene expression): 40 HCC samples were used, with survival
information and transcriptional profiling from Affymetrix HG-U133A GeneChips arrays platform™®. We used the

CHPSignal valuesfor the further processing as a measure of gene expression.

Validation dataset 5 (DNA Methylation): 27 samples were used, with genome-wide methylation profiling
from lllumina HumanMethylation450 BeadChip platform®. Probe to gene conversion was done the same way as

for TCGA HCC methylation data.

All the available clinical information for the validation cohortsis listed in Supplementary Table 3.

Deep L earning framewor k

We used the 3 pre-processed TCGA HCC omics data sets as the input for the autoencoders framework. We
stacked the 3 matrices that are unit-norm scaled by sample, in order to form a unique matrix as reported before™.
An autoencoder is a feedforward, non-recurrent neural network®. Given an input layer x, the objective of an
autoencoder is to reconstruct x by the output layer X’ (x and X’ have the same dimension), via transforming x
through successive hidden layers. For a given layer i, we used tanh as activation function between input layer x
and output layer y. That is:

y = fi(x) = tanh(W;x + b;)
Where W is the coefficient matrix and b; the intercept. For an autoencoder with k layers, X' isthen given by:
x'= Fi () = f1°..°fi(x)
We chose | ogloss as objective function:
d
logloss(x,x") = Z(xk log(x's) + (1 — x) log(1 — x'}))
k=1

In order to control overfitting, we added a L1 regularization penalty on the coefficient weight W, and a L2
regularization penalty on the hidden nodes activities: F;_,; (x). Thus the objective function to minimize

becomes:
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k
L(x,x") = logloss(x,x") + Z(OfWIIWiII 1+ gl (O3

i=1
New feature selection and K-means clustering

We used the bottleneck layer of the autoencoder to select features linked to survival. For each node of this layer,
we computed the activity of the node for every sample from the training set and built a Cox-PH model using the
survival data. We selected nodes from which a significant Cox-PH model is obtained (log-rank p-value < 0.05).
We then used these new features to cluster the samples using the k-means clustering algorithm. We determined
the optimal number of clusters with two metrics: Silhouette index** and Calinski-Harabasz criterion®. We used

the scikit-learn package as the K-Means i mplementation™.
Supervised classification

Using the labels obtained from K-means clustering, we built a supervised classification model using Support
Vector machine (SVM) algorithm. We first selected common features between the training and the validation
datasets. We then applied robust-scaling on the validation dataset, using the means and the standard deviations of
the training dataset®. Finally, we selected the top N features which are most correlated with the cluster labels,
using ANOV A F-values. We set default N values as 200 for mRNAs, 200 for methylation and 50 for miRNAS.
We used grid search approach to find the best hyperparameters of the SVM classifier, using 5-fold CV for each
set of parameters. We used the scikit-learn package to build the SYM models, perform the grid search and

compute the ANOVA*.
Robustness assessment

We performed robustness assessment using a CV like procedure. We used a 60/40% split (training/test sets) of
the TCGA data, in order to have sufficient number of test samples that generate evaluation metrics. We first
randomly split the 360 samples from TCGA into 5 folds and used each pair of folds as a new fold (40% of the
data), thus obtaining 10 new folds. For each fold, we constructed a model using the 60% remaining samples and

predicted the |abels for the sample from the fold.
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Evaluation metricsfor models

The metrics used closely reflects the accuracy of survival prediction in the subgroups identified. Three sets of

evaluation metrics were used.

Concordance index (C-index): The c-index can be seen as the fraction of all pairs of individuals whose predicted
survival times are correctly ordered® and is based on Harrel’s C statistics™. A C-index score around 0.70

indicates a good model, whereas a score around 0.50 means random background.

To compute the c-index, we first built a Cox-PH model using the training dataset (cluster labels and survival
data) and predict survival using the labels of the test/validation dataset. We then calculated the concordance
index (c-index) using function concordance.index in R survcomp package *’. To compute the C-index using the
multiple clinica features, we built a Cox-PH using the glmnet package * instead, which enables penalization
through ridge regression. Before building the Cox-PH model, we performed a 10-fold cross-validation to find the

best lambda.

Log-rank p-value of Cox-PH regression: We plotted the Kaplan-Meier survival curves of the two risk groups,
and calculated the log-rank p-vaue of the survival difference between them. We used Cox proportional hazards

e using R survival package™. For the two

(Cox-PH) model for survival analysis™, similar to described befor
datasets with a low number of samples, E-TABM-36 (40 samples) and the Hawaiian methylation dataset (27
samples), we amplified the number of samples by randomly selecting with 200 replacement samples, in order to

obtain the reliable statistical power.

Brier score: It is another score function that measures the accuracy of probabilistic prediction®. In survival
analysis, the brier score measures the mean of the difference between the observed and the estimated survival
beyond a certain time®. The score ranges between 0 and 1 and a larger score indicates higher inaccuracy. We

used the implementation of Brier score from R survcomp package.

Functional analysis

A number of functional analyses were performed to understand the characteristics of 2 survival risk subtypes of

TCGA HCC samples.
13
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TP53 mutation analysis: We analyzed the somatic mutation frequency distributions in the survival subtypes for
the TP53 gene, among TCGA and LIRI-JP cohorts. TCGA and LIRI-JP cohorts have exome sequencing and
whole genome sequencing data for 186 and 230 samples with survival data, respectively. We performed Fisher's
test on TP53 mutation between two survival risk groups.

Clinical covariate analysis: We tested the associations of our identified subtypes with other clinical characters,
including gender, race, grade, stage and risk factors, using Fisher's exact tests. To test if the two survival risk
subtypes have prognostic values in addition to clinical characteristics, we built a combined Cox-PH maodel with
survival risk classification and clinical data, and compared it to the one with only clinical data (stage, grade,

race, gender, age and risk factor).

Differential Expression: In order to identify the differential expressed genes between the two survival risk
subtypes, we performed the differential expression analysis for the mRNA, miRNA expression and methylation
genes. We used DESeq2 package®™ to identify the differential gene and miRNA expression between the 2
subtypes (false discovery rate, or FDR <0.05). Additionally, we used log2 fold change greater than 1 as filtering

for mMRNA/miRNA. For methylation data, we transformed the beta values into M values as elsewhere®*>

using
the lumi package in R®. We fit the linear model for each gene using ImFit function followed by empirical Bayes
method, using limma package in R*’. It uses moderate t-tests to determine significant difference in methylation
for each gene between S1 and S2 subtypes (Benjamin-Hochberg corrected P<0.05). Additionally, we used
averaged M vaue differences greater than 1 as filtering. We used volcano plot to show the differentially

methylated genesin two subtypes.

Enriched pathway analysis. We used upregulated and downregulated genes for the KEGG pathway analysis,
using the functional annotation tool from the online DAVID interface®®*°. We used a p-value threshold of 0.10 to

consider a pathway significant. We plot the gene-pathway network using Gephi®.
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Figure L egends

Figure1: Overall workflow

(A) Autoencoder architecture used to integrate 3 omics of HCC data. (B) Workflow combining deep learning
and machine learning techniques to infer HCC subtypesin an unsupervised manner.

Figure 2: Significant survival differencesfor TCGA and external validation cohorts

(A) TCGA cohort, (B) LIRI-JP cohort, (C) NCI cohort, (D) Chinese cohort, (E) E-TABM-36 cohort, and (F)
Hawaiian cohort.

Figure 3: Differentially expressed genes and their enriched pathwaysin the two subtypesfrom TCGA
cohort

S1: aggressive (higher-risk survival) subtype; S2: moderate (lower-risk survival) subtype.

Figure 4: Bipartite graph for significantly enriched KEGG pathways and upr egulated genesin two
subtype.

Enriched pathway-gene analysis for upregulated genesin the (A) S1 aggressive tumor sub-group and (B) less

aggressive S2 sub-group.
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Table 1: Cross-validation based performance robustness of SVM classifier on training and testing dataset in

TCGA cohort.

L og-rank p-value

Dataset 10-foldsCV C-index Brier score
(geo. mean)
Train 3-omicstrain (60%) 0.70 (+ 0.04) 0.19 (£ 0.01) 0.001
3-omics test (40%) 0.69 (+ 0.08) 0.20 (£ 0.02) 0.005
Test RNA only 0.68 (+ 0.07) 0.20 (£ 0.02) 0.01
MIR only 0.69 (+ 0.07) 0.20 (+ 0.02) 0.003
METH only 0.66 (+ 0.07) 0.20 (+ 0.02) 0.031

22



https://doi.org/10.1101/114892

bioRxiv preprint doi: https://doi.org/10.1101/114892; this version posted March 8, 2017. The copyright holder for this preprint (which was not

Table 2: Performance of classifier for the five external validation dataset.
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L Omics
Validation # samples : , L og-rank
cohort E)ya;z Reference C-index Brier score o-value
LIRI-JP RNA-Seq 3 230 0.75 0.16 4.4e-4
NCI mirsz)':ﬁay 38 221 0.67 0.18 1.05e-3
Chinese mérF:Q'yA %9 166 0.69 0.21 8.49¢e-4
E-TABM-36 m{gg’;‘fﬁay 13 40 0.77 0.19 3.06e-4"
Hawaiian | etmanion 40 27 0.82 0.19 1.19e-8"

"p-value obtained after resampling, due to small sample sizes.
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Table 3: Performance of the model using clinical features on validation datasets.

L C-index C-index )
Vol | Gine | comnes) | 5% Lo
only)
LIRI-JP 0.55 0.74 0.16 0
NCI 0.45 0.65 0.19 0.007
E-TABM-36 0.50 0.75 0.19 0.007"
Hawaiian 0.70 0.87 0.19 4.05e-11"

#Combined = clinical + DL-based class labels
"p-value obtained using resampling datasets
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Table 4: Full model performance within each subpopulation stratified by the clinical confoundersin TCGA

cohort.

Confounder # samples C-index Brier score Log-rank
p-value
HBV 74 0.74 0.20 0.04
HCV 31 0.69 0.19 0.20
Alcohol 67 0.79 0.20 0.005
Others 59 0.77 0.19 0.0035
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Supplementary Materials

Supplementary Figure 1: (A) Selection of the best subcluster K according to Silhouette score and Calinski-
Harabasz score. (B) Kaplan-Meier plots show the separation of subtypesin terms of survival profiles from K=2
to 6.

Supplementary Figure 2: Differential tests for miRNAs and Methylation (A) heatmap shows the differentially
expressed miRNAs in two subtypes and (B) Volcano plot showing the differentially methylated genesin two
subtypes. Red dotted line: BH adjusted p-value=0.05; blue dotted line: p-value=0.05 without adjustment. Red
color: genes differentially methylated with BH adjusted p-value <0.05 and absolute mean difference >1 between
the two subtypes.

Supplementary Table 1. Performance of PCA on training and testing dataset on different metrics.
Supplementary Table 2: Performance of Models constructed with one omic only.

Supplementary Table 3: Clinical Characteristics of the HCC cohorts used in this study.

Supplementary File 1: Description of results on differential tests of miRNAs and methylation.
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Pathway name EASE score # genes

Metabolic pathways 0.19 123
Pathway name EASE score |# genes

Chemical carcinogenesis 0.0417 27
Rafhwaysdnconcer 0:021 El Biosynthesis of antibiotics 0.0417 27
PI3K-Akt signaling pathway 0.0214 24 Retinol metabolism 0.0371 24
Focal adhesion 0.0178 20 Drug metabolism - cytochrome P450 0.034 22
Proteogl! i 0.0169 19

roleoglycansiin cancer Metabolism of xenobiotics by cytochrome P450 0.034 22

Hippo signaling pathway 0.0134 15 Steroid hormone biosynthesis 0.0278 18
Regulation of actin Bile secretion 0.0278 18
cytoskeleton 0.0134 15 - -

PPAR signaling pathway 0.0263 17
ECM-receptor interaction 0.0125 14 Peroxisome 00263 pe
Axon guidance 00146 15 Carbon metabolism 0.0263 17
cAMP signaling pathway 0.0116 13 Complement and coagulation cascades 0.0232 15
Wnt signaling pathway 0.0107 12 Drug metabolism - other enzymes 0.0216 14
cGMP-PKG signaling pathway 0.0107 12 Glycolysis / Gluconeogenesis 0.0201 13
Calcium signaling pathway 0.0107 12 Fatty acid degradation 0.0185 12
Protein digestion and Glycine, serine and threonine metabolism 0.017 1
absorption 0.0098 1 Tryptophan metabolism 0.017 1
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