A novel method for large-scale identification of polymorphic microsatellites through comparative transcriptome analysis Running title: A method for SSR identification Wei Luo¹ · Hongyue Qu ¹,² · Xin Wang ¹,² · Qin Zhan¹,³ · Qiang Lin¹* ¹ CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. ² University of Chinese Academy of Sciences, Beijing, 100049, China. ³ State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. *Corresponding author: Qiang Lin (lingiangzsu@163.com) KEY WORDS: Microsatellites (SSR), Polymorphic, Transcriptome, Comparative transcriptome analysis, Sequence alignment

ABSTRACT Microsatellite (SSR) is one of the most popular markers for applied genetic research, but generally the current methods to develop SSRs are relatively time-consuming and expensive. Although high-throughput sequencing (HTS) approach has become a practical and relatively inexpensive option so far, only a small percentage of SSR markers turn out to be polymorphic. Here, we designed a new method to enrich polymorphic SSRs through the comparative transcriptome analysis. This program contains five main steps: 1) transcriptome data downloading or RNA-seq; 2) sequence assembly; 3) SSR mining and enrichment of sequences containing SSRs; 4) sequence alignment; 5) enrichment of sequences containing polymorphic SSRs. A validation experiment was performed and the results showed almost all markers (> 90%) that were indicated as putatively polymorphic by this method were indeed polymorphic. The frequency of polymorphic SSRs was significantly higher (P < 0.05) but the cost and running time were much lower than those of traditional and HTS approaches. The method has a practical value for polymorphic SSRs development and might be widely used for genetic analyses in any species.

INTRODUCTION

Microsatellites (SSRs) have been emerged as one of the most popular markers for a wide range of applications in population genetics, conservation biology and marker-assisted selection (Abdelkrim et al., 2009; Luo et al., 2012). Classically, microsatellite marker development requires: the construction of a genomic library enriched for repeated motifs; isolation and sequencing of microsatellite containing clones; primer design; optimization of PCR amplification for each primer pair; and a test of polymorphism on a few unrelated individuals. Most of these steps are either expensive, time-consuming, or both. With the wide application of high-throughput sequencing (HTS) technology, especially the whole transcriptome sequencing, development SSRs by HTS has become a practicable alternative for many species in recent years (Wu et al., 2014). It has greatly reduced the running time and cost requirement for SSR development. However, the frequency of polymorphic SSR markers developed by this method is much low in some species, which means that most of the loci cannot be effectively applied in genetic analysis (Iorizzo et al., 2011; Luo et al., 2012). According to our best knowledge, there is no records addressed the low frequency of polymorphic SSRs. Here we provided a new method for development of polymorphic SSRs through comparative transcriptome analysis.

RESULTS AND DISCUSSION

Three, two and four transcriptomes of rice, grass carp and lined seahorse respectively were used and a total of 299, 206 and 956 putatively polymorphic SSRs were obtained by this method, respectively (Table 1; Table S1). Twenty, thirty and sixty loci were randomly selected for primer design, and 19 (95.00%), 26 (92.86%) and 50 (90.91%) loci showed polymorphic in rice, grass carp and lined seahorse, respectively (Table 1; Table S2). One-way ANOVA showed the frequency of polymorphic SSRs identified by this method was significantly (P < 0.05) higher than that of traditional approach and HTS (Fig. 2). In addition, we recently developed polymorphic SSR markers for lined seahorse by HTS approach, and the ratio of polymorphic SSRs was 17.93% (Arias et al., 2016). While using the same transcriptomes to develop SSRs by this method, the ratio was raised to 90.91%.

This method, which is based on the idea of enriching homologous sequences containing the same SSR with a different number of repeats, could identify polymorphic SSRs directly through comparative transcriptome analysis. Compared with traditional methods and HTS, this method have eliminated the most intensive wet lab steps, and the time and cost for primer synthesis and experimental validation by

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

identifying and separating the many "monomorphic" SSRs from the minority polymorphic ones, cutting the running time and cost by half or more (Tang et al., 2008; Iorizzo et al., 2011). The fact that almost all tested SSRs predicted to be polymorphic were indeed validated as polymorphic demonstrates that it is an efficient and reliable method to develop polymorphic SSR markers. The method will play an important role in developing polymorphic SSR markers, providing a better service for the selective breeding and genetic studies. MATERIALS AND METHODS Materials Each ten specimens of rice (Oryza sativa), grass carp (Ctenopharyngodon idella) and lined seahorse (Hippocampus erectus) were used to investigate the ratio of polymorphic SSRs developed by our method. The leaves of rice and the dorsal fin of grass crap and seahorse were used for DNA extraction. **Architectural structure** The pipeline of this method consists of five steps (Fig. 1): 1) transcriptome data downloading or RNA-seq; 2) sequence assembly; 3) SSR mining and enrichment of SSR containing sequences; 4) sequence alignment; 5) enrichment containing polymorphic microsatellite sequences. Transcriptome data gaining The precondition of this method is to detect polymorphic SSRs in two or more transcriptomes from different samples. Three and two transcriptomes of rice and grass carp were downloaded from NCBI (Table 1). Four transcriptomes of seahorse were sequenced by us. De novo assembly The raw reads were trimmed and quality controlled by SeqPrep (https://github.com/jstjohn/SeqPrep). Then clean data was used to perform RNA *de novo* assembly with Trinity using default parameters. SSR mining and enrichment of SSR containing sequences We took rice as an example to enrich polymorphic SSRs. The three transcriptomes assembled were renamed "T1", "T2" and "T3", respectively. MIcroSAtellite identification tool (MISA; http://pgrc.ipk-gatersleben.de/misa) was employed for SSR mining from different transcriptomes with the following settings (SSR motifs and number of repeats): dimer-6, trimer-5, tetramer-5, pentamer-5 and hexamer-5. In order to reduce the rate of false

```
105
        positives, a Python code was written to rule out the sequences which only contain mononucleotide
106
        repeats, compound SSRs, or end with SSRs. The command line is written as follows:
107
             from Bio import SeqIO
108
             import os
109
             samples=['T1','T3','T4']
110
             for sample in samples:
111
             ids=[]
112
             faD=SeqIO.to_dict(SeqIO.parse(open(sample+'.fa'), 'fasta'))
113
             for la in open(sample+'.ssr'):
114
                  if 'ID' not in la:
115
                       aL=la.split(' \ t')
116
                       ln=len(faD[aL[0]].seq)
117
                       if aL[2]!='p1' and aL[5]!=1 and aL[6]!=ln:
118
                            ids.append(aL[0])
119
             comp_ids=[]
120
             for lb in open(sample+'.ssr'):
121
                  bL=lb.strip().split(' \ t')
122
                  if 'c' in bL[2]:
123
                       comp_ids.append(bL[0])
124
             fas=SeqIO.parse(open(sample+'.fa'),'fasta')
125
             for fa in fas:
126
                  if fa.id in ids and fa.id not in comp_ids:
127
                       open(sample+'.ssr.fa', 'a').write('>\%s\n\%s\n'\%(fa.id,str(fa.seq)))
128
129
             And then we renamed all the transcriptomes and all the sequences containing SSRs detected with
130
        MISA software by adding different prefixes. Finally, we combined all the sequences containing SSRs
131
        from different transcriptomes into a file. The command line is written as follows:
132
                 from Bio import SeqIO
133
                 samples=['T1','T3','T4']
134
                 for sample in samples:
```

```
135
                  fas=SeqIO.parse(open(sample+'.Trinity.fasta'), 'fasta')
136
                  for fa in fas:
137
                        open(sample+'.fa', 'a').write('>\%s.\%s\n'\%(sample,fa.id,str(fa.seq)))
138
                  for la in open(sample+'.Trinity.fasta.misa'):
139
                        if 'ID' not in la:
140
                             la=sample+'.'+la
141
                  open(sample+'.ssr','a').write(str(la))
142
143
        Alignment of containing SSR sequences
144
        Sequences containing SSRs were clustered using the default parameters of the CD-HIT tool at 90%
145
        sequence identity level.
146
        Rename the SSR file
147
        We then edited a Python code that generated the reverse complement of the minus strand transcripts,
148
        according to the strand information in the output of CD-HIT:
149
              import re
150
             from Bio import SeqIO
151
             faD=SeqIO.to_dict(SeqIO.parse(open('all.ssr.fa'), 'fasta'))
152
             baseD={'A':'T','T':'A','G':'C','C':'G'}
153
             samples=['T1','T3','T4']
154
             for sample in samples:
155
             for line in open(sample+'.ssr'):
156
                  lst=line.strip().split(' \ t')
157
                  if lst[0] in faD:
158
                        if 'c' not in lst[2] and lst[2]!='p1' and 'ID' not in line and lst[-2]!="1" and
159
        int(lst[-1])!=len(faD[lst[0]].seq)
                                                  and
                                                               int(lst[-1])!=len(faD[lst[0]].seq)-1
                                                                                                           and
160
        int(lst[-1])! = len(faD[lst[0]].seq)-2 and int(lst[-1])! = len(faD[lst[0]].seq)-3:
161
                             ma = re.findall(' \setminus ((.+) \setminus)', lst[3])[0]
162
                             maL=list(ma)
                             rc="
163
```

```
164
                              for base in maL:
165
                                    if base in 'ACGT':
166
                                         rc+=baseD[base]
167
                              rc=rc[::-1]
168
                              ss=[ma,rc]
169
                              ss.sort()
170
                              ss='('+'/'.join(ss)+')'
171
                              newline = re.sub(' \setminus (([ACGT] + ) \setminus)', ss, line)
172
                              open(sample+'.ssr.reformed','a').write(str(newline))
173
174
           And then, we edited a Python code that generated reverse complementary of minus strand transcripts,
175
         according to the strand information in the ouput of CD-HIT:
176
              from Bio import SeqIO
177
              import re
178
              sD=\{\}
179
              for la in open('cd-hit.clstr'):
180
              if 'at' in la:
181
                   id=re.findall('>(.+)\.\.',la)[0]
182
                   strand = re.findall('([+-])+ \lor ',la)[0]
183
                   sD[id]=strand
              if '*' in la:
184
185
                   id=re.findall('>(.+)\.\.',la)[0]
186
                   sD[id]='+'
187
              fas=SeqIO.parse(open('all.ssr.fa'), 'fasta')
188
              for fa in fas:
189
              if fa.id in sD:
190
                   if sD[fa.id] = = '+':
                         open('plus.ssr.fa','a').write('>'+str(fa.id)+' \land n'+str(fa.seq)+' \land n')
191
                   if sD[fa.id] = = '-':
192
193
                         seq=fa.seq.reverse_complement()
```

```
194
                       open('plus.ssr.fa', 'a').write('>'+str(fa.id)+ \n'+str(seq)+ \n')
195
196
        Enrichment of sequences containing polymorphic SSRs
197
        A script was executed to enrich sequences with different repeats from all the sequences containing
198
        SSRs:
199
            import re
200
            from collections import defaultdict
201
            from Bio import SeqIO
202
            import os
203
            def getD(ssr):
204
             s=[]
205
            for la in open(ssr):
206
                  if 'ID' not in la:
207
                       aL=la.strip().split(\t')
208
                       ma = re.findall(' (.+ ) d+', aL[3])
209
                       s.append((aL[0],ma[0]))
210
             d=defaultdict(set)
211
            for k, v in s:
212
                  d[k].add(v)
213
             return d
214
            t1D=getD('T1.ssr.reformed')
215
            t2D=getD('T3.ssr.reformed')
216
            t3D=getD('T4.ssr.reformed')
217
            allD={}
218
            all D.update(t1D)
219
            all D.update(t2D)
220
            all D.update(t3D)
221
            page=open('cd-hit.clstr').read()
222
            clusters=re.findall('(.+?)>Cluster',page,re.S)
223
            for cluster in clusters:
```

```
224
                                                             trans = re.findall(T \land d \land TR \land d + \ \land d + 
225
                                                             if len(trans)>1:
226
                                                                                   tt=[]
227
                                                                                   ss=[]
228
                                                                                   for tran in trans:
229
                                                                                                           if tran in allD:
230
                                                                                                                                  tt.append(str(tran)+':'+str(list(allD[tran])))
231
                                                                                                                                 ss+=list(allD[tran])
232
                                                                                   if len(tt)>1:
233
                                                                                                           ma = re.findall(' \setminus) \setminus d + \setminus '', str(ss))
234
                                                                                                          ma = set(ma)
235
                                                                                                           mas = re.findall(' ((.+?) )', str(set(ss)))
236
                                                                                                           ssr="
237
                                                                                                         for mm in list(set(mas)):
238
                                                                                                                                   if mas.count(mm)>1:
239
                                                                                                                                                        ssr=mm
240
                                                                                                           if len(ma)>1 and len(mas)>len(set(mas)):
241
                                                                                                                                  ttt=[]
242
                                                                                                                                for t in tt:
243
                                                                                                                                                        if ssr in t:
244
                                                                                                                                                                               ttt.append(t)
245
                                                                                                                                  na=str(ttt).lstrip('[').rstrip(']').strip('''').replace(''', "', \\t')
246
                                                                                                                                  open('enrichment.SSRs', 'a').write(str(na)+' \n')
247
                                                           for ll in open('enrichment.SSRs'):
248
                                                             ma=re.findall('([a-zA-Z0-9]+)\).TR\d+',ll)
249
                                                             ma=set(ma)
250
                                                             if len(ma)>1:
251
                                                                                   open('enrichment.SSRs.txt', 'a').write(str(ll))
252
                                                           faD=SeqIO.to_dict(SeqIO.parse(open('plus.ssr.fa'), 'fasta'))
253
                                                           n=0
```

254 for la in open('enrichment.SSRs.txt'): 255 $aL=la.strip().split(' \ t')$ 256 *for it in aL:* 257 *id*=*it*.*split*(':')[0] 258 $open('cluster'+str(n),'a').write('>'+str(id)+\n'+str(faD[id].seq)+'\n')$ 259 os.system('muscle - msf - in cluster' + str(n) + ' - out cluster' + str(n) + '.muscle')260 n+=1261 os.system('mkdir muscle; mv cluster* muscle; rm enrichment.SSRs') 262 263 Validation experiments 264 Primers were designed using Primer premier 5 software. The PCR products were separated by capillary 265 gel electrophoresis using the ABI 3100 Genetic Analyser. The peak heights and fragment sizes were 266 analyzed using GeneMarker software. 267 268 Data analysis 269 Previous studies on SSR development in animals and plants, along with their frequency of polymorphic 270 SSR markers, were randomly downloaded from the internet (Table S3). Differences in mean value of 271 the frequency of polymorphic SSRs developed by three methods were analyzed using one-way analysis 272 of variance (ANOVA). 273 274 **Competing interests** 275 The authors declare no conflict of interest. 276 277 **Author contributions** 278 W.L. and Q.L. conceived and designed the experiments; H.Q., X.W. and Q.Z. performed the 279 experiments and analyzed data; W.L., and Q.L. prepared the manuscript. All authors read and approved 280 the final manuscript. 281 282 **Funding**

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

This study was funded by the National Natural Science Foundation of China (No. 41576145) and the Guangdong Oceanic and Fisheries Science and Technology Foundation (No. A201501A12). **Supplementary information Table S1.** The putative polymorphic SSRs enriched by this method in rice (O. sativa), grass carp (C. idella) and lined seahorse (H. erectus). **Table S2.** The SSR loci validated by experiments and characteristics of the primers. **Table S3.** The species and the frequency of polymorphic SSRs cited in this study. References Abdelkrim, J., Robertson, B., Stanton, J. A. and Gemmell, N. (2009). Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46, 185-192. Arias, M. C., Aulagnier, S., Baerwald, E. F., et al. (2016). Microsatellite records for volume 8, issue 1. Conserv. Genet. Resour. 8: 43-81. Iorizzo, M., Senalik, D. A., Grzebelus, D., Bowman, M., Cavagnaro, P. F., Matvienko, M., Ashrafi, H., Van Deynze, A. and Simon, P. W. (2011). De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genomics 12: 389. Luo, W., Nie, Z., Zhan, F., Wei, J., Wang, W. M. and Gao, Z. X. (2012). Rapid development of microsatellite markers for the endangered fish Schizothorax biddulphi (Günther) using next generation sequencing and cross-species amplification. Int. J. Mol. Sci. 13: 14946-14955. Tang, J., Baldwin, S. J., Jacobs, J. M., van der Linden, C. G., Voorrips, R. E., Leunissen, J. A. M., van Eck, H. and Ben, V. (2008). Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics 9: 374. Wu, T., Luo, S., Wang, R., Zhong, Y. J., Xu, X. M., Lin, Y. E., He, X. M., Sun, B. J. and Huang, H. X. (2014). The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development. Mol. Breeding 34: 1437-1447.

Table 1 Number of SSRs, polymorphic SSRs frequency of three verified species

	Species for verification		
	Rice	Grass carp	Lined seahorse
Source of the transcriptome	SRR1799209	SRR1618540	SCSIO-CAS
	SRR1974265	SRR1618542	
	SRR2048540		
Total number of SSRs in transcriptome	29,517	21,959	19,006
Number of putatively polymorphic SSRs	299	206	600
enriched by this program			
Number of primers designed for validation	20	30	60
experiments			
Number of primers amplified with clear	20 (100%)	28 (93.33%)	55 (91.7%)
product bands (%)			
Number of polymorphic SSRs (%)	19 (95.00%)	26 (92.86%)	50 (90.91%)

Figure 1. Flowchart of polymorphic markers enrichment and development.

Figure 2. Comparison of polymorphic marker frequency developed by different methods. A, B and C represents SSRs developed by traditional methods, HTS approach and the method designed in this study, respectively; * and ** represents significance at P = 0.05 and P = 0.01, respectively; # represents SSR developed by HTS; † represents SSR developed by this method. The data of the frequency of polymorphic SSRs used in the figure was cited from the published references (Table S1).

