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ABSTRACT 

Two major stumbling blocks exist in high-throughput sequencing (HTS) data analysis. The first 

is the sheer file size typically in gigabytes when uncompressed, causing problems in storage, 

transmission and analysis. However, these files do not need to be so large and can be reduced without 

loss of information. Each HTS file, either in compressed .SRA or plain text .fastq format, contains 

numerous identical reads stored as separate entries. For example, among 44603541 forward reads in 

the SRR4011234.sra file (from a Bacillus subtilis transcriptomic study) deposited at NCBI’s SRA 

database, one read has 497027 identical copies. Instead of storing them as separate entries, one can 

and should store them as a single entry with the SeqID_NumCopy format (which I dub as FASTA+ 

format). The second is the proper allocation reads that map equally well to paralogous genes. I 

illustrate in detail a new method for such allocation. I have developed ARSDA software that 

implement these new approaches. A number of HTS files for model species are in the process of 

being processed and deposited at http://coevol.rdc.uottawa.ca to demonstrate that this approach not 

only saves a huge amount of storage space and transmission bandwidth, but also dramatically reduces 

time in downstream data analysis. Instead of matching the 497027 identical reads separately against 

the Bacillus subtilis genome, one only needs to match it once. ARSDA includes functions to take 

advantage of HTS data in the new sequence format for downstream data analysis such as gene 

expression characterization. ARSDA can be run on Windows, Linux and Macintosh computers and is 

freely available at http://dambe.bio.uottawa.ca/ARSDA/ARSDA.aspx. 
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INTRODUCTION 

High-throughput sequencing (HTS) is now used not only in characterizing differential gene 

expression, but also in many other fields where it replaces the traditional microarray approach. 

Ribosomal profiling, traditionally done through microarray (ARAVA et al. 2003; MACKAY et al. 

2004), is now almost exclusively done with deep sequencing of ribosome-protected segments of 

messages (INGOLIA et al. 2009a; INGOLIA et al. 2009b; INGOLIA et al. 2011), although the results 

from the two approaches for ribosomal profiling are largely concordant (XIA et al. 2011). Similarly, 

EST-based (ROGERS et al. 2012) and microarray-based (PLEISS et al. 2007) methods for detecting 

alternative splicing events and characterizing splicing efficiency is now replaced by HTS 

(KAWASHIMA et al. 2014), especially by lariat sequencing (AWAN et al. 2013; STEPANKIW et al. 

2015). The availability of HTS data has dramatically accelerated the test of biological hypotheses. For 

example, a recent study on alternative splicing (VLASSCHAERT et al. 2016) showed that skipping of 

exon 7 (E7) in human and mouse USP4 is associated with weak signals of splice sites flanking E7. The 

researchers predicted that, in some species where the splice site signals are strong, E7 skipping would 

disappear. This prediction is readily tested and confirmed with existing HTS data, i.e., E6-E8 mRNA was 

found in species with weak splice signals flanking E7, and E6-E7-E8 mRNA in species with strong splice 

signals flanking E7 (VLASSCHAERT et al. 2016). 

In spite of the potential of HTS data in solving practical biological problems, severe under-usage 

of HTS data has been reported (TEAM 2011). One major stumbling block in using the HTS data is the 

large file size. Among the 6472 transcriptomic studies on human available at NCBI/DDBJ/EBI by 

Apr. 14, 2016, 196 studies each contribute more than 1 Terabytes (TB) of nucleotide bases, with the 

top one contributing 86.4 TB. Few laboratories would be keen on downloading and analyzing this 

86.4 TB of nucleotides, not to mention comparing this study to HTS data from other human 

transcriptomic studies. 

The explosive growth of HTS data in recent years has caused serious problems in data storage, 

transmission and analysis(LEINONEN et al. 2011; KODAMA et al. 2012). Because of the high cost of 

maintaining such data, coupled with the fact that few researchers had been using such data, NCBI had 
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planned the closure of the sequence read archive a few years ago (TEAM 2011), but continued the 

support only after DDBJ and EBI decided to continue their effort of archiving the data. The incident 

highlights the prohibitive task of storing, transmitting and analyzing HTS data, and motivated the 

joint effort of both industry and academics to search for data compression solutions (JANIN et al. 

2014; ZHU et al. 2015b; NUMANAGIC et al. 2016). 

A SOLUTION WITH A NEW SEQUENCE FORMAT 

HTS data files do not need to be so huge. Take for example the characterized transcriptomic data 

for Escherichia coli K12 in the file SRR1536586.sra (where SRR1536586 is the SRA sequence file 

ID in NCBI/DDBJ/EBI). The file contains 6,503,557 sequence reads of 50 nt each, but 195310 

sequences are all identical 

(TGTTATCACGGGAGACACACGGCGGGTGCTAACGTCCGTCGTGAAGAGGG), all mapping 

exactly to sites 929-978 in E. coli 23S rRNA genes (The study did use the MICROBExpress Bacterial 

mRNA Enrichment Kit to remove the 16S and 23S rRNA, otherwise there would be many more). 

There are much more extreme cases. For example, one of the 12 HTS files from a transcriptomic 

study of Escherichia coli (SRR922264.sra), contains a read with 1,606,515 identical copies among its 

9,690,570 forward reads. There is no sequence information lost if all these 1,606,515 identical reads 

are stored by a single sequence with a sequence ID such as UniqueSeqX_1606515 (i.e., 

SeqID_CopyNumber format which I dub as FASTA+ format with file type .fasP). Such storage 

scheme not only results in dramatic saving in data storage and transmission, but also leads to dramatic 

reduction in computation time in downstream data analysis. At present, all software packages for HTS 

data analysis will take the 1,606,515 identical reads separately and search them individually against 

the E. coli genome (or target gene sequences such as coding sequences). The SeqID_CopyNumber 

storage scheme reduces the 1,606,515 searches to a single one.  

A huge chunk of SRA data stored in NCBI/DDBJ/EBI consists of ribosome profiling data 

(INGOLIA et al. 2009a; INGOLIA et al. 2009b; INGOLIA et al. 2011), which is obtained by sequencing 

the mRNA segment (~30 bases) protected by the ribosome after digesting all the unprotected mRNA 

segments. Mapping these ribosome-protected segments to the genome allows one to know specifically 
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where the ribosomes are located along individual mRNAs. In general, such data are essential to 

understand translation initiation, elongation and termination efficiencies. For example, a short poly(A) 

segment with about eight or nine consecutive A immediately upstream of the start codon in yeast 

(Saccharomyces cerevisiae) genes is significantly associated with ribosome density and occupancy 

(XIA et al. 2011), confirming the hypothesis that short poly(A) upstream of the start codon facilitates 

the recruitment of translation initiation factors but long poly(A) would bind to poly(A)-binding 

protein and interfere with cap-dependent translation. Sequence redundancy is high in such ribosomal 

profiling data and the FASTA+ format can lead to dramatic saving in the disk space of data storage 

and time in data transmission.  

ARSDA 

I developed software ARSDA (for Analyzing RNA-Seq Data, Fig. 1a) to alleviate the problem 

associated with storage, transmission and analysis of HTS data. ARSDA can take input .SRA files or 

.fastq files of many gigabytes, build an efficient dictionary of unique sequence reads in a 

FASTA/FASTQ file, keep track of their copy numbers, and output them to a FASTA+ file in the 

SeqID_CopyNumber format (Fig. 1b). Both fixed-length and variable-length sequences can be used 

as input. In addition, I have implemented functions in ARSDA to take advantage of the new sequence 

format to perform gene expression, with the main objective to demonstrate how much faster 

downstream data analysis can be done with data in FASTA+/FASTQ+ format. However, ARSDA 

does include a unique feature in assigning shared reads among paralogous genes that I will describe 

below. ARSDA also includes sequence visualization functions for global base-calling quality, per-

read quality and site-specific read quality (Fig. 1c-d), but these functions are also available elsewhere, 

e.g., FastQC (ANDREWS 2017) and NGSQC (DAI et al. 2010) and consequently will not be described 

further (but see the attached QuickStart.PDF). 

Converting HTS data to FASTA+/FASTQ+ 

The output from processing the SRR1536586.sra file (with part of the read matching output in 

Table 1) highlights two points. First, many sequences in the file are identical. Second, although the 

transcriptomic data characterized in SRR1536586 have undergone rRNA depletion by using 
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Ambion’s MICROBExpress Bacterial mRNA Enrichment Kit (POBRE and ARRAIANO 2015), there 

are still numerous reads in the transcriptomic data that are from rRNA genes. This suggests that 

storing mRNA reads separately from rRNA reads can dramatically reduce file size because most 

researchers are not interested in the abundance of rRNAs.  

While the conversion of FASTA/FASTQ files to FASTA+ files is time-consuming, it needs to be 

done only once for data storage, preferably at NCBI/EBI/DDBJ, and the resulting saving in storage 

space, internet traffic and computation time in downstream data analysis is tremendous. The file size 

is 1.49 GB for the original FASTQ file derived from SRR1536586.sra, but is only 66 MB for the new 

FASTA+ file, both being plain text files. 

I have further created BLAST databases from the processed HTS files in FASTA+ format for 

model species such as E. coli, B. subtilis, S. cerevisiae and Caenorhabditis elegans and deposited 

them at coevol.rdc.uottawa.ca. The sequence ID in these BLAST databases are in the form of 

SeqID_CopyNumber. These files reduce the computation time for quantifying gene expression from 

many hours to only a few minutes (less than two minutes for my Windows 10 PC with ani7-4770 

CPU at 3.4GHz and 16 GB of RAM). This eliminates one of the key bottleneck in HTS data analysis 

(LIU et al. 2016) and would make it feasible for any laboratory to gain the power of HTS data 

analysis. I attach the gene expression characterized by ARSDA for the 4321 E. coli K12 coding 

sequences as supplemental file SRR1536586_GB.txt. A part of it is reproduced in Table 2. 

One of the frequently used sequence-compression scheme is to use a reference genome so that 

each read can be represented by a starting and an ending number on the genome (BENOIT et al. 2015; 

KINGSFORD and PATRO 2015; ZHU et al. 2015a). This approach has two problems. First, many reads 

do not map exactly to the genomic sequence because of either somatic mutations or sequencing errors, 

so representing a read by the starting and ending numbers leads to loss of information. Second, RNA-

editing and processing can be so extensive that it becomes impossible to map a transcriptomic read to 

the genome (ABRAHAM et al. 1988; LAMOND 1988; ALATORTSEV et al. 2008; LI et al. 2009; 

SIMPSON et al. 2016). Furthermore, there are still many scientifically interesting species that do not 

have a good genomic sequence available. 
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Assigning sequence reads to paralogous genes 

One of the most fundamental objectives of RNA-Seq analysis is to generate an index of gene 

expression (FPKM: matched fragment/reads per kilobases of transcript per million mapped reads) that 

can be directly compared among different genes and among different experiments with different total 

number of matched reads (MORTAZAVI et al. 2008). The main difficulty in quantifying gene 

expression arises with sequence reads matching multiple paralogous genes (TRAPNELL et al. 2013; 

ROGOZIN et al. 2014). This problem, which has plagued microarray data analysis, is now plaguing 

RNA-Seq analysis. Most publications of commonly used RNA-Seq analysis methods (LANGMEAD et 

al. 2009; TRAPNELL et al. 2009; LANGMEAD et al. 2010; ROBERTS et al. 2011; LANGMEAD and 

SALZBERG 2012; TRAPNELL et al. 2012; DOBIN et al. 2013; ROBERTS et al. 2013; DENG et al. 2014) 

often avoided mentioning read allocation to paralogous genes. The software tools associated with 

these publications share two simple options for handling matches to paralogous genes. The first is to 

use only uniquely matched reads, i.e., reads that match to multiple genes are simply ignored. The 

second is to assign such reads equally among matched genes. These options are obviously 

unsatisfactory. Here I describe a new approach which should substantially improve the accuracy of 

HTS data analysis such as gene expression characterization. 

Allocating sequence reads to paralogous genes in a two-member gene family 

We need a few definitions to explain the allocation. Let L1 and L2 be the sequence length of the 

two paralogous genes. Let NU.1 and NU.2 be the number of reads that can be uniquely assigned to 

paralogous gene 1 or 2, respectively (i.e., the reads that matches one gene better than the other). Now 

for those reads that match the two genes equally well, the proportion of the reads contributed by 

paralogous gene 1 may be simply estimated as 

 .1
1

.1 .2

U

U U

N
P

N N
 (1) 

Now for any read that matches the two paralogous genes equally well, we will assign P1 to 

paralogous gene 1, and (1-P1) to paralogous gene 2. In the extreme case when paralogous genes are all 
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identical, then NU.1 = NU.2 =0, and we will assign 1/2 of these equally matched read to genes 1 and 2. 

We should modify Eq. (1) to make it more generally applicable as follows 

 .1
1

.1 .2

0.01

0.02

U

U U

N
P

N N
 (2) 

where 0.01 in the numerator and 0.02 in the denominator are pseudocounts. The treatment in Eq. (2) 

implies that when NU.1 = NU.2 = 0 (e.g., when two paralogous genes are perfectly identical), then a 

read matching equally well to these paralogous genes will be equally divided among the two 

paralogues.  

One problem with this treatment is its assumption of L1 = L2. If paralogous gene 1 is much longer 

than the other, then NU.1 is expected to be larger than NU.2, everything else being equal. One may 

standardize NU.1 and NU.2 to number of unique matches per 1000 nt, designated by SNU.i = 1000NU.i/Li 

(where i = 1 or 2) and replace NU.i in Eq. (2) by SNU.i as follows (MORTAZAVI et al. 2008): 
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 (3) 

Allocating sequence reads in gene family with more than two members 

One might, mistakenly, think that it is quite simple to extend Eq. (3) for a gene family of two 

members to a gene family with F members by writing  

 

.
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1000
0.01

0.01 1000

U i

i
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L
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 (4) 

This does not work. For example, if we have three paralogous genes designated A, B, and C, 

respectively. Suppose that the gene duplication that gave rise to B and C occurred very recently so 

that B and C are identical, but A and the ancestor of B and C have diverged for a long time. In this 

case, NU.B = NU.C = 0 because a read matching B will always matches C equally well, but NU.A may be 

greater than 0. This will result in unfair allocation of many transcripts from B and C to A according to 

Eq. (4). I outline the approach below for dealing with gene families with more than two members. 
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With three or more paralogous genes, one may benefit from a phylogenetic tree for proper 

allocation of sequence reads. I illustrate the simplest case with a gene family with three paralogous 

genes A, B, and C idealized into three segments in Fig. 3.The three genes shared one identical middle 

segment with 23 matched reads (that necessarily match equally well to all three paralogues). Genes B 

and C share an identical first segment to which 20 reads matched. Gene A has its first segment 

different from that of B and C and got four matched reads. The three genes also have a diverged third 

segment where A matched 3 reads, B matched 6 and C matched 12. Our task is then to allocate the 23 

reads shared by all three and 20 reads shared by B and C to the three paralogues. 

One could apply maximum likelihood or least-squares method for the estimation, but ARSDA 

uses a simple counting approach by applying the following 

 

3 4
0.15556

3 4 20 6 12

6
  (1- )   0.28148

6 12

12
  (1- )   0.56296

6 12

A

B A

C A

P

P P

P P

 (5) 

Thus, we allocate the 23 reads (that matched three genes equally) to paralogous genes A, B and C 

according to PA, PB and PC, respectively. For the 20 reads that matched B and C equally well, we 

allocate 20*6/(6+12) to B and 20*12/(6+12) to C. This gives the estimated number of matches to each 

gene as 

 

3 4 23 10.57778

6
6 23 20 19.14074

6 12

12
12 23 20 38.28148

6 12

A A

B B

C C

N P

N P

N P

 (6) 

These numbers are then normalized to give FPKM (MORTAZAVI et al. 2008). The current version 

of ARSDA assume that gene families with more than two members to have roughly the same 

sequence lengths. This is generally fine with prokaryotes but may become problematic with 

eukaryotes. 

In practice, one can obtain the same results without actually undertaking the extremely slow 

process of building trees for paralogous genes. One first goes through reads shared by two paralogous 
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genes (e.g., the 20 reads shared by genes B and C in Fig. 2) and allocate the reads according to PB = 

6/(6+12) = 1/3 and PC = 12/(6+12) = 2/3. Now genes B and C will have 12.66667 (=6+20*PB) and 

25.33333 (=12+20*PC) assigned reads, i.e., NU.B = 12.66667 and NU.C = 25.33333. Once we have done 

with reads shared by two paralogous genes, we go through reads shared by three paralogous genes, 

e.g., the 23 reads shared by genes A, B, and C in Fig. 2. With NU.A  = 7, NU.B = 12.66667, NU.C = 

25.333333, and N = NU.A + NU.B + NU.C = 45, so we have 

 . . .0.15556; 0.28148; 0.56296U A U B U C
A B C

N N N
P P P

N N N
 (7) 

 

7 23 10.57778

12.66667 23 19.14074

25.33333 23 38.28148

A A

B B

C C

N P

N P

N P

 (8) 

which are the same as shown in Eq. (6). This progressive process continues until we have allocated 

reads shared by the largest number of paralogous genes. The gene expression output in the 

supplemental SRR1536586_GB.txt is obtained in this way. 

SOFTWARE AND DATA AVAILABILITY 

ARSDA is freely available at http://dambe.bio.uottawa.ca/ARSDA/ARSDA.aspx, together 

with a QuickStart.PDF file showing HTS file conversion from FASTA/FASTQ file to FASTA+ 

format, three types of HTS data quality visualization tools, and downstream characterization of gene 

expression. It is a Windows program but can run on any computer with .NET framework installed 

(e.g. Macintosh and Linux with MONO activated). The BLAST databases derived from HTS reads for 

several model species, in which sequence IDs are in the format of SeqID_CopyNumber, are deposited 

at coevol.rdc.uottawa.ca. One can use these BLAST databases with ARSDA to characterize gene 

expression or other analysis. Ultimately, it is NCBI/EBI/DDBJ that should store all HTS data in such 

BLAST databases.  
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Table 1. Part of read-matching output from ARSDA, with 195310 identical reads matching a segment 

of large subunit (LSU) rRNA, 86308 identical reads matching another segment of LSU rRNA, and so 

on. Results generated from ARSDA analysis of the SRR1536586.sra file from NCBI. 

Gene Ncopy 

 

Gene Ncopy 

LSU rRNA 195310 

 

SSU rRNA 30417 

LSU rRNA 86308 

 

LSU rRNA 29508 

LSU rRNA 58400 

 

5S rRNA 28187 

SSU rRNA 47323 

 

LSU rRNA 24982 

LSU rRNA 45695 

 

SSU rRNA 23286 

LSU rRNA 36258 

 

LSU rRNA 19991 

5S rRNA 33674 

 

SSU rRNA 19268 
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Table 2. Partial output of gene expression, with the gene locus_tag (together with start and end sites) 

as Gene ID. 

Gene ID SeqLen Count Count/Kb FPKM 

b0001|190_255 66 76 1151.515 389.894 

b0002|337_2799 2463 2963 1203.004 407.328 

b0003|2801_3733 933 1121 1201.501 406.819 

b0004|3734_5020 1287 1782 1384.615 468.82 

b0005|5234_5530 297 97 326.599 110.584 

b0006|C5683_6459 777 113 145.431 49.242 

b0007|C6529_7959 1431 143 99.93 33.836 

b0008|8238_9191 954 1561 1636.268 554.028 

b0009|9306_9893 588 289 491.497 166.417 

b0010|C9928_10494 567 100 176.367 59.716 

b0011|C10643_11356 714 13 18.207 6.165 

b0013|C11382_11786 405 2 4.938 1.672 

b0014|12163_14079 1917 6863 3580.073 1212.186 

b0015|14168_15298 1131 1671 1477.454 500.255 

… … … … … 
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FIGURE CAPTIONS 

 

Fig. 1. User interface in ARSDA. (a) The menu system, with database creation under the ‘Database’ 

menu, gene expression characterization under the ‘Analysis’ menu, etc. (b) Converting a 

FASTQ/FASTA file to a FASTQ+/FASTA+ file. (c) Site-specific read quality visualization. (d) 

Global read quality visualization. 

 

Fig. 2. Allocation of shared reads in a gene family with three paralogous genes A, B and C with three 

idealized segments with a conserved identical middle segment, strongly homologous first segment 

that is identical in B and C, and a diverged third segment. Reads and the gene segment they match to 

are of the same color. 
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