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ABSTRACT  

Higher educational attainment (EA) is known to have a protective effect regarding the 

severity of schizophrenia (SZ). However, recent studies have found a small positive genetic 

correlation between EA and SZ. Here, we investigate possible causes of this counterintuitive 

finding using genome-wide association results for EA and SZ (n = 443,581) and a replication 

cohort (1,169 controls and 1,067 cases) with high-quality SZ phenotypes. We find strong 

genetic overlap between EA and SZ that cannot be explained by chance, linkage 

disequilibrium, or assortative mating. Instead, our results suggest that the current clinical 

diagnosis of SZ comprises at least two disease subtypes with non-identical symptoms and 

genetic architectures: One part resembles bipolar disorder (BIP) and high intelligence, while 

the other part is a cognitive disorder that is independent of BIP.  

 

INTRODUCTION  

Schizophrenia (SZ) is the collective term used for a severe, highly heterogeneous and costly 

psychiatric disorder that is caused by a complex interplay of environmental and genetic 

factors1–4. The latest genome-wide association study (GWAS) by the Psychiatric Genomics 

Consortium (PGC) identified 108 genomic loci that are associated with SZ5. These 108 loci 

jointly account for ≈3.4% of the variation on the liability scale to SZ5, while all single 

nucleotide polymorphisms (SNPs) that are currently measured by SNP arrays capture ≈64% 

(s.e. = 8%) in the variation in liability to the disease6. This suggests that most of the genetic 

variants contributing to the heritability of SZ have very small effects and that they have not 

been isolated yet. This could be due in part to the fact that the clinical disease classification of 

SZ spans across many different syndromes (e.g., catatonia, paranoia, grandiosity, difficulty in 

abstract thinking, thought blocking, social withdrawal, hallucinations) that may not have 

identical genetic architectures. Therefore, identifying additional genetic variants and 

understanding through which pathways they influence specific SZ syndromes is an important 

step in understanding the etiologies of the ‘schizophrenias’7. However, GWAS analyses of 

specific SZ syndromes would require very large sample sizes to be statistically well-powered, 

and the currently available datasets on deeply phenotyped SZ individuals are not large 

enough yet for this purpose.  

Here, we use an alternative approach that combines data for SZ with another cognitive 

phenotype that can be studied in very large GWAS samples—educational attainment (EA). 

The relationship between SZ and EA is peculiar: There are contradictory results on the 

relationship between SZ and EA from phenotypic and genetic data that can be used as an 

avenue to further our understanding about SZ. Phenotypic data seem to suggest a negative 

correlation between EA and SZ8. For example, SZ patients with lower EA typically show an 

earlier age of disease onset, higher levels of psychotic symptomatology, and worsened global 

cognitive function8. In fact, EA has been suggested to be a measure of premorbid function 

and predictor of outcomes in SZ. Moreover, it has been forcefully argued that retarded 

intellectual development during childhood and bad school performance should be seen as 

core features of SZ and early indicators of the disease that precede the development of 

psychotic symptoms9,10. Furthermore, credible genetic links between SZ and impaired 

cognitive performance have been found11.  

In contrast to these findings, recent studies using GWAS results identified a small, but 

positive genetic correlation between EA and SZ12,13. Here, we explore possible reasons for 

this contradictory result using the largest, non-overlapping GWAS samples on cognitive traits 

to date, totaling 443,581 individuals of European descent (the vast majority of observations 

coming from EA). For follow-up analyses, we use data from an independent replication 
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sample that has exceptionally detailed measures of SZ symptoms, the GRAS (Göttingen 

Research Association for Schizophrenia) data collection4,7,14.  

As a first step, we used the proxy-phenotype method (PPM) to illustrate the genetic overlap 

between EA and SZ. As a side-result, this approach may isolate novel empirically plausible 

candidate genes for SZ, comparable to similar studies using PPM that have demonstrated this 

for cognitive performance15, Alzheimer’s disease, intracranial and hippocampal volume13, 

depression and neuroticism16. PPM is a two-stage approach that increases statistical power by 

using genetic association results from a large, independent sample for a related phenotype to 

limit the multiple testing burden for the phenotype of interest15. Previous evidence suggests a 

strong genetic overlap between EA and SZ, which implies that EA could be used as a proxy-

phenotype for SZ because EA can be studied in much larger samples13,16. However, 

compared to the present work, these previous studies used substantially smaller and partially 

overlapping samples and did not have access to an independent cohort that could be used for 

replication and follow-up analyses. 

There are several possible reasons why EA-associated SNPs may also be associated with SZ. 

One possibility is that a set of genes that is generally important for all brain-related 

phenotypes is driving this enrichment. This hypothesis suggests that the set of genetic loci 

that our proxy-phenotype analysis identifies should be generally enriched for association with 

all brain-related phenotypes, but not for non-brain-related outcomes. To investigate this 

possibility, we test genetic loci that are jointly associated with EA and SZ for enrichment 

across 21 additional traits (Supplementary Note).  

Second, enrichment could also be a generic consequence of EA-associated SNPs exhibiting 

above average linkage disequilibrium (LD) with neighboring SNPs. This would increase the 

probability that these SNPs “tag” other genetic variants that are associated with SZ, or any 

other disorder12. To investigate this possibility, we propose a measure that tests for 

enrichment beyond what is expected for each EA related SNP given its LD with its neighbors 

(Supplementary Note).  

A third possible cause of strong enrichment and weak genetic correlation is heterogeneity in 

SZ—i.e., sub-types of the disease having different biological causes and varying genetic 

correlations with EA. Heterogeneity in the disease may also be a reason why previous studies 

did not succeed in predicting specific syndromes of SZ using a “normal” polygenic score 

(PGS) that was derived from large-scale GWAS on SZ, which implicitly assumed that all SZ-

associated SNPs influence all syndromes in the same way4,17. If heterogeneity in the disease 

is causing the observed enrichment of EA with SZ, the sign concordance pattern of SNPs 

with both traits may contain relevant information that is pertinent to specific SZ syndromes. 

We tested this by constructing PGS in our replication cohort with high-quality SZ phenotypes 

that take the sign concordance of SNPs for EA and SZ into account (Supplementary Note). 

As a robustness check, we repeat this analysis excluding patients diagnosed with 

schizoaffective disorder. 

A fourth possible cause of enrichment is that other phenotypes are genetically correlated with 

both EA and SZ. Previous studies indicated a particularly strong positive genetic correlation 

between SZ and bipolar disorder (BIP), which may influence the genetic overlap of both 

diseases with related phenotypes such as EA, childhood intelligence (IQ), and 

neuroticism12,13,18. We use genome-wide inferred statistics (GWIS) that allow controlling for 

the genetic correlation between SZ and BIP to investigate how “unique” SZ (controlling for 

BIP) and “unique” BIP (controlling for SZ) are related to EA, childhood IQ, and 

neuroticism18.  
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A fifth possible cause may be assortative mating, which has been demonstrated both for EA19 

and SZ20. We use simulations to explore if independent assortative mating for the two 

phenotypes may induce a spurious genetic overlap. 

This list of potential causes for the genetic overlap between EA and SZ may not be 

exhaustive and several of these factors may be at work simultaneously.  

 

RESULTS  

Proxy-phenotype analyses 

Figure 1  presents an overview of the proxy-phenotype analyses. The first-stage GWAS on 

EA (Supplementary Note) identified 506 loci that passed our predefined threshold of PEA <
10−5 (https://osf.io/dnhfk/); 108 of them were genome-wide significant (PEA < 5 × 10−8, see 

Supplementary Table 5.1). Of the 506 EA lead-SNPs, 132 are associated with SZ at 

nominal significance (PSZ < 0.05), and 21 of these survive Bonferroni correction (PSZ <
0.05

506
= 9.88 × 10−5). LD score regression results suggest that the vast majority of the 

association signal in both the EA13 and the SZ5 GWAS are truly genetic signals, rather than 

spurious signals originating from uncontrolled population stratification. Figure 2a shows a 

Manhattan plot for the GWAS on EA highlighting SNPs that were also significantly 

associated with SZ (red crosses for PSZ < 0.05, green crosses for PSZ = 9.88 × 10−5).  

A Q-Q plot of the 506 EA lead SNPs for SZ is shown in Figure 2b. Although the observed 

sign concordance of 52% is not significantly different from a random pattern (𝑃 = 0.40), we 

find 3.23 times more SNPs in this set of 506 SNPs that are nominally significant for SZ than 

expected given the distribution of the P values in the SZ GWAS results (raw enrichment 𝑃 =
6.87 × 10−10, Supplementary Note). The observed enrichment of the 21 EA lead SNPs that 

pass Bonferroni correction for SZ (𝑃𝑆𝑍 <
0.05

506
= 9.88 × 10−5) is even more pronounced (27 

times stronger, 𝑃 = 5.44 × 10−14).  

Bayesian credibility of the results 

The effect sizes of these 21 SNPs on SZ are small, ranging from Odds = 1.02 (rs4500960) to 

Odds = 1.11 (rs4378243) after winner’s curse correction (Table 1). However, Bayesian 

calculations with reasonable prior beliefs (e.g., 1% or 5%, Supplementary Note) suggest that 

most of these 21 SNPs are likely or virtually certain to be truly associated with SZ.  

Prediction of future genome-wide significant loci for schizophrenia 

Of the 21 variants we identified, 12 are in LD with loci previously reported by the PGC5 and 

2 are in the major histocompatibility complex (MHC) region on chromosome 6 and were 

therefore not separately reported in that study. Three of the variants we isolated (rs7610856, 

rs143283559, rs28360516) were independently found in a recent meta-analysis of the PGC 

results5 with another large-scale sample21. We show in the Supplementary Note that using 

EA as a proxy-phenotype for SZ helped to predict the novel genome-wide significant 

findings reported in that study, which illustrates the power of the proxy-phenotype approach. 

Furthermore, two of the 21 variants (rs756912, rs7593947) are in LD with loci recently 

reported in a study that also compared GWAS findings from EA and SZ using smaller 

samples and a less conservative statistical approach22 (Supplementary Note). The remaining 

2 SNPs we identified (rs7336518 on chr13 and rs7522116 on chr 1) add to the list of 

empirically plausible candidate loci for SZ.  
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LD-aware enrichment across different traits 

Figure 3 and Supplementary Table 5.2 show the LD-aware enrichment of the SNPs that are 

jointly associated with EA and SZ across 22 traits. We find significant joint LD-aware 

enrichment of this set of SNPs for SZ, BIP, neuroticism and childhood IQ, and for 

inflammatory bowel disease and age at menarche. However, we find no LD-aware 

enrichment for other brain-traits that are phenotypically related to SZ, such as depressive 

symptoms, subjective well-being, autism, and attention deficit hyperactivity disorder. We 

also do not find LD-aware enrichment for most traits that are less obviously related to the 

brain (e.g., BMI, coronary artery disease) and our negative controls (e.g., fasting insulin, birth 

weight, birth length). Furthermore, one of the novel SNPs we isolated shows significant LD-

aware enrichment both for SZ and for BIP (rs7522116).  

Replication in the GRAS sample 

A PGS based on the 132 loci jointly associated with both EA and SZ (SZ_132) adds ∆𝑅2 =
7.54% − 7.01% = 0.53% predictive accuracy for the SZ case-control status to a PGS 

(SZ_all) derived from the GWAS on SZ alone (𝑃 = 1.7 × 10−4, Table 2, Model 3). The 

SZ_132 score also significantly adds (𝑃 = 3.4 × 10−4) to the predictive accuracy of the SZ 

case-control status when all other scores we constructed are included as control variables. In 

addition to SZ_132, PGS for SZ (SZ_all) and for BIP (BIP_all ) also predict case-control 

status, jointly reaching an adjusted ΔR2 of ≈ 9% (Table 2, Model 9 and Supplementary 

Note).   

Polygenic prediction of schizophrenia measures in the GRAS sample 

We find that the number of years of education is phenotypically correlated with later age at 

prodrome, later onset of disease, and less severe disease symptoms among SZ patients in the 

GRAS sample (Supplementary Note, Supplementary Table 8.1 and Supplementary Fig. 

1). The EA_all score is associated with years of education (𝑃 = 2.6 × 10−6) and premorbid 

IQ (𝑃 = 2.3 × 10−4) among SZ patients (Supplementary Note and Table 3). Consistent 

with earlier results4, we find that none of the SZ measures can be predicted by the normal SZ 

PGS (SZ_all, Supplementary Table 8.2). Importantly, by utilizing GWAS results from both 

EA and SZ, we show that it is possible to predict specific features of SZ (Global Assessment 

of Functioning (GAF), Clinical Global Impression of Severity (CGI-S), and Positive and 

Negative Syndrome Scale (PANSS)) from genetic data. In a multiple regression analysis23 

that allows a “ceteris paribus” interpretation of the included variables, we find that the EA_all 

score is associated with less severe disease outcomes only if we condition on the effects of 

the Concordant and Discordant scores. And conditional on the EA_all score, the Concordant 

and Discordant scores are associated with more (less) severe positive and negative symptoms 

as measured by the PANSS scale, respectively (Table 3). The best predictive accuracy of SZ 

readouts using these scores is currently observed for GAF (R2 = 1.38%). Of note, several of 

the symptoms measured by PANSS are also symptoms of BIP. The degree and composition 

of symptoms varies with the phase at evaluation (manic or depressive) and the general 

disease severity. We repeated these analyses excluding patients who were diagnosed with 

schizoaffective disorder (SD) and found similar results, implying that the genetic 

heterogeneity in SZ that we identify is not only due to SD (Supplementary Note, 

Supplementary Table 8.4.a). 

Controlling for the genetic overlap between schizophrenia and bipolar disorder 

None of the EA-associated lead SNPs (PEA < 5 × 10−8) are significantly associated with 

“unique” SZ(min BIP) after Bonferroni correction (Supplementary Table 9.1, Supplementary 

Note). The sign concordance of the EA lead SNPs with “unique” SZ(min BIP) was 44.5% (𝑃 =
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0.046). Supplementary Figure 2 shows a Q-Q plot of the EA lead-SNPs for “unique” SZ(min 

BIP). Although we find 1.6 times more EA-associated SNPs with 𝑃𝑆𝑍𝑢𝑛𝑖𝑞𝑢𝑒 < 0.05 than 

expected by chance (raw enrichment 𝑃 = 0.02, Supplementary Note), the enrichment is 

much weaker than in the main SZ GWAS results that did not control for the genetic overlap 

between SZ and BIP. The genetic correlations between EA SZ(min BIP), and IQ and SZ(min BIP)  

are negative and significant (rg = -0.16, P = 3.88×10-04 and rg = -0.31, P = 6.00×10-03 

respectively), which is in line with the idea of SZ being a cognitive disorder9. Furthermore, 

the genetic correlations of EA and IQ with BIP(min SZ) remain positive and get somewhat 

stronger (rg = 0.31, P = 2.87×10-07 and rg = 0.33, P = 3.18×10-02 respectively) compared with 

the ordinary BIP GWAS results. However, controlling for the genetic overlap of SZ and BIP 

does not affect the genetic correlations with neuroticism (Figure 4). 

Simulations of assortative mating 

Our simulations for assortative mating were based on relatively extreme assumptions that 

increased our chance of finding spurious enrichment of EA loci for SZ. The results suggest it 

is unlikely that assortative mating is a major cause for the genetic overlap we observe 

between EA and SZ (Supplementary Fig. 3).  

Biological annotations 

Biological annotation of the 132 SNPs that are jointly associated with EA and SZ using 

DEPICT identified 111 significant reconstituted gene sets (Supplementary Table 10.1). 

Pruning these resulted in 19 representative gene sets including dendrites, axon guidance, 

transmission across chemical synapses, and abnormal cerebral cortex morphology 

(Supplementary Table 10.2 and Figure 5a). All significantly enriched tissues are related to 

the nervous system and sense organs (Figure 5b). Furthermore, “Neural Stem Cells” is the 

only significantly enriched cell-type (Supplementary Table 10.3). DEPICT prioritized genes 

that are known to be involved in neurogenesis and synapse formation (Supplementary Table 

10.4). Some of the genes, including SEMA6D and CSPG5, have been suggested to play a 

potential role in SZ24,25. For the two novel candidate SNPs reported in this study (rs7522116 

and rs7336518), DEPICT points to the FOXO6 (Forkhead Box O6) and the SLITRK1 (SLIT 

and NTRK Like Family Member 1) genes, respectively. FOXO6 is predominantly expressed 

in the hippocampus and has been suggested to be involved in memory consolidation, emotion 

and synaptic function26,27. Similarly, SLITRK1 is also highly expressed in the brain28, 

particularly localized to excitatory synapses and promoting their development29, and it has 

previously been suggested to be a candidate gene for neuropsychiatric disorders30.  

  

DISCUSSION  

We explored the genetic overlap between EA and SZ using the largest currently available 

GWAS sample on human cognitive traits to date. Using EA as a proxy-phenotype, we 

identified 21 genetic loci for SZ and showed that this approach helps to predict future GWAS 

hits for SZ. We isolated two additional candidate genes for SZ, FOXO6 and SLITRK1. Our 

results show that EA-associated SNPs are much more likely to also be associated with SZ 

than expected by chance. However, these genetic loci do not influence both traits with a 

systematic sign pattern that would correspond to a strong positive or negative genetic 

correlation.  

The results of our follow-up analyses are most consistent with two hypotheses that 

complement each other: First, the genetic overlap between EA and SZ is to some extent 

induced by pleiotropic effects of many genes that affect not only EA and SZ but also other 
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traits such as BIP and IQ. Second, different syndromes of SZ (e.g., low cognitive 

performance and psychosis) seem to be driven by different genetic effects. The clinical 

diagnosis of SZ aggregates over these different syndromes. In particular, our results suggest 

that the current clinical diagnosis of SZ comprises at least two disease subtypes with non-

identical symptomatology and genetic architectures: One part resembles bipolar disorder 

(BIP) and high intelligence, while the other part is a cognitive disorder that is independent of 

BIP. Consistent with this idea, we find that PGS that take the sign concordance of SNPs with 

EA and SZ into account begin for the first time to predict specific SZ features from genetic 

data (R2 between 0.4% and 1.4%), while this was not possible with “ordinary” PGS for SZ.  

Other mechanisms that we explored, in particular LD-patterns of the EA-associated SNPs and 

assortative mating, do not seem to be major drivers of the genetic overlap between EA and 

SZ. Furthermore, the loci we identified in our PPM analysis do not seem to be associated 

with all brain-related phenotypes, suggesting some degree of phenotype-specificity of the 

results. We note that the enrichment for age at menarche of the SNPs that are jointly 

associated with EA and SZ may be related to the final stage of brain development which 

coincides with the onset of puberty31–34.  

The highly complex genetic architecture of the “schizophrenias” that our results point to 

implies that most patients will have individual-specific genetic loads for either subtype of the 

disease, contributing to individual differences in symptoms. The genetic heterogeneity we 

identified could imply that treatments will vary in their effectiveness across disease subtypes. 

Overall, our study corroborates that EA is a useful proxy-phenotype for psychiatric outcomes. 

Specifically, combining GWAS results from EA and SZ led to the identification of two 

seemingly distinct subcategories of SZ. Even though each of them may still harbor highly 

heterogeneous disease subgroups, the new subcategories can pave the way for further 

biological subgroup analyses. Therefore, a psychiatric nosology that is based on biological 

causes rather than pure phenotypical classifications may be feasible in the future. Studies that 

combine well-powered GWAS from several diseases and from phenotypes that represent 

variation in the normal range such as EA are likely to play an important part in this 

development. However, deep phenotyping of large patient samples will be inevitable to link 

GWAS results from complex outcomes such as EA and SZ to specific biological disease 

subgroups.  
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ONLINE METHODS  

All reported statistical results are based on two-sided tests, unless indicated otherwise. Our 

proxy-phenotype analyses and our replication strategy followed a pre-registered analysis plan 

(https://osf.io/dnhfk/). The full description of all materials and methods is provided in the 

Supplementary Note. 

GWAS on educational attainment. 

The EA sample excluded all cohorts that participated in the GWAS on SZ described below, 

yielding a sample size of n = 363,502 individuals of European descent13. The GRAS 

replication sample was not part of the GWAS on EA, either. 

GWAS on schizophrenia. 

The SZ sample consisted of n = 34,409 cases and n = 45,670 controls, diagnosed with SZ or 

schizoaffective disorder5. We excluded the GRAS data collection from the GWAS on SZ.  

Proxy-phenotype look-up. 

Analyses were carried out using 8,240,280 autosomal SNPs that passed quality controls in 

both GWAS and additional filters described in the Supplementary Note. We selected 

approximately independent lead SNPs from the EA GWAS results using the clumping 

procedure in PLINK35. We looked up the SZ results of all approximately independent EA 

lead-SNPs that passed the pre-defined significance threshold of PEA < 10−5.  

We tested if the observed sign concordance between EA and SZ is different from 50% using 

the binomial probability test36. “Raw” enrichment factors and “raw” enrichment p-values of 

the EA lead-SNPs on SZ were calculated by taking the actual distribution of P values in the 

SZ GWAS result files into account but ignoring the LD scores12,37.  

LD-aware enrichment across different traits. 

We developed an enrichment test that corrects for the LD score of each SNP 

(Supplementary Note). We conducted this test for the 132 SNPs that are jointly associated 

with EA and SZ in our proxy-phenotype analyses (PEA < 10−5 and PSZ < 0.05). LD scores 

were obtained from the HapMap 3 European reference panel. We investigated SZ and 21 

additional traits for which GWAS results were available in the public domain. Some of the 

traits were chosen because they are phenotypically related to SZ (e.g., BIP), while others 

were less obviously related to SZ (e.g., age at menarche) or served as negative controls (e.g., 

fasting insulin). If one of the 132 candidate SNP was not available in the reference panel or 

the GWAS results of the other traits, we tried to use a good proxy, yielding 79 to 105 

available SNPs per trait. 

Phenotypic correlations. 

We explored the correlations between the number of years of education with 7 quantitative 

measures of SZ in the GRAS sample of SZ cases: Age at prodrome, age at disease onset, 

premorbid IQ, GAF, CGI-S, and PANSS positive and PANSS negative scores.  

Replication and Bayesian credibility of results. 

Our replication uses a PGS in the GRAS data collection, which is based on the 132 

independent EA lead-SNPs that are also nominally associated with SZ (𝑃𝐸𝐴 < 10−5 and 

𝑃𝑆𝑍 < 0.05). This PGS (called SZ_132) was constructed using the regression coefficient 

estimates of the SZ GWAS as weights. In addition to this polygenic replication strategy, we 

further probed the credibility of our results using a heuristic Bayesian calculation. 
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Polygenic prediction of schizophrenia symptoms in the GRAS sample. 

We predicted the number of years of education and 7 quantitative measures of SZ in the 

GRAS sample of SZ cases. For each phenotype, we separately compared the predictive 

performance of several PGS: Scores constructed from the full GWAS result on SZ, EA, BIP, 

and neuroticism (called SZ_all, EA_all, BIP_all, Neuro_all, respectively); scores constructed 

using only the 132 SNPs that are jointly associated with EA and SZ (called EA_132 and 

SZ_132, using EA and SZ GWAS coefficients as weights, respectively); and two scores that 

split the SZ_all score into two parts based on sets of SNPs that either have concordant or 

discordant effects on EA and SZ (called Concordant and Discordant). Genetic outliers of 

self-reported non-European descent (n = 13 cases) were excluded from the analysis. 

Controlling for the genetic overlap between schizophrenia and bipolar disorder. 

We estimated GWIS18 to obtain SNP regression coefficients that are unique to SZ, which are 

corrected for the genetic overlap between SZ and BIP. The SZ samples used in the GWIS are 

not overlapping with the samples used in the EA GWAS and they exclude our replication 

sample (GRAS). BIP GWAS results were obtained from the PGC38. We refer to the set of 

obtained summary statistics as “unique” SZ(min BIP). We then repeated the look-up of the EA-

associated lead SNPs in those summary statistics as described above. Similarly, we obtained 

GWIS results for “unique” BIP(min SZ) using the same method and data. We computed genetic 

correlations of these GWIS results with EA, childhood intelligence, and neuroticism using 

bivariate LD score regression12 and compared the results to those obtained using ordinary SZ 

and BIP GWAS results. 

Simulations of assortative mating. 

We conducted simulations to test if strong assortative mating on EA and SZ can induce a 

spurious genetic overlap between the two traits.  

Biological annotation. 

To gain first insights into possible biological pathways that are indicated by the genetic loci 

identified by our PPM analysis, we applied DEPICT13,39 using a false discovery rate (FDR) 

threshold of ≤ 0.05. To identify independent biological groupings, we used the Affinity 

Propagation method based on the Pearson distance matrix for clustering40. 

Data availability. 

GWAS meta-analysis results for EA and SZ as well as GWIS results for unique” SZ(min BIP)  

and “unique” BIP(min SZ) can be downloaded from the SSGAC website 

(https://www.thessgac.org/). For information about the GRAS data collection, contact the 

principal investigator of the study: Hannelore Ehrenreich (ehrenreich@em.mpg.de).  

Code availability. 

Computer code used to generate LD-aware enrichment and GWIS results can be downloaded 

from the SSGAC website (https://www.thessgac.org/). 
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Table 1: SNPs significantly associated with schizophrenia after Bonferroni correction. 
         

              Posterior probability of true association 
 SNP-ID R2 Odds EAF Power  Prior belief (π)  

    (adj) (adj)   (α = 0.05/506)   0.1% 1.0% 5.0% 10.0% 

1 rs79210963 0.021% 0.931 0.89 22.9%  75.0% 96.8% 99.3% 99.7% 

2 rs7610856 0.022% 0.955 0.41 22.8%  74.9% 96.8% 99.3% 99.7% 

3 rs10896636 0.020% 0.956 0.67 17.8%  68.7% 95.6% 99.1% 99.5% 

4 rs756912 0.022% 0.956 0.51 22.7%  74.8% 96.7% 99.3% 99.7% 

5 rs6449503 0.020% 0.961 0.51 12.9%  60.0% 93.7% 98.7% 99.3% 

6 rs7336518 0.014% 0.964 0.13 1.5%  13.4% 60.6% 88.5% 93.9% 

7 rs143283559 0.017% 0.965 0.72 4.6%  32.8% 83.0% 96.1% 98.0% 

8 rs11210935 0.014% 0.973 0.77 1.2%  10.9% 55.1% 86.0% 92.5% 

9 rs77000541 0.018% 0.974 0.33 1.6%  14.1% 62.2% 89.2% 94.3% 

10 rs2819344 0.017% 0.983 0.62 0.3%  3.0% 23.3% 60.4% 75.3% 

11 rs4500960 0.017% 1.017 0.47 0.3%  3.0% 23.3% 60.4% 75.3% 

12 rs28360516 0.013% 1.027 0.70 1.4%  12.6% 59.0% 87.8% 93.5% 

13 rs7522116 0.015% 1.029 0.56 3.0%  23.8% 75.8% 94.0% 96.9% 

14 rs7593947 0.018% 1.040 0.51 12.5%  59.1% 93.5% 98.6% 99.3% 

15 rs11694989 0.021% 1.044 0.43 17.9%  68.8% 95.7% 99.1% 99.5% 

16 rs320700 0.024% 1.054 0.65 36.4%  85.3% 98.3% 99.7% 99.8% 

17 rs3957165 0.020% 1.056 0.83 14.7%  63.6% 94.6% 98.9% 99.4% 

18 rs10791106 0.026% 1.056 0.54 46.9%  89.9% 98.9% 99.8% 99.9% 

19 rs2992632 0.025% 1.060 0.74 36.8%  85.5% 98.3% 99.7% 99.8% 

20 rs10773002 0.043% 1.087 0.28 91.0%  99.0% 99.9% 100.0% 100.0% 

21 rs4378243 0.044% 1.112 0.85 91.5%   99.1% 99.9% 100.0% 100.0% 

Notes: The SNPs in the table are order by their Odds ratio on schizophrenia. Effect sizes for schizophrenia (in R2 and Odds) are downward adjusted for the 

winner's curse. R2 was approximated from the winner’s curse adjusted Odds ratios, using the formulas described in Supplementary Note. The winner's curse 

adjustment took into account that only SNPs with P = 0.05/506 were selected. Power calculations assumed that the available GWAS sample size for 

schizophrenia for each SNP consisted of 34,409 cases and 45,670 controls. EAF is the effect allele frequency in the schizophrenia GWAS data. SNPs 

highlighted in bold are associations for schizophrenia that have not been emphasized in the previous literature. 
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Table 2: Polygenic prediction of schizophrenia status in the GRAS sample. 

 

    Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 

SZ_132 standardized beta 0.11**  0.08**   
   

0.07** 

 P value 5.4×10-08 
 

1.7×10-04 
     

3.4×10-04 

SZ_all standardized beta 
 

0.31** 0.30** 
     

0.27** 

 P value 
 

6.1×10-38 1.5×10-34 
     

2.6×10-28 

EA_132 standardized beta 
   

-3.7×10-03 
 

-0.01 
  

-0.03  
P value 

   
0.86 

 
0.66 

  
0.14 

EA_all standardized beta 
    

0.04 0.04 
  

0.04 

 P value 
    

0.08 0.07 
  

0.08 

BIP_all standardized beta 
      

0.18** 
 

0.13** 

 P value 
      

1. 4×10-17 
 

1.4×10-09 

Neuro_all standardized beta 
       

0.03 0.02  
P value 

       
0.17 0.27 

 n 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 2,223 

 Δ R2  0.0125 0.0701 0.0754 -0.0004 0.0009 0.0006 0.0312 0.0004 0.0914 

Notes: The reported effects are the standardized beta values of linear probability model (LPM) for schizophrenia status. Models 1 – 9 differed only in the inclusion of the variables 

displayed in this table. All models also included the first 10 genetic principal components as control variables. *denotes significance at P < 0.05. ** denotes significance at P < 

0.001. The Δ R² is the difference between the adjusted R² of the model compared to the baseline model that only included control variables but no polygenic scores. 
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Table 3: Polygenic risk prediction of schizophrenia outcomes in the GRAS sample. 

 

    
Years of 

education1 

Age at 

prodrome 

Age at disease 

onset 
Premorbid IQ1 GAF2 CGI-S2 

PANSS 

positive2 

PANSS 

negative2 

Concordant standardized beta  -0.05 -0.01 -0.04 -0.07 -0.16* 0.10* 0.13* 0.20** 

 
P value 0.31 0.86 0.45 0.19 2×10-3 0.05 0.01 2.5×10-04 

          
Discordant standardized beta  0.04 -0.03 -0.02 0.01 0.13* -0.07 -0.10* -0.16* 

 
P value 0.47 0.57 0.71 0.90 0.01 0.18 0.05 2.8×10-03 

          
EA_all standardized beta  0.21** 7.5×10-04 0.01 0.17** 0.16** -0.11* -0.07 -0.17** 

 
P value 2.6×10-06 0.99 0.85 2.3×10-04 2.6×10-04 0.01 0.09 2.4×10-04 

          
BIP_all standardized beta  0.07* -0.03 -0.03 0.06 -6.6×10-04 0.03 0.02 -0.03 

 
P value 0.02 0.35 0.34 0.10 0.98 0.37 0.52 0.36 

          
Neuro_all standardized beta  -0.04 0.05 0.05 0.01 -0.07* 0.03 0.04 -0.01 

 
P value 0.20 0.11 0.13 0.81 0.03 0.31 0.18 0.85 

          
  n 1,039 915 1,043 903 1,010 1,014 1,009 1,002 

  ∆ R² 0.0350 -0.0003 0.0008 0.0225 0.0138 0.0043 0.0037 0.0120 

Notes: Linear regression using the first 10 genetic principal components as control variables. 1: Age of onset was included as covariate. 2: Medication was included as covariate. 

*denotes significance at P < 0.05. ** denotes significance after Bonferroni correction (P < 0.05/40 = 0.00125). The Δ R² is the difference between the adjusted R² of the model 

compared to the baseline model that only included control variables but no polygenic scores. 
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Figure 1: Workflow of the proxy-phenotype analyses 

 
Notes: Educational attainment (EA) and schizophrenia (SZ) GWAS results are based on the analyses reported in ref. 5,13. All 

cohorts that were part of the SZ GWAS were excluded from the meta-analysis on EA. The GRAS data collection was not 

included in either the SZ or the EA meta-analysis. Proxy-phenotype analyses were conducted using 8,240,280 autosomal SNPs 

that passed quality control. Genetic outliers of non-European descent (n = 13 cases) were excluded from the analysis in the 

GRAS data collection (Supplementary Note).   
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Figure 2: Results of the proxy-phenotype analyses. 

 
a. Manhattan plot for educational attainment (EA) associations (n = 363,502). 

 
 

b. Q–Q plot of the 506 EA-associated SNPs for schizophrenia (SZ) (n = 34,409 cases and n = 45,670 controls). 

 
 

Notes: Panel a: The x axis is the chromosomal position, and the y axis is the significance on the −log10 scale. The black dashed 

line shows the suggestive significance level of 10−5 that we specified in our preregistered analysis plan. Red and green crosses 

identify EA-associated lead-SNPs that are also associated with SZ at nominal or Bonferroni-adjusted significance levels, 

respectively.  

Panel b: SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are blue. SNPs outside 

the grey area (21 SNPs) pass the Bonferroni-corrected significance threshold that corrects for the total number of SNPs we 

tested (P < 0.05/506 = 9.88×10-5) and are labelled with their rs numbers. Observed and expected P values are on the −log10 

scale. For the sign concordance test: P = 0.40. 
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Figure 3: LD-aware enrichment across traits for SNPs that are jointly associated with EA (𝑃𝐸𝐴 < 10−5) and SZ (𝑃𝑆𝑍 < 0.05). 

 

Notes: Color codes illustrate the degree of LD-aware enrichment. Red and blue represent stronger and weaker LD-aware enrichment than expected, respectively. Darker colors 

illustrate more substantial deviation from expectation. A star (*) indicates that the observed LD-aware enrichment is significant after Bonferroni correction for the number of SNPs 

that were tested for the specific trait (ranging from 79 to 105). Note that the p-values of this test are not the same as those reported in the GWAS and proxy-phenotype analyses 

because the hypothesis that was test here is different (Supplementary Note). The lines on the left side represent hierarchical clustering using the euclidean distance and the 

complete agglomeration method. Note that we restricted our analysis to HapMap3 SNPs because these are available in most publically available GWAS summary statistics. If a 

candidate SNP from our proxy-phenotype results was not included in HapMap3, we replaced it by the best available proxy SNP that was available (𝐿𝐷𝑟2 > 0.8 and a maximum 

distance of 500 kb to our missing EA lead SNPs, choosing the proxy with the highest 𝐿𝐷𝑟2). See Supplementary Note for more details. 
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Figure 4: Genetic correlations of GWAS and GWIS results that are central to the 

relationship between SZ and EA. 

 

Notes: The heatmap displays the genetic correlations across 7 sets of GWAS or GWIS summary statistics. Genetic correlations 

were estimated with LD score regression12. The color scale represents the genetic correlations ranging from –1 (red) to 1 (blue). 

Asterisk denotes that the genetic correlation is significant at P value < 0.01, without adjustment for multiple comparisons.  
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Figure 5: Biological annotation of SNPs that are jointly associated with EA (𝑃𝐸𝐴 < 10−5) 
and SZ (𝑃𝑆𝑍 < 0.05). 

 
a. Gene set enrichment using DEPICT 

 

b. Tissue enrichment using DEPICT  

 

Notes: Panel a: Exemplar gene sets identified using DEPICT at FDR < 5%. Color represents the DEPICT gene set enrichment 

P value without adjustment for multiple comparisons (lower P values are reflected by darker colors). Gene sets with Pearson 

correlations above r = 0.3 are connected by edges. Panel b: Tissue enrichment results obtained by DEPICT at FDR < 5%. 

Names of the 21 significantly enriched tissues are shown above the dashed line. P values are without adjustment for multiple 

comparison. The dotted line represents the 0.01 P value. See Supplementary Note for additional details. 
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1 GWAS on educational attainment  

We obtained GWAS summary statistics on educational attainment (EA) from the Social 

Science Genetic Association Consortium (SSGAC). The results are based on the analyses 

reported in Okbay et al.1, including the UK Biobank. However, our project required non-

overlapping GWAS samples for EA and schizophrenia (SZ). Therefore, all cohorts that were 

part of the most recent GWAS on SZ by the Psychiatric Genomics Consortium (PGC)2 

(deCODE, DIL, EGCUT, FTC, FVG, H2000, KORA, MGS, WTCCC58C) were excluded 

from the meta-analysis on EA, yielding a total sample size of n = 363,502. Our replication 

sample (the Göttingen Research Association for Schizophrenia – GRAS, see Supplementary 

Note section 6) was not part of the GWAS on EA. 
 

  

2 GWAS on schizophrenia 

The PGC shared GWAS summary statistics on SZ with us. The results are based on Ripke et 

al.2, but excluded data from our replication sample (GRAS, see Supplementary Note section 

6), yielding a total sample size of n = 34,409 cases and n = 45,670  controls.  

 

 

3 Quality control 

Data sources and quality control procedures for the GWAS on EA and SZ are described in 

Okbay et al.1 and Ripke et al.2, respectively. The original EA results file contained 

12,299,530 genetic markers, compared to 17,221,718 in the SZ results file.  

Before we proceeded with our proxy-phenotype analyses, we applied the following additional 

quality control steps: 

1. To maximise statistical power, we excluded single nucleotide polymorphisms 

(SNPs) that were missing in large parts of the two samples. Specifically, we 

continued with SNPs that were available in at least 19 out of 50 cohorts in the SZ 

results2,a and in N > 200,000 in the EA meta-analysis1. This step excluded 3,778,914 

and 6,369,138 genetic markers for EA and SZ, respectively. 

2. We dropped SNPs that were not available in both GWAS results files. This step 

restricted our analyses to the set of available genetic markers that passed the quality-

control filters in both the EA and the SZ GWAS results, leaving us with 8,403,560 

autosomal SNPs.  

3. We dropped 6 SNPs with non-standard alleles (i.e. not A, C, T, or G) and 2 SNPs 

with mismatched effective alleles. Furthermore, we dropped 163,272 SNPs in the 

first and the 99th percentile of the distribution of differences in minor allele 

frequency (MAF) in the two results files. This final step eliminated SNPs that were 

                                                           
a The actual N per SNP was not provided in the SZ GWAS summary statistics. 
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likely to be affected by coding errors, strand flips, or substantial differences in MAF 

in the EA and SZ samples.  

The remaining 8,240,280 autosomal SNPs were used in the proxy-phenotype and prediction 

analyses described in Supplementary Note sections 4, 5, 7 and 8. 

 

4 Selection of education-associated candidate SNPs  

We conducted our proxy-phenotype analyses following a pre-registered analysis plan 

(https://osf.io/dnhfk/), using 8,240,280 autosomal SNPs that passed quality control (see 

section 3).  

4.1 Setting the P value threshold for the proxy-based SNPs 

Ideally, proxy-phenotype analyses should use a pre-specified P value threshold that 

maximises the expected number of true positive results in the look-up stage. The optimal 

threshold trades off between two opposing effects. On the one hand, a less stringent threshold 

yields a larger number of candidates that are forwarded to the second stage. A larger set of 

candidates is more likely to contain true positives. On the other hand, a larger number of 

candidates requires that a more stringent experiment-wide significance level needs to be 

applied in the second stage to adjust for multiple testing, which decreases power to pick out 

the true positives from among the set of candidates3. In principal, it is possible to calculate 

the optimal P value threshold based on the observed distribution of standardised effects sizes 

and standard errors in the GWAS results of the proxy, the genetic correlation between the two 

traits, their SNP-based heritabilities, and the sample size of the target phenotype. Given these 

parameters, one can infer the expected effect size of a genetic variant on the target from the 

results on the proxy phenotype, calculate the statistical power for the look-up, and 

approximate the number of expected true positive associations from the look-up at various P 

value thresholds4.  

In the current case, the value of such theoretical calculations is limited because the genetic 

correlation between EA and SZ does not reflect the actual genetic overlap between the two 

traits adequately. Specifically, Okbay et al.1 report low, but significant, bivariate LD score 

regression estimates for the genetic correlation between EA and SZ of 0.08 (P = 3.2×10-4). In 

addition, the 74 genome-wide significant EA loci have only 51% sign concordance with the 

SZ results. This sign concordance pattern cannot be differentiated from what would be 

expected by chance for two traits that exhibit no genetic overlap. Yet, the same 74 EA-

associated loci are strongly enriched for association with SZ (enrichment P value < 0.002), 

which strongly rejects the hypothesis of no genetic overlap between the two traits. This 

implies that standard formulas4 to calculate the expected effect size of a genetic variant on SZ 

from the observed results on EA will be too conservative because they ignore the specific 

pattern of split sign concordance but strong enrichment for this pair of traits.  

Instead of calculating a noisy theoretical optimum, we follow Rietveld et al.3 and selected  

10-5 as the default P value threshold prior to carrying out the proxy-phenotype analyses 

(https://osf.io/dnhfk/).  
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5 Look-up, sign concordance and enrichment  

We used the GWAS results on EA and SZ (see Supplementary Note sections 1-2) that passed 

our quality control (Supplementary Note section 3) for the analyses described here.  

5.1 Look-up 

To select approximately independent SNPs from the EA GWAS results, we applied the 

clumping procedure in PLINK version 1.95,6 using r2 > 0.1 and 1,000,000 kb as the clumping 

parameters and the 1000 Genomes phase 1 version 3 European reference panel7 to estimate 

linkage disequilibrium (LD) among SNPs. This algorithm assigns the SNP with the smallest 

P value as the lead SNP in its “clump”. All SNPs in the vicinity of 1,000,000 kb around the 

lead SNP that are correlated with it at r2 > 0.1 are assigned to this clump. The next clump is 

formed around the SNP with the next smallest P value, consisting of SNPs that have not been 

already assigned to the first clump. This process is iterated until no SNPs remain with P < 10-

5, leading to 506 approximately independent EA-associated lead SNPs. 108 of the 506 EA-

associated lead SNPs are genome-wide significant (P < 5 × 10-8).  

We looked up the SZ GWAS results (Supplementary Note section 2) for these 506 EA-

associated lead SNPs. Results for all 506 SNPs are reported in Supplementary Table 5.1. 

Figure 2a shows a Manhattan plot for the GWAS on EA highlighting SNPs that were also 

significantly associated with SZ (red crosses for PSZ < 0.05, green crosses for PSZ < 0.05/506 

= 9.88 × 10-5).  Figure 2b presents a Q-Q plot of the look-up. 132 SNPs are associated with 

SZ at nominal significance (P < 0.05) and 21 of these survive Bonferroni correction (PSZ < 

9.88 × 10-5).  

In order to investigate the novelty of the findings, we extracted all the SNPs in LD with these 

21 SNPs at r2  0.1 with a maximum distance of 1,000 kb using the 1000 Genomes phase 1 

European reference panel. Of these 21, 12 are in LD with loci previously reported by Ripke et 

al. and 2 are in the major histocompatibility complex (MHC) region on chromosome 6 and 

were therefore not separately reported in that study2. Three of the 21 loci that were not 

identified yet by Ripke et al.2 were independently found in a recent meta-analysis of the PGC 

results with another large-scale cohort, yielding a total sample size of n = 40,675 SZ cases 

and n = 64,643 controls8, strengthening the credibility of these loci. Furthermore, two are in 

LD with loci recently reported by Hellard et al.9 who used a false discovery rate (FDR) 

method that is less conservative than our approach. The results of that latter study were also 

based on a much smaller GWAS sample for EA (n = 95,427) and partially overlapping 

samples between EA and SZ. Thus, our finding lends additional credibility to the suggestive 

associations reported in Hellard et al9. 

The remaining 2 SNPs we identified (tagged by rs7336518 on chr 13 and rs7522116 on chr 1) 

are credible candidate loci for SZ. Rs7522116 is in LD (𝑟2 = 0.52) with rs10218712, which 

reached suggestive significance in a previous study (P = 4.0 × 10-06)10. Similarly, rs7336518 

is in LD (𝑟2 = 0.67) with rs11617058, which reached suggestive significance in the same 

study (P = 1.0 × 10-06)10.  

5.2 Bayesian credibility of results 

We probed the credibility of our proxy-phenotype association results using a heuristic 

Bayesian calculation following Rietveld et al. (Supplementary Note pp. 13-15)3. We focus on 

the 21 EA-associated lead SNPs that are also associated with SZ after Bonferroni correction.  
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Bayes’ Rule implies that the probability that an association is true given that we observe 

significance is given by 

𝑃(𝐻1||𝑡 > 𝑡𝛼 2⁄ ) =
𝑃(𝑡 > 𝑡𝛼 2⁄ |𝐻1)𝑃(𝐻1)

𝑃(𝑡 > 𝑡𝛼 2⁄ |𝐻1)𝑃(𝐻1) + 𝑃(𝑡 > 𝑡𝛼 2⁄ |𝐻0)𝑃(𝐻0)
 

 

=
(𝑝𝑜𝑤𝑒𝑟)(𝜋)

(𝑝𝑜𝑤𝑒𝑟)(𝜋) + (𝛼)(1 − 𝜋)
 

 

“Power”, as well as the significance test, are 2-sided, 𝜋 is the prior belief that the SNP is truly 

associated, and 𝛼 is the significance threshold used for testing (in our case, 𝛼 =
0.05

506
=

9.88 × 10−5).  

To calculate power for each SNP, we computed the winner’s curse corrected odds ratio using 

the procedure described in Rietveld et al. (Supplementary Note pp. 7-13)11 for the 𝛼 threshold 

of 9.88 × 10−5. Because the actual sample size per SNP is not reported in the SZ GWAS 

summary statistics, we furthermore assumed that each SNP was available in the entire sample 

of 34,409 cases and 45,670 controls (i.e. the PGC results from Ripke et al.2 excluding the 

GRAS data collection).   

An important question is which prior beliefs are reasonable starting points for these Bayesian 

calculations. For an arbitrarily chosen SNP, the most conservative reasonable prior would 

assume that each truly associated SNP has the same effect size as the strongest effect size that 

was actually observed in the data. If one divides the SNP-based heritability of the trait by that 

effect size in R2 units, one obtains a lower bound for the number of SNPs that can be assumed 

to be truly associated. To aid this line of thinking, we converted the winner’s curse corrected 

odds ratios of our 21 SNPs into R2 using 

𝑅2 = (
𝑑

√𝑑2 + 𝑎
)
2

 

where 𝑑 is Cohen’s d, which is calculated as  

𝑑 = ln⁡(𝑂𝑑𝑑𝑠)
√3

𝜋
 

and 𝑎 is a correction factor that adjusts for the MAF of the SNP. This correction factor is 

calculated as  

𝑎 =
(𝑛1 + 𝑛2)

2

𝑛1𝑛2
 

 

where 𝑛1 = 𝑁 ×𝑀𝐴𝐹 and 𝑛2 = 𝑁 × (1 −𝑀𝐴𝐹), see Borenstein et al.12  

The largest effect size in 𝑅2 that we observe in our results is rs4378243 with 0.044%. The 

SNP-based heritability of SZ is ≈21%13. Thus, if all causal SZ SNPs would have an effect of 

𝑅2 = 0.044%, we would expect that ≈500 truly causal loci exist. The chance of finding any 

one of them by chance from a set of ≈500,000 independent loci in the human genome is 
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≈0.1%.b However, in reality most truly associated loci for SZ will surely have smaller effects 

than that. Thus, a prior belief of ≈0.1% is certainly too conservative.  

Furthermore, the SNPs we investigate are not arbitrary but selected based on their association 

with another, genetically related cognitive trait (EA) in a very large, independent sample. 

Thus, a prior belief of 1% or 5% that these SNPs are also associated with SZ is probably 

more reasonable. As an upper bound, we assume that 10% of all loci are causal. Thus, the 

chance to pick any one of them by chance would be 10%.  

Table 1 displays the winner’s curse corrected effect size of the 21 EA-associated lead SNPs 

that are also associated with SZ after Bonferroni correction. It also shows the posterior 

probability that these SNPs are truly associated with SZ given our results for prior beliefs 

ranging from 0.1%, 1%, 5%, to 10%. Thirteen of these SNPs have posterior probabilities of 

being true positives of >50% for even the most conservative prior. For a more realistic prior 

belief of 5%, all 21 SNPs are likely or almost certain to be true positives. 

5.3 Sign concordance 

We compared the signs of the beta coefficients of the 506 EA lead SNPs (𝑃𝐸𝐴 < 10−5) with 

the beta coefficients for SZ. If the signs were aligned, we assigned a “1” to the SNP and “0” 

otherwise. By chance, sign concordance is expected to be 50%. We tested if the observed 

sign concordance is different from 50% using the binomial probability test14. 263 of the 506 

SNPs have the same sign (52%, P = 0.40, 2-sided). 

Sign concordance is 58% (P = 0.10, 2-sided) in the set of 132 EA lead SNPs that are also 

nominally significant for SZ (𝑃𝐸𝐴 < 1 × 10−5 and 𝑃𝑆𝑍 < 0.05).  

Finally, for the 21 SNPs that passed Bonferroni correction for SZ (𝑃𝐸𝐴 < 1 × 10−5 and 

𝑃𝑆𝑍 < 9.88 × 10−5), sign concordance is 62% (P = 0.38, 2-sided). 

5.4 Enrichment 

Because EA and SZ are highly polygenic, we tested for enrichment by taking the actual 

distribution of P values in the GWAS result files into account.  

5.4.1 Raw enrichment factor (not corrected for LD score of SNPs) 

Due to the polygenic architecture of both traits, it is expected to find some EA-associated 

SNPs that are also associated with SZ just by chance even if both traits are genetically 

independent. Under this null hypothesis, the expected number of EA-associated lead SNPs 

that are also significantly associated with SZ is  

𝐸𝐻0[𝑁𝑆,𝐸𝐴→𝑆𝑍] = 𝑁𝑇,𝐸𝐴 × 𝜏𝑃𝐸𝐴 × 𝜏𝑃𝑆𝑍  

where 𝑁𝑇,𝐸𝐴 is the total number of independent lead SNPs in the EA GWAS results, and 𝜏𝑃𝐸𝐴 

and 𝜏𝑃𝑆𝑍 are the shares of SNPs in 𝑁𝑇,𝐸𝐴 that have P values for EA and SZ below a certain 

threshold, respectively.  

                                                           
b It is typically assumed that GWAS data for European populations contain ≈1,000,000 independent loci. 

However, the quality-control procedures for GWAS summary statistics in studies like ours decreases the number 

of independent loci to <1,000,00041,62. In fact, clumping the post-QC GWAS results for SZ without a P value 

threshold, an R2
LD<0.1, and a LD-window of 1,000,000 kb with the 1000 Genomes phase 1 version 3 European 

reference panel42 leads to only 223,065 independent loci. Thus, assuming 500,000 independent loci in these 

calculations is conservative. 
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We define the raw enrichment factor as 

𝑁𝑆,𝐸𝐴→𝑆𝑍 𝐸[𝑁𝑆,𝐸𝐴→𝑆𝑍]⁄  

where 𝑁𝑆,𝐸𝐴→𝑆𝑍 is the observed independent number of SNPs that pass both the P value 

thresholds 𝑃𝐸𝐴 and 𝑃𝑆𝑍. 

We obtained 𝑁𝑇,𝐸𝐴 by applying the clumping procedure described in Supplementary Note 

section 5.1 without a P value threshold for EA, leading to 222,289 independent EA lead 

SNPs in our merged results file (Supplementary Note section 3). For 𝑃𝐸𝐴 < 10−5, we found 

506 SNP (𝜏𝑃𝐸𝐴 =
506

222,289
= 0.2276%).  

The Bonferroni threshold for testing 506 independent hypothesis is 𝑃𝑆𝑍 <
0.05

506
= 9.88 ×

10−5. There are 341 independent SNPs in the SZ results that pass this threshold, thus 𝜏𝑃𝑆𝑍 =
341

222,289
= 0.1534%. Therefore, we expect  [𝑁𝑆,𝐸𝐴→𝑆𝑍] = 222,289⁡ × 0.2276% ×

0.1534% = 0.776 (i.e. less than one) SNP to be jointly associated with both traits under the 

hull hypothesis of no genetic overlap. At these P value thresholds, we actually observe 

𝑁𝑆,𝐸𝐴→𝑆𝑍 = 21 SNPs, implying a raw enrichment factor of 
21

0.776
= 27. 

For 𝑃𝑆𝑍 < 0.05, we found 17,935 SNP (𝜏𝑃𝑆𝑍 =
17,935

222,289
= 8.068%). Thus, [𝑁𝑆,𝐸𝐴→𝑆𝑍] =

222,289⁡ × 0.2276% × 8.068% = 41. At this more liberal P value threshold, we actually 

observe 𝑁𝑆,𝐸𝐴→𝑆𝑍 = 132 SNPs, implying a raw enrichment factor of 
132

41
= 3.23. 

5.4.2 Raw enrichment P value (not corrected for LD score of SNPs) 

Following Okbay et al.4, we performed a non-parametric test of joint enrichment that probes 

whether the EA lead SNPs are more strongly associated with SZ than randomly chosen sets 

of SNPs with MAF within one percentage point of the lead SNP. To perform our test, we 

randomly drew 10 matched SNPs for each of the 506 EA lead SNPs with 𝑃𝐸𝐴 < 10−5.  

We then ranked the 506×10 randomly matched SNPs and the original 506 lead EA SNPs by 

P value and conducted a Mann-Whitney test15 of the null hypothesis that the P value 

distribution of the 506 EA lead SNPs are drawn from the same distribution as the 506×10 

randomly matched SNPs. We reject the null hypothesis with 𝑃 = 6.872 × 10−10 (𝑍⁡ =
⁡6.169, 2-sided). As a negative control test, we also calculated the raw enrichment P value of 

the first randomly drawn, MAF-matched set of SNPs against the remaining 9 sets, yielding P 

= 0.17. 

Repeating this raw enrichment test for the subset of 21 EA-associated SNPs that remained 

significantly associated with SZ after Bonferroni correction (threshold 𝑃𝑆𝑍 <
0.05

506
= 9.88 ×

10−5)⁡yields 𝑃 = 5.44 × 10−14 (𝑍⁡ = ⁡7.521, 2-sided). The negative control test based on the 

raw enrichment P value of the first randomly drawn, MAF-matched set of SNPs against the 

remaining 9 sets yields P = 0.34. 

5.4.3 LD-aware enrichment test 

The “raw” enrichment reported in Supplementary Note section 5.4.1 could in principle be due 

to the LD-structure of the EA lead SNPs that we tested. Specifically, if these EA lead SNPs 

have stronger LD with other SNPs in the human genome than expected by chance, this could 

cause the observed enrichment of this set of SNPs on SZ and other traits because higher LD 
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increases the chance these SNPs would “tag” causal SNPs that they are correlated with. To 

test whether the observed enrichment is due to LD, we developed an LD-aware enrichment 

test. Furthermore, we used this LD-aware enrichment test to probe if the observed enrichment 

of our EA lead SNPs can also be observed for other traits.  

We investigated the SZ GWAS results described in Supplementary Note section 2 and 21 

additional traits for which GWAS summary statistics were available in the public domain 

(Supplementary Table 5.2). Some of the traits were chosen because they are phenotypically 

related to SZ (bipolar disorder (BIP), neuroticism, depressive symptoms, major depressive 

disorder, autism, and childhood intelligence (IQ)), while others were less obviously related to 

SZ (e.g. intracranial volume, cigarettes per day) or to the brain (e.g. age at menarche, 

inflammatory bowel disease). Finally, we included five traits as negative controls (height, 

birth weight, birth length, fasting (pro)insulin).  

We calculated the LD score regression intercept and slope of the traits using LDSC16. For 

SNP i in trait j, the expected chi-square statistic can be calculated as 

𝐸[𝑍𝑖𝑗
2] = (𝑁𝑗 × ℎ2𝑗 × 𝐿𝐷𝑠𝑐𝑜𝑟𝑒𝑖/𝑀) + (1 + 𝑁𝑎)𝑗 

where N is the sample size of the target trait j, h2 is the heritability of trait j, 𝐿𝐷𝑠𝑐𝑜𝑟𝑒𝑖 =
∑ 𝑟𝑖𝑘

2𝑀
𝑘=1  for SNP i is calculated using HapMap3 SNPs from European-ancestry, M is the 

number of SNPs included in the calculation of the LD score (n = 1,173,569 SNPs), 𝑟𝑗𝑘
2  is the 

squared correlation between SNPs j and k in the HapMap3 reference panel, and 1 + Na is the 

LD score regression intercept for trait j. We used precomputed LD scores available from the 

LDSC software16.   

As recommended by Bulik-Sullivan et al.16, we restricted our analysis to HapMap3 SNPs 

(using the --merge-alleles flag) because these seem to be well-imputed in most studies. Out of 

132 SNPs with 𝑃𝐸𝐴 < 1 × 10−5 and 𝑃𝑆𝑍 < 0.05, only 30 SNPs are directly present in 

HapMap3 SNP list. Therefore, we extracted proxy SNPs with 𝑟2 > 0.8 and a maximum 

distance of 500 kb to our missing EA lead SNPs and chose the one with the highest 𝑟2 as a 

proxy. After this step, we could include 105 (out of 132) SNPs in our analyses. For each of 

these 105 SNPs, we observed the Z-statistics in the publically available GWAS results of the 

traits. Z-statistics were converted into Chi2 statistics by squaring them. The LD score 

corrected enrichment per SNP for each trait is the ratio of the observed to the expected Chi2. 

The results are shown in Figure 3 (and in Supplementary Table 5.2).  To test whether a 

particular realization is significantly larger than expected (and thus the ratio 𝐶ℎ𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 /

𝐶ℎ𝑖𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
2  is significantly greater than one), we test each particular observed Chi2 against a 

non-central Chi2 distribution with 𝑘 = 1 + 𝑁𝑎 degrees of freedom and a non-centrality 

parameter of 𝑁 × ℎ2 × 𝐿𝐷𝑠𝑐𝑜𝑟𝑒𝑖/𝑀. The intuition behind using the LD score regression 

slope as the non-centrality parameter is as follows: True genetic signal, not caused by 

stratification, covaries with LD16. True genetic signal also results in non-central Chi2 statistics 

(i.e. 𝛽 ≠ 0 leads to non-centrality in (
𝛽

𝑠𝑒
)2). Therefore, under a polygenic model, SNPs with a 

high LD score are expected to tag several true effects, raising our expectation of their Chi2 

statistic. Here we account for the LD score specific expectation of effect size. We show the 

selected SNPs influence our traits of interest over and above what is expected based on LD 

and, importantly, our results suggest that this is not the case for several other phenotypes, 

revealing a certain amount of specificity in the enriched SNPs.  

Furthermore, since the SNPs considered for enrichment are independent, their Chi2 and non-

centrality parameters are additive. This additivity allows us to formulate an expected 

distribution of the sum of 𝐶ℎ𝑖𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 , based on the sum of non-centrality and the sum of 
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degrees of freedom for the 105 SNPs. Against this expected distribution we can test the 

observed sum of Chi2 statistics for all SNPs. This test provides us with a P value for the LD-

aware enrichment test. The P value reflects excess of the enrichment for the set of SNPs 

beyond what is expected if these SNPs are part of the infinitesimal genetic contribution to the 

trait in question.  

Our LD-aware enrichment test has two limitations. First, LD score regression assumes that 

allele frequency (AF) does not correlate with effect size, an assumption which has been 

empirically shown to be violated for low-frequency alleles17. Second, our test assumes the 

absence of selection on the trait. Variation in AF and the degree of negative selection could 

explain excess signal in low LD SNPs18. However, our raw enrichment P value (see 

Supplementary Note section 5.4.2) is robust to this because it takes the AF of the candidate 

SNPs explicitly into account. 

Supplementary Table 5.2 and Figure 3 summarise the results. We find that the enrichment of 

EA-associated SNPs for SZ cannot be explained by the LD scores of these SNPs: The set of 

105 SNPs is jointly associated with SZ after controlling for their LD scores (P < 4 × 10-14) 

and 15 of these SNPs are individually associated with SZ after Bonferroni correction. We 

also observe LD score corrected enrichment of these SNPs with several other phenotypes, 

most noticeably with BIP (joint P = 1.1 × 10-16). Four out of 93 tested SNPs are significantly 

associated with BIP after Bonferroni correction, including one of the SNPs that our proxy-

phenotype analysis isolated as a novel candidate locus for SZ (rs9575628, a proxy for 

rs7336518, see Supplementary Table 5.3). We also observe weaker, but still significant joint 

LD score corrected enrichment of this set of SNPs for inflammatory bowel disease, 

neuroticism, age at menarche, and childhood IQ. Note that several brain-phenotypes do not 

show significant enrichment, including depressive symptoms, major depressive disorder, 

ADHD, and Alzheimer’s disease. This implies that the set of SNPs we are testing exhibits 

some phenotype-specificity is not simply involved in all brain-related outcomes. Also note 

that none of the negative control phenotypes we included shows significant LD score 

corrected enrichment (height, birth weight, birth length, fasting (pro)insulin).  

5.5 Prediction of future genome-wide significant loci for schizophrenia 

As reported above (Supplementary Note section 5.1), three of the SNPs that our proxy-

phenotype approach identified after Bonferroni correction have been reported as novel, 

genome-wide significant loci for SZ in an effort8 that was ongoing parallel to ours. Overall, 

50 novel loci for SZ were reported in that study. This provides us with the opportunity to ask 

if our proxy-phenotype approach using GWAS results from EA was able to predict “future” 

GWAS findings for SZ.  

We are using a simple proportions test for this purpose, which compares the ratio of novel 

SNPs included in our list of 132 loci that are jointly associated with EA and SZ (𝑃𝐸𝐴 < 10−5 

and 𝑃𝑆𝑍 < 0.05) with the ratio observed in all remaining approximately independent loci with  

𝑃𝑆𝑍 < 0.05.  

To identify LD partners and to clump our GWAS results, we used a threshold of 𝑟2 > 0.1 

and a 1,000,000 kb window in the 1000 Genomes phase 1 version 3 European reference 

panel. Our SZ summary statistics contained 51,721 approximately independent SNPs with 

𝑃𝑆𝑍 < 0.05. We identified 21,430 SNPs in LD with the 50 novel SNPs8 and 54,425 SNPs in 

LD with the 128 genome-wide significant loci that were previously reported.2 We removed 

SNPs in LD with the previously GWAS hits from our analyses because those SNPs could (by 

definition) not be identified as novel. The remaining set of 51,528 approximately independent 
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SNPs with 𝑃𝑆𝑍 < 0.05 in our SZ GWAS results contained one proxy for each of the 50 novel 

SNPs8. 110 SNPs with 𝑃𝑆𝑍 < 0.05 also exhibited 𝑃𝐸𝐴 < 10−5 in the independent EA GWAS 

sample. Of those 110 SNPs, six were identified as novel SZ loci in the most recent GWAS 

dataset expansion8. Using Fisher’s exact test, we rejected the null hypothesis that the 

proportion of novel SNPs is equal in the two sets (P = 4.1 × 10-8, 2-sided). Furthermore, as a 

robustness check, we performed the analysis again by excluding the SNPs with MAF ≤ 0.1 

and found similar results (P = 1.2 × 10-6). Thus, we conclude that conditioning GWAS results 

on SZ with independent GWAS evidence on EA significantly outperforms pure chance in 

predicting GWAS results on SZ from even larger samples. 

 

6 The GRAS data collection 

All parts of GRAS data collection comply with the Helsinki Declaration and were approved 

by the ethical committee of the Georg-August-University of Göttingen (master committee) as 

well as by the respective local regulatory/ethical committees of all collaborating centres. 

6.1  Subjects 

GRAS schizophrenia and schizoaffective patients 

The GRAS data collection has been established over the last 10 years and consists of >1,200 

deep phenotyped patients, diagnosed with SZ or schizoaffective disorder (according to 

Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition Text Revision [DSM-

IV-TR]) recruited across 23 collaborating centres across Germany19,20. All patients and/or 

their authorised legal representatives gave written informed consent. For the present study 

1,067 patients were included, 67.1% were male (n = 716) and 32.9% female (n = 351). The 

average age was 39.46 ±12.58 years (range 17-79). 
 

GRAS healthy controls  

Healthy controls, who gave written informed consent, were voluntary blood donors, recruited 

by the Department of Transfusion Medicine of the George-August-University of Göttingen 

(Germany) according to national guidelines for blood donation. As such, they widely fulfil 

health criteria, ensured by a broad predonation screening process containing standardised 

questionnaires, interviews, haemoglobin, blood pressure, pulse, and body temperature 

determinations19. Participation as healthy controls for the GRAS data collection was 

anonymous, with information restricted to age, gender, blood donor health state and ethnicity. 

For the present study 1,169 subjects were included, 62.2% were male (n = 727) and 37.8% 

female (n = 442). The average age was 37.44 ±13.27 years (range 18-69). 

 

6.2 Genotyping 

Genotyping of the GRAS patients and control sample was done with a semi-custom Axiom 

myDesign genotyping array (Affymetrix, Santa Clara, CA, USA), based on a CEU 

(Caucasian residents of European ancestry from Utah, USA) marker backbone including 

518,722 SNPs, and a custom marker set including 102,537 SNPs. The array was designed 

using the Axiom Design centre, applying diverse selection criteria21. Genotyping was done by 

Affymetrix on a GeneTitan platform. Several quality control steps were used (SNP call rate 

>97%, Fisher’s linear discriminant >3.6, heterozygous cluster strength off set > -0.1, and 
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homozygote ratio off set > -0.9). These steps were completed with use of either genotyping 

console software (Affymetrix) or R. In a subsequent step, markers in X, Y, and mitochondrial 

chromosomes and those with Hardy–Weinberg equilibrium P < 1 × 10-6 (GRAS healthy 

controls) or P < 1 × 10-10 (GRAS patients) were removed, leaving 589,921 SNPs available for 

analyses.  

6.3 Imputation and estimation of genetic principal components 

The full details of genotype imputation and the estimation of the genetic principal 

components in the GRAS data collection are described elsewhere2. Briefly, imputation was 

done with the prephasing or imputation approach implemented in IMPUTE2 and SHAPEIT 

(chunk size 3 Mb)22,23. A version of the phase 1 integrated variant set release (v3) from the 

full 1000 Genomes Project dataset (March 2012) that is limited to variants with more than 

one minor allele copy (“macGT1”; Aug 26, 2012) was used as imputation reference dataset 

(INFO value > 0.1 and MAF >0.005). Ten principal components of the genetic data in the 

GRAS sample were obtained using the standard PGC protocol2. 

6.4 Phenotyping procedures 

Patients from the GRAS data collection were examined by the GRAS team of travelling 

investigators after giving written informed consent, own and/or authorised legal 

representatives. The GRAS team of travelling investigators consisted of 1 trained psychiatrist 

and neurologist, 3 psychologists and 4 medical doctors/last year medical students. All 

investigators had continuous training and calibration sessions to ensure the highest possible 

agreement on diagnoses and other judgments as well as a low interrater variability regarding 

the instruments applied. A full description of the GRAS data collection standard operating 

procedures is provided elsewhere20.  

Deep clinical phenotyping data were available for all the GRAS patients. For the purpose of 

the present study the following phenotypes for SZ were selected: i) age at prodrome which 

precedes SZ onset and is characterized by cognitive decline, social withdrawal, and 

depression; ii) age at disease onset defined as onset of first psychotic episode; iii) 

premorbid IQ using the MWT-B (Mehrfachwahl-Wortschatz-Intelligenztest-B) which 

estimates the intellectual functioning of a person prior to known or suspected onset of 

disease24; iv) positive and negative symptoms using the Positive and Negative Syndrome 

Scale (PANSS)25. Each domain ranges from 7 to 49 with higher scores indicating severe 

symptoms; v) the Global Assessment of Functioning (GAF) which subjectively rates the 

social, occupational, and psychological functioning of an individual, e.g., how well one is 

meeting various problems-in-living, on a continuum ranging from 1 to 10026. Poorer 

functioning is indicated by lower GAF scores; vi) the Clinical Global Impression of 

Severity (CGI-S) scale which rates illness severity from 1 to 7 with higher scores indicating 

more severe illness.27; vii) years of education was measured based on the highest degree 

obtained, converted into US-schooling year equivalents based on the 1997 International 

Standard Classification of Education (ISCED) of the United Nations28. Education was 

assessed retrospectively at the time of patient recruitment for the GRAS data collection. At 

this time, 75% of the GRAS patients were older than 29 years.   
    
An important feature of SZ patients that may influence their everyday functioning and 

performance, and result in a considerable number of side effects, is their antipsychotic 

medication. Medication was assessed as the dose of present antipsychotic medication of each 

patient at the moment of the interview, expressed as chlorpromazine equivalents29. 
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The sociodemographic and clinical characteristics of the GRAS data collection are reported in 

Supplementary Table 6.1. 

 
 

7 Replication in the GRAS data collection 

We showed in our pre-registered analysis plan that our replication sample (GRAS) is not 

large enough to replicate individual SNPs (https://osf.io/dnhfk/). Instead, we decided at the 

outset to attempt replication of the proxy-phenotype analysis results using a polygenic score 

(PGS) that consists of the >80 most strongly associated, independent SNPs. The set that best 

meets this criterion are the 132 independent EA lead-SNPs that are also nominally associated 

with SZ (𝑃𝑆𝑍 < 0.05), see Supplementary Note section 5. PGS for this set of 132 candidate 

SNPs were constructed using either the 𝛽 coefficient estimates of the EA or the SZ GWAS 

meta-analysis, resulting in two different scores (named EA_132 and SZ_132 in 

Supplementary Tables 7.1.a, b and c, 7.2, 8.2.a and b).  

In addition, we also constructed PGS for EA, SZ, BIP, and neuroticism in the GRAS data 

collection using all available SNPs as control variables for multivariate prediction analyses 

(named EA_all, SZ_all, BIP_all, and Neuro_all in Supplementary Tables 7.1.a, b and c, 7.2, 

8.2.a and b, 8.3, 8.4.a and b). Technical details are described below.  

7.1 Polygenic score calculations 

PGS were calculated using PLINK version 1.95,6. We calculated eight different scores, which 

are described below. 

7.1.1 Schizophrenia scores 

We received the GWAS summary statistics for SZ from the PGC excluding the data from our 

replication sample (GRAS). We constructed a PGS using the 132 EA lead-SNPs (𝑃𝐸𝐴 <
10−5)⁡that are also nominally associated with SZ (𝑃𝑆𝑍 < 0.05). This score (SZ_132) is used 

for replication of the proxy-phenotype analyses described in Supplementary Note section 5. 

Furthermore, we constructed a PGS using all 8,240,280 SNPs that survived quality control 

(SZ_all, see Supplementary Note section 3). Next, we applied the clumping procedure using 

r2 > 0.1 and 1,000 kb as the clumping parameters and the 1000 Genomes phase 1 version 3 

European reference panel to estimate LD among SNPs, eventually leaving a set of 349,357 

SNPs ready for profile scoring.  

For secondary analyses on the prediction of SZ symptoms (Supplementary Note section 8.3), 

we constructed two PGS using the 4,147,926 SNPs and 4,092,354 SNPs that have concordant 

(+ and +; or – and –) or discordant signs (+ and –; or – and +) for EA and SZ, respectively. 

Clumping resulted in 260,441 and 261,062 independent SNPs with concordant or discordant, 

respectively. We used these approximately independent SNPs for profile scoring and call the 

resulting PGS Concordant and Discordant. 

These four scores were calculated using the –score function in PLINK using the natural log 

of the odds ratio of the SNPs for SZ. 
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7.1.2 Educational attainment scores 

Beta coefficients for the EA GWAS described in Supplementary Note section 1 were 

approximated using 𝛽𝑗̂ =
𝑧𝑗

√𝑁𝑗∗2∗𝑀𝐴𝐹𝑗∗(1−𝑀𝐴𝐹𝑗)
, see Rietveld et al. (Supplementary Note pp. 4-

6)11 for the derivation. Using these betas, we constructed a PGS using the 132 EA lead-SNPs 

(𝑃𝐸𝐴 < 1 × 10−5)⁡that are also nominally associated with SZ (𝑃𝑆𝑍 < 0.05). The resulting 

score is called EA_132. 

Furthermore, we constructed a PGS using all 8,240,280 SNPs that survived quality control 

(see Supplementary Note section 3). Next, we applied the clumping procedure using r2 > 0.1 

and 1,000 kb as the clumping parameters and the 1000 Genomes phase 1 version 3 European 

reference panel to estimate linkage disequilibrium among SNPs, eventually leaving a set of 

348,429 SNPs ready for profile scoring. The resulting score is called EA_all.  

7.1.3 Bipolar disorder score 

We obtained GWAS summary statistics on BIP from the PGC30. We used the LD-pruned 

GWAS summary from PGC (“pgc.bip.clump.2012-04.txt”) with a set of 108,834 LD-pruned 

SNPs ready for profile scoring. PGS for the GRAS data collection were calculated by the 

application of the –score function in PLINK using the natural log of the odds ratio. The 

resulting score is called BIP_all. 

7.1.4 Neuroticism score 

We obtained GWAS summary statistics on Neuroticism from the SSGAC. The results are 

based on the analyses reported in Okbay et al.4 containing 6,524,432 variants. We applied the 

clumping procedure using r2 > 0.1 and 1,000 kb as the clumping parameters and the 1000 

Genomes phase 1 version 3 European reference panel to estimate LD among SNPs, 

eventually leaving a set of 232,483 SNPs ready for profile scoring. PGS for the GRAS data 

collection were calculated by the application of –score function in PLINK using the 

Neuroticism beta values. The resulting score is called Neuro_all. 

Note that our replication sample (GRAS) was not included in the GWAS summary statistics of 

any of these traits.  

7.2 Polygenic score correlations 

We calculated Pearson correlations between all PGS that we constructed in the GRAS data 

collection (SZ_all, SZ_132, EA_all, EA_132, Concordant, Discordant, BIP_all, and 

Neuro_all). Results for SZ patients and healthy controls together are reported in 

Supplementary Table 7.1.a.  SZ_all was positively correlated with SZ_132 (r = 0.188; P < 

0.0001) and EA_all positively correlated with EA_132 (r = 0.148, P < 0.0001). We found a 

high correlation between the SZ_all score and Concordant (r = 0.871, P < 0.0001) and 

Discordant (r = 0.881, P < 0.0001) scores. Furthermore, we found a moderate correlation 

between EA_all and Concordant (r = 0.256, P < 0.0001) as well as between EA_all and 

Discordant (r = -0.377, P < 0.0001) scores. Concordant and Discordant scores showed a 

highly positive correlation (r = 0.627, P < 0.0001). We found very similar results among the 

SZ cases (Supplementary Table 7.1.b) and healthy controls when we analyzed them 

separately from each other (Supplementary Table 7.1.c). These results were used to inform 

the correct multiple regression model specification for the analyses presented in section 8.3. 
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7.3 Predicting case-control status using PGS 

To investigate if our proxy-phenotype results help to predict SZ case-control status, we 

estimated a linear probability model (LPM) in Stata31,32. Genetic outliers (n = 13) based on 

self-reported non-European ancestry were excluded from all prediction analyses. Following 

the PGC protocol described in Ripke et al.2, we included 10 principal components as 

covariates (but no other variables). The proportion of variance explained (Adjusted R2) was 

computed by the comparison of a full model (covariates + PGS) to a reduced model 

(covariates only).  

Results of the predictions with different models are summarised in Table 2. As effect sizes, 

we are reporting standardised regression coefficients. SZ_132 scores significantly predict the 

case-control status in our replication sample (𝑃 = 5.4 × 10−0) (Table 2 Model 1) and remain 

significant even if we include SZ_all score as a control variable (𝑃 = 1.7 × 10−0)  (Table 2 

Model 3). The EA_132, EA_all and Neuro_all scores did not predict case-control status in our 

replication sample. The BIP_all score significantly predicts case-control status (Table 2  

Model 7), which is expected given the genetic correlation between BIP and SZ33,34. 

Interestingly, the SZ_132 score still significantly predicts case-control status when all other 

scores are included as control variables (P = 3.4 × 10−0) (Table 2 Model 9), highlighting the 

importance of these 132 SNPs. Furthermore, as a robustness check we excluded the 132 

SNPs from the construction of the SZ_all and EA_all scores. The prediction results did not 

change except a slight decrease of variance explained with SZ_all scores, which is expected 

given that 132 SNPs were excluded from the construction of the score (Supplementary Table 

7.2). 

As an additional robustness check, we also ran a logistic regression with standardised PGS to 

predict SZ case-control status using the same explanatory variables as in Models 1-9 in Table 

2. In all models, the P values of the coefficients were very similar to the ones obtained by 

LPM. In the equivalent of Model 9, we find that increasing the PGS from its mean by one 

standard deviation increases the probability of being an SZ case in the GRAS sample by 4.3% 

for the SZ_132 score (𝑃 = 3.1 × 10−0), 15.2% for the SZ_all score (𝑃 = 3.3 × 10−0=), and 

7.1% for the BIP_all score (𝑃 = 4.1 × 10−0=), respectively.  

   

 

8 Polygenic prediction of schizophrenia symptoms 

8.1 Phenotypic correlations 

Phenotypic correlations between years of education and different phenotypes of SZ in the 

GRAS data collection (see Supplementary Note section 6) were calculated using Pearson's 

correlation. Target SZ phenotypes included were age at prodrome, age at disease onset, 

premorbid IQ, GAF, CGI-S, and positive and negative symptoms of the PANSS.  

Results from the phenotypic correlations between the target phenotypes are reported in 

Supplementary Table 8.1 and Supplementary Figure 1. In summary, years of education was 

significantly correlated (all P values <0.0003) with all the quantitative traits of interest for the 

present study measuring the psychopathology and level of functioning of the patients (-0.212 

< r < 0.435). The correlation was positive for age at prodrome and age at disease onset, 

indicating that the earlier the disease started the lower the level of education achieved. Years 

of education was also positively correlated with premorbid IQ and GAF and negatively 
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correlated with CGI-S and PANSS positive and negative scores, indicating that higher levels 

of education were associated with less severe disease outcomes. Our results are in line with 

previous studies suggesting that less educated SZ patients are at higher risk of a poorer course 

of the disease35. 

Moreover, we found a strong positive correlation between age at prodrome and age at disease 

onset (r = 0.918; P < 0.0001). Premorbid IQ was positively correlated with GAF (r = 0.200; 

P < 0.0001) and negatively correlated with CGI-S, PANSS positive and negative (-0.277 < r 

< -0.110; all P values < 0.0009). Measures of disease severity (CGI-S, PANSS positive, 

PANSS negative) were positively correlated with each other (0.478 < r < 0.638; all P values 

< 0.0001) and negatively correlated with an assessment of global functioning (GAF, -.579 < r 

< -0.824; all P values <0.0001). 

8.2 Based on the 132 EA lead-SNPs 

To investigate if our proxy phenotype results can predict specific SZ features, we predicted 

eight quantitative outcomes among the SZ cases in the GRAS data collection: years of 

education, age at prodrome, age at disease onset, premorbid IQ, GAF, CGI-S, PANSS 

positive and PANSS negative scores. These phenotypes are described in Supplementary Note 

section 6.  

SZ and BIP, although being classified as two different disorders, share several symptoms. 

The PANSS is a clinical instrument principally developed for use in SZ to identify the 

presence and severity of psychopathology symptoms. However, BIP patients also present 

some symptoms measured by this scale manifesting the phenotypic overlap between both 

diseases36,37. Thus, we used the sum score of the positive symptoms (delusions, conceptual 

disorganization, hallucinations, hyperactivity, grandiosity, suspiciousness/persecution, 

hostility) and the sum score of the negative symptoms (blunted affect, emotional withdrawal, 

poor rapport, passive/apathetic social withdrawal, difficulty in abstract thinking, lack of 

spontaneity and flow of conversation, stereotyped thinking) included in PANSS to test if the 

genetic associations we identified using our proxy-phenotype approach predict symptoms that 

SZ and BIP share.  

For the prediction of each phenotype a linear regression model was used including the PGS 

described in Supplementary Note section 7 (SZ_132, SZ_all, EA_132, EA_all, BIP_all and 

Neuro_all). Each regression included 10 principal components as covariates. The regressions 

for the prediction of years of education and premorbid IQ also included the age of onset as a 

covariate. Furthermore, the regressions for the prediction of GAF, CGI-S and the PANSS 

scores also controlled for medication because medication significantly affects these 

outcomes. We calculated the marginal R2 of each PGS by squaring its standardised beta 

coefficient. Results of the predictions have been summarised in Supplementary Table 8.2.a. 

We found that both the EA_all (stand. beta = 0.17, 𝑃 = 8 × 10−0) and the EA_132 score 

(stand. beta = 0.08, 𝑃 = 9 × 10−0) were associated with years of education in the GRAS 

sample of SZ patients. However, the EA_132 score did not survive correction for multiple 

testing (8 phenotypes and 6 PGS = 48 tests; thus the Bonferroni-adjusted P value is 
0.05

48
=

1.04 × 10−0. However, we note that neither the phenotypes nor the PGS are strictly 

independent. Therefore, the Bonferroni correction is likely to be too conservative to obtain a 

family-wide error rate of 0.05). Since age of disease onset, disease severity and progress of 

the disease can have an effect on the level of education achieved by a SZ patient, the years of 

education assessed in the GRAS data collection is not as solid as the measure used in the 

most recent EA GWAS1. The potential measurement error of EA in the GRAS data collection 
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may therefore lead to an underestimation of the predicted association. The EA_all score was 

also associated with premorbid IQ (stand. beta = 0.14, 𝑃 = 1.8 × 10−0). None of the PGS we 

constructed were associated with any of the other phenotypes tested (age at prodrome, age at 

disease onset, GAF, CGI-S, PANSS positive and negative scores) at 𝑃 < 0.03. 

As a robustness check, we excluded the 132 EA lead-SNPs from the proxy-phenotype 

analyses from the construction of the EA_all and SZ_all scores to correct for double-counting 

of these SNPs [EA_all (without 132) and SZ_all (without 132)]. All prediction models have 

been analysed again with these PGSs, yielding virtually identical results as our main model 

specification (Supplementary Table 8.2.b). 

8.3 Based on the sign concordance between EA and SZ GWAS results 

If heterogeneity in the genetic architecture of SZ subtypes is causing the observed enrichment 

of EA-associated loci with SZ, the sign concordance pattern of SNPs with both traits may 

contain relevant information that is pertinent to specific SZ symptoms. We tested this by 

constructing PGS that take the sign concordance of SNPs for both traits into account. 

Specifically, we took SNPs and SZ GWAS results that were used to construct the SZ_all 

score and sorted the SNPs into two sets based on their sign concordance with EA. The 

resulting two sets of SNPs were used to construct the Concordant and Discordant scores (for 

details, see Supplementary Note section 7.1.1).  

A linear regression model was used for the prediction of each phenotype including the PGS 

described in Supplementary Note section 7 (Concordant, Discordant, EA_all, BIP_all and 

Neuro_all). Due to the high correlation between the SZ_all score with the Concordant (r = 

0.858, P < 0.0001) and Discordant (r = 0.873, P < 0.0001) scores in the GRAS sample of 

patients (Supplementary Table 7.1.b), we excluded the SZ_all from these prediction models 

to avoid multicollinearity. Each regression included the first 10 genetic principal components 

as covariates. The regressions for the prediction of years of education and premorbid IQ also 

included the age of onset as a covariate. Furthermore, the regressions for the prediction of 

GAF, CGI-S and the PANSS scores also controlled for medication because medication 

significantly affects these outcomes. 

Results of the predictions are summarised in Table 3. As expected, the EA_all score was 

associated with years of education and premorbid IQ accounting for 4.2% (𝑃 = 2.6 × 10−0) 

and 3% (𝑃 = 2.3 × 10−0) of the variance, respectively. Interestingly, with this new model we 

could also predict SZ symptoms such as GAF and PANSS (Table 3). For example, all five 

PGS jointly achieve an ∆𝑅2 = 1.2% for PANSS negative and ∆𝑅2 = 1.4% for GAF. 

Conditional on the effects of the Concordant and Discordant scores, the EA_all score is now 

associated with less severe disease outcomes, consistent with the observed phenotypic 

correlations. And conditional on the EA_all score, the Concordant score is now associated 

with more severe positive and negative symptoms as measured by the PANSS scale, worse 

global functioning measured by GAF, and higher illness severity measured by the CGI-S. 

Although a Bonferroni correction for multiple testing is too conservative for our models 

given that PGS and SZ phenotypes are not independent, 5 of the PGS survive Bonferroni 

correction (𝑃 = 0.05/(5 × 8) = 1.25 × 10−0 , see Table 3). 

Results from linear regression models excluding the EA_all scores (Supplementary Table 8.3) 

suggest that the association between EA_all and disease outcomes is conditional on the 

effects of Concordant and Discordant scores. In the same way, the associations between 

Concordant and Discordant and disease outcomes are conditional on the effects of EA_all 

scores. 
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Although the correlation between EA_all and the Concordant (r = 0.256) and Discordant (r = 

-0.377) scores was only moderate (Supplementary Table 7.1.b), we checked for possible 

multicollinearity in all our prediction models. The variance inflation factor was less than 3 for 

all the models, suggesting that multicollinearity is not a concern for the prediction results 

reported in Table 338.  

Since the GRAS data collection includes SZ and schizoaffective disorder (SD) patients, we 

repeated analyses described above excluding patients that were diagnosed with SD (n = 198). 

We found that the 95% confidence intervals of the estimated regression coefficients of both 

model specifications overlapped in all cases, implying that the genetic heterogeneity in SZ 

that we identify is not only due to SD (Supplementary Table 8.4.a and b). 
 

 

9 Controlling for genetic overlap between schizophrenia and 

bipolar disorder  

9.1 GWIS schizophrenia – bipolar disorder 

One possible reason for the observed genetic overlap between EA and SZ is that both 

phenotypes could be jointly genetically correlated with other outcomes. In fact, Nieuwboer et 

al.39 suggest that the genetic correlation between EA and SZ is probably induced by the 

genetic correlation between SZ and BIP as well as the genetic correlation between BIP and 

EA. If that is indeed the case, the EA-associated lead SNPs should not show enrichment for 

association in “unique” SZ GWAS results that are “purged” of the genetic correlation 

between SZ and BIP.  

To test this hypothesis, we estimated genome-wide inferred statistics (GWIS)39 to obtain SNP 

regression coefficients that are unique to SZ, corrected for BIP. We refer to this set of 

summary statistics as “unique” SZ(min BIP). We then repeated the look-up of the EA-associated 

lead SNPs in those summary statistics and note that the EA- and “unique” SZ(min BIP) results 

have been derived from independent samples, similar to our main look-up described in 

Supplementary Note sections 1-3.  

A GWIS infers genome-wide summary statistics for a (non-linear) function of phenotypes for 

which GWAS summary statistics are available39. Here, in particular, we wish to infer for each 

SNP the effect on SZ, conditioned upon its effect on BIP. One possible approximation 

involves a GWIS of the following linear regression function: 

 

𝑆𝑍 = ⁡𝛽 ∗ 𝐵𝐼𝑃 + 𝑒 
 

where the parameter 𝛽 is estimated from the genetic covariance between SZ and BIP and the 

genetic variance in BIP as 𝛽 = ⁡
𝑐𝑜𝑣𝑔(𝑆𝑍,𝐵𝐼𝑃)

𝑣𝑎𝑟𝑔(𝐵𝐼𝑃)
. The residual (𝑒) is actually our trait of intrest, for 

which we use the term SZ(min BIP). Using GWIS we infer the genome wide summary statistics 

for SZ(min BIP) given the most recent PGC GWAS results for SZ (omitting the GRAS data 

collection)2 and BIP40. The effect size with respect to SZ(min BIP) for a single SNP is computed 

as:  

 

𝑒𝑓𝑓𝑠𝑧 − ⁡𝛽 ∗ 𝑒𝑓𝑓𝐵𝐼𝑃 = 𝑒𝑓𝑓𝑒 
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The standard error for each SNP effect is approximated using the delta method and accounts 

for the possible effect of sample overlap between the SZ and BIP GWAS.  

As data input, we used the GWAS results on schizophrenia (excluding the GRAS data 

collection) described in Supplementary Note section 2. GWAS results for BIP40 were 

obtained from the website of the PGC 

(https://www.med.unc.edu/pgc/files/resultfiles/pgc.cross.bip.zip).  

9.2 Look-up in GWIS results schizophrenia – bipolar disorder 

The “unique” SZ(min BIP) results obtained from the GWIS were processed and merged with the 

EA GWAS results using the same procedures described in Supplementary Note section 3, 

leading to 1,153,214 SNPs that passed the quality control thresholds. This number is 

substantially lower than in the main look-up reported in Supplementary Note section 3 

because the BIP GWAS was based on HapMap 2 imputation41 not on 1000 Genomes 

imputation42 like the SZ2 and EA GWAS1. 

We repeated the clumping and look-up of the EA-associated lead SNPs in the cleaned and 

merged “unique” SZ(min BIP) results following the steps described in Supplementary Note 

section 5.1.  

346 approximately independent EA lead SNPs with PEA < 10-5 were identified. None of them 

was significantly associated with “unique” SZ(min BIP) after Bonferroni correction (𝑃 =
0.05

346
=

1.445 × 10−4). Supplementary Figure 2 presents a Q-Q plot of this look-up. Supplementary 

Table 9.1 reports the full results.  

9.2.1 Sign concordance 

We compared the signs of the beta coefficients of the 346 EA lead SNPs (𝑃𝐸𝐴 < 10−5) with 

the beta coefficients of the “unique” SZ(min BIP) results. If the signs were aligned, we assigned 

a “1” to the SNP and “0” otherwise. By chance, sign concordance is expected to be 50%. We 

tested if the observed sign concordance is different from 50% using the binomial probability 

test14. 154 of the 346 SNPs had the same sign (44.5%, P = 0.046, 2-sided). This result is 

consistent with a negative genetic correlation between the most strongly EA-associated SNPs 

and “unique” SZ(min BIP) and contrasts with the positive genetic correlation between EA and 

SZ reported in Obkay et al1. 

9.2.1 Raw enrichment factor (not corrected for LD score of SNPs) 

We calculated the raw enrichment factor of the EA-associated SNPs in the “unique” SZ(min 

BIP) results using the approach described in Supplementary Note section 5.4.1. We obtained 

109,188 approximately independent EA lead-SNPs.  

For 𝑃𝐸𝐴 < 10−5, we found 346 SNP (𝜏𝑃𝐸𝐴 =
306

109,188
= 0.317%). For 𝑃𝑆𝑍 < 0.05, we found 

6,190 SNP (𝜏𝑃𝑆𝑍𝑢𝑛𝑖𝑞𝑢𝑒 =
6,190

109,188
= 5.669%). Thus, under the null hypothesis of no 

enrichment we expect [𝑁𝑆,𝐸𝐴→𝑆𝑍𝑢𝑛𝑖𝑞𝑢𝑒] = 109,188⁡ × 0.317% × 5.669% = 20 SNPs to 

have 𝑃𝐸𝐴 < 10−5 and 𝑃𝑆𝑍𝑢𝑛𝑖𝑞𝑢𝑒 < 0.05 simulatenously. At these P value thresholds, we 

actually observe 𝑁𝑆,𝐸𝐴→𝑆𝑍𝑢𝑛𝑖𝑞𝑢𝑒 = 32 SNPs, implying a raw enrichment factor of 
32

20
= 1.6. 

Thus, the observed enrichment of the EA-associated SNPs in the “unique” SZ(min BIP) results 

is weaker than in our main look-up reported in Supplementary Note section 5.4.1, but it still 

deviates from the expectation under the null hypothesis. 
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9.2.2 Raw enrichment P value (not corrected for LD score of SNPs) 

We repeated the procedures described in Supplementary Note section 5.4.2 and found a raw 

enrichment P value of 0.02 (𝑍⁡ = ⁡2.317, 2-sided). Thus, although the enrichment of the EA-

associated top SNPs is unlikely to be drawn from the same distribution as all “unique” SZ(min 

BIP) results with the same MAF distribution, the enrichment is weaker than in the main SZ 

GWAS results that did not control for the genetic overlap between SZ and BIP. 

9.3 GWIS bipolar disorder -  schizophrenia 

Using the GWIS method and the data sources described above (Supplementary Note section 

9.1), we also “purged” the genetic association results for BIP of their overlap with SZ, 

obtaining “unique” BIP(min SZ) results.  

9.4 Genetic correlations of GWAS and GWIS results 

To test if the genetic overlap of SZ with EA is partially due to their genetic correlation with 

other traits, we computed genetic correlations of SZ and EA with three other phenotypes of 

particular relevance—BIP, childhood IQ, and neuroticism. Given that SZ is sometimes 

referred to as a cognitive disorder43,44, it is somewhat puzzling that previous studies did not 

find a significant (negative) genetic correlation between SZ and childhood IQ33. Furthermore, 

the personality trait neuroticism has been demonstrated to correlate across various psychiatric 

disorders and is positively associated (𝑟 ≈ 0.4) with a general psychopathology factor (p)45. 

In addition, moderate and strong negative genetic correlations of neuroticism have been 

reported for EA1 and depressive symptoms4, respectively, raising the possibility that 

neuroticism may contribute to the genetic overlap between EA and SZ. Finally, Nieuwboer et 

al.39 suggest that the genetic correlation between EA and SZ may be induced by the genetic 

correlation between SZ and BIP as well as the genetic correlation between BIP and EA. 

Extending this logic, it could also be that the lack of a clear negative genetic correlation 

between SZ and childhood IQ is induced by the genetic correlation between SZ and BIP.  

Our analyses are facilitated by the fact that large-sample GWAS summary statistics are 

available in the public domain for all five traits (see data sources in Supplementary Table 

9.2). In addition to analysing GWAS summary statistics, we also included the GWIS results 

described above in Supplementary Note sections 9.1 and 9.3 (GWIS SZ(min BIP) and GWIS 

BIP(min SZ)).  

Supplementary Table 9.2 and Figure 4 display the results. When using the GWAS summary 

statistics, we obtain results very closely resembling those in earlier studies. In particular, we 

find a strong positive genetic correlation between SZ and BIP (rg = 0.72, P = 8.57 × 10-

60)33,39, a positive genetic correlations of EA with childhood IQ (rg = 0.74, P = 2.22 × 10-30) 

and BIP (rg = 0.27, P = 1.75 × 10-11), as well as a negative genetic correlation between EA 

and neuroticism (rg = -0.25, P = 7.08 × 10-17)1. Also in line with previous reports is the 

insignificant genetic correlation between SZ and childhood IQ (rg = -0.03, P = 0.61)33 as well 

as the positive genetic correlation between SZ and EA (rg = 0.09, P = 1.04 × 10-04)1, both of 

which are counter-intuitive results. Furthermore, we find some positive genetic correlation of 

neuroticism with SZ (rg = 0.19, P = 4.5 × 10-07) and BIP (rg = 0.10, P = 0.06). However, these 

results are too weak to justify a GWIS approach that would purge the SZ and BIP results of 

their genetic correlation with neuroticism.  

Interestingly, the genetic correlations change substantially when we purge the SZ results of 

their genetic overlap with BIP (GWIS SZ(min BIP)) and vice versa (GWIS BIP(min SZ)). The 
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genetic correlations between EA and IQ with SZ(min BIP) are now negative and significant (rg = 

-0.16, P = 3.88×10-04 and rg = -0.31, P = 6.00 × 10-03 respectively), which is more in line with 

the idea of SZ being a cognitive disorder.43 Furthermore, the genetic correlations of EA and 

IQ with BIP(min SZ) remain positive and get somewhat stronger (rg = 0.31, P = 2.87 × 10-07 and 

rg = 0.33, P = 3.18 × 10-02 respectively). The genetic correlations of SZ(min BIP) and BIP(min SZ) 

with neuroticism, however, remain quite stable. 

These results suggest two things: First, the genetic overlap between SZ and EA reported in 

Supplementary Note section 5 and the small, positive genetic correlation between the two 

traits is indeed to some extent caused by their genetic overlap with both BIP and childhood 

IQ (and not by their overlap with neuroticism). Second, once we purge the genetic association 

with SZ of their overlap with BIP, we see that the remaining part of “unique” SZ(min BIP) has 

negative genetic correlations with childhood IQ and EA. Thus, SZ diagnoses that have been 

used in large-scale GWAS analyses until now seem to comprise of at least two subtypes of 

the disease that have different genetic components: One part resembles a cognitive disorder 

which does not overlap with BIP, and one part does overlap with BIP but is not characterised 

by cognitive deficiencies.  

 
 

10 Simulating assortative mating 

Previous studies found substantial assortative mating for EA, with spousal correlations in the 

range between 0.45 and 0.66, which led to a genetic resemblance among spouses for EA-

associated genetic markers46. There is also evidence for substantial assortative mating for 

psychiatric disorders (in particular, SZ) with spousal correlations around 0.447. One 

possibility is that strong, simultaneous assortative mating on EA and SZ may cause an 

enrichment of EA-associated loci for SZ. If this happens in the absence of phenotypic and 

genetic correlations between the two traits, one may call such an enrichment “spurious” 

because the genetic variants for EA would have no actual influence on SZ, even if they would 

be found to be robustly associated with SZ. We ran simulations to test how likely it is that our 

results may be driven by strong, assortative mating. 

10.1 Simulations  

10.1.1 Description  

We simulated an initial generation of n = 25,000. For each individual, two sets of 5,000 

genetic markers were drawn from a binomial distribution with a 50% chance to be either 0 or 

1. The sum of the two copies of each marker is the genotype of the individual. We assumed 

that two non-overlapping subsets of markers (500 each) were causal for either EA or SZ. We 

further assumed that both EA and SZ are 100% heritable, binary outcomes. The frequency of 

high educational attainment was set to 0.3, and the frequency of SZ to 0.2. The phenotype of 

each individual was determined by examining the value of a polygenic score based on the 

known causal markers for each trait. We determined the relevant cut-off point of the score 

such that it matched the assumed frequencies of both traits in the population.  

The initial generation went through a matching algorithm where each person was matched to 

a spouse and spousal correlations for both traits was assumed to be 0.6. Next, each couple 

had exactly two offspring and each offspring’s genotype was drawn from the genotypes of 

the parents. The offspring generation was then also matched to a spouse and the process was 
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repeated for 50 generations. After each generation, we tested the causal EA markers for 

association with SZ and computed the raw enrichment test described in Supplementary Note 

section 5.2.  

Our assumptions were not necessarily meant to represent the real world. Instead, our aim was 

to simulate a set-up with relatively extreme assumptions about heritability, assortative 

mating, and the prevalence of SZ, all of which would increase our chance of finding spurious 

enrichment. However, we note that our model was also deliberately simple: Implicitly, we 

assumed that there is no selective pressure on any genetic marker and that the effect sizes of 

the markers are constant over time. In reality, this may not be the case and both the 

phenotype and its genetic architecture may evolve.  

10.1.2 Power 

The power of our enrichment test is a function of the power to detect associations of 

individual genetic markers with SZ. To calculate power, we assumed an odds ratio of 1.117. 

This odds ratio was calculated using the fact that all causal markers had equal effect sizes and 

individual markers were drawn from a Bernoulli distribution, such that the polygenic score 

can be seen as a draw from a binomial distribution with parameters 𝑛 = 1,000 and 𝑃 = 0.5. 

As described above, this score was used to determine the SZ type. Specifically, a simulated 

individual had SZ if the score was larger than 513, which gives an overall chance of 20 

percent to get SZ. The odds ratio was calculated using the following formula: 

𝑃1 = 𝑃(⁡𝑆𝑍 = 1⁡|⁡𝑋𝑆𝑍 = 1), 𝑃0 = 𝑃(⁡𝑆𝑍 = 1|⁡𝑋𝑆𝑍 = 0) 

𝑂𝑑𝑑𝑠 =
𝑃1(1 − 𝑃0)

𝑃0(1 − 𝑃1)
 

Where 𝑃1 is the chance of getting SZ given that you have at least one of the causal variants 

increasing the chance of SZ, 𝑋𝑆𝑍, and 𝑃0 is the chance of getting SZ given that you have the 

opposite variant. 𝑃1 and 𝑃0 can calculated from the binomial distribution. 𝑃1 is the chance 

that a draw from a binomial distribution, with parameters 𝑛 = 999 and 𝑃 = 0.5,  is larger 

than 512. 𝑃0 is the chance that a draw from the same distribution is larger than 513.  

We had 93.3% power to detect the causal markers associated with SZ at nominal significance 

and 18.1% after Bonferroni correction (𝑃 =
0.05

5000
= 10−5). Furthermore, we had 80% power 

to detect (spurious) effects of 𝑂𝑑𝑑𝑠 ≥ 1.093 at 𝑃 = 0.05 and of 𝑂𝑑𝑑𝑠 ≥ 1.182 after 

Bonferroni correction. The raw enrichment test had even more power because it took the 

entire distribution of tested P values into account, not only the effects of one single SNP. 

Thus, we were well-powered to detect spurious enrichment in our simulation, even if the 

effects of individual genetic markers are relatively small. 
 

10.2 Results 

If assortative mating would cause the genetic overlap between EA and SZ, one would expect 

the absolute value of the Z-statistic from the enrichment test to increase over time. At some 

point, the difference between the two subsets would become statistically significant. The Z-

statistic of the test for each generation is plotted in Supplementary Figure 3. There is no 

persistent trend in the Z-statistics over time and the mean of the Z-statistics is not 

significantly different from 0 (P = 0.776). Furthermore, we cannot reject the hypothesis that 

the Z-statistics are simply drawn from a standard normal distribution (Shapiro-Wilk test, 𝑃 =
0.075, one-sided). Nevertheless, the Z-statistic drops below -1.96 in two simulated 
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generations, indicating that the causal EA markers have lower P values than the non-causal 

markers. Yet, this result does not persist over time. In conclusion, it may be possible to find 

(spurious) enrichment in some generations by chance, but it is unlikely that assortative 

mating is a major cause for the strong genetic overlap that we observed between EA and SZ.  

 
 

11 Biological annotation 

11.1 Prioritisation of genes, pathways, and tissues/cell types with DEPICT 

To gain first insights into possible biological pathways that are indicated by our genetic 

associations, we applied Data-driven Expression Prioritized Integration for Complex Traits 

(DEPICT). DEPICT is a novel data-driven integrative method that uses reconstituted gene 

sets based on massive numbers of experiments measuring gene expression to (1) prioritise 

genes and gene sets and (2) identify tissues and cell types were prioritised genes are highly 

expressed. The method has been described in detail elsewhere1,4. The input for our analyses 

(DEPICT version 1 release 194) were the 132 EA lead-SNPs that are also nominally 

associated with SZ.  

Significant reconstituted gene sets 

DEPICT identified 111 significant reconstituted gene sets at an FDR below 5% 

(Supplementary Table 10.1). To identify independent biological groupings, we computed the 

pairwise Pearson correlations of all significant gene sets using the “network_plot.py” script 

provided with DEPICT. Next, we used the Affinity Propagation method on the Pearson 

distance matrix to cluster the findings48. The Affinity Propagation method automatically 

chooses an exemplar for each cluster (Supplementary Table 10.2). Figure 5.a visualises the 

results of this analyses, showing only one exemplar per gene sets (n = 19). We briefly 

describe the implicated gene sets below. The definitions are taken from AmiGO49, the Mouse 

Genome Database50, the Reactome pathway Knowledgebase51 and GeneCards52. 

npBAF complex (7-set cluster) is named after the GO cellular component (GO:0071564) 

defined as “A SWI/SNF-type complex that is found in neural stem or progenitor cells”. The 

prefix np stands for neural progenitor. The npBAF complex is essential for the self-

renewal/proliferative capacity of multipotent neural stem cells. 

Transcription cofactor activity (12-set cluster) is named after the GO molecular function 

(GO:0003712) defined as “Interacting selectively and non-covalently with a regulatory 

transcription factor and also with the basal transcription machinery in order to modulate 

transcription. Cofactors generally do not bind the template nucleic acid, but rather mediate 

protein-protein interactions between regulatory transcription factors and the basal 

transcription machinery”.  

REACTOME_TRANSMISSION_ACROSS_CHEMICAL_SYNAPSES (15-set cluster) is named 

after the Reactome pathway centred on genes involved in transmission across chemical 

synapses. Chemical synapses are specialised junctions that are used for communication 

between neurones, neurones and muscle or gland cells. The pre-synaptic neurone 

communicates via the release of neurotransmitter which binds the receptors on the post-

synaptic cell. 

Dendrite (21-set cluster) is named after a large and heterogeneous GO cellular component 

(GO: 0030425) defined as “A neuron projection that has a short, tapering, often branched, 
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morphology, receives and integrates signals from other neurons or from sensory stimuli, and 

conducts a nerve impulse towards the axon or the cell body. In most neurones, the impulse is 

conveyed from dendrites to axon via the cell body, but in some types of unipolar neurone, the 

impulse does not travel via the cell body”.  

Abnormal cerebral cortex morphology (5-set cluster) is named after the Mammalian 

Phenotype category (MP:0000788) defined as “any structural anomaly of a thin layer of grey 

matter on the surface of the cerebral hemisphere that folds into gyri”. 

Dendritic spine morphogenesis (3-set cluster) is named after the GO biological process 

(GO:0060997) defined as “The process in which the anatomical structures of a dendritic 

spine are generated and organised. A dendritic spine is a protrusion from a dendrite and a 

specialised subcellular compartment involved in synaptic transmission”. 

REACTOME_AXON_GUIDANCE (4-set cluster) is named after the Reactome pathway 

centred on genes involved in axon guidance. Axon guidance or axon pathfinding is the 

process by which neurones send out axons to reach the correct targets. 

GRIN2A PPI subnetwork (9-set cluster) is named after the gene GRIN2A (glutamate 

ionotropic receptor NMDA-type subunit 2A). This gene encodes a member of the glutamate-

gated ion channel protein family. The encoded protein is an N-methyl-D-aspartate (NMDA) 

receptor subunit. The most significantly enriched member set is “protein serine/threonine 

phosphatase complex”, which is named after GO cellular component (GO:0008287) defined 

as “A complex, normally consisting of a catalytic and a regulatory subunit, which catalyzes 

the removal of a phosphate group from a serine or threonine residue of a protein”. 

SNW1 PPI subnetwork (3-set cluster) is named after the gene SNW1 (SNW Domain 

Containing 1) encodes a coactivator that enhances transcription from some Pol II promoters. 

DLGAP3 PPI subnetwork (3-set cluster) is named after the gene DLGAP3 (Discs Large 

Homolog Associated Protein 3) that plays a role in the molecular organisation of synapses 

and neuronal cell signalling. 

Neurone recognition (3-set cluster) is named after the GO biological process (GO:0008038) 

defined as “The process in which a neuronal cell in a multicellular organism interprets its 

surroundings”. 

WRB PPI subnetwork (3-set cluster) is named after the gene WRB (Tryptophan Rich Basic 

Protein) also known as CHD5 (Congenital Heart Disease 5) that has a potential role in the 

pathogenesis of Down syndrome congenital heart disease. 

Site of polarised growth (3-set cluster) is named after the GO cellular component 

(GO:0030427) defined as “Any part of a cell where non-isotropic growth takes place”. 

Central nervous system neurone axonogenesis (3-set cluster) is named after the GO 

biological process (GO:0021955) defined as “Generation of a long process from a neurone 

whose cell body resides in the central nervous system. The process carries efferent (outgoing) 

action potentials from the cell body towards target cells”. 

Regulation of neurone projection development (6-set cluster) is named after the GO 

biological process (GO:0010975) defined as “Any process that modulates the rate, frequency 

or extent of neurone projection development. Neurone projection development is the process 

whose specific outcome is the progression of a neurone projection over time, from its 

formation to the mature structure. A neurone projection is any process extending from a 

neural cell, such as axons or dendrites (collectively called neurites)”. 
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WDR37 PPI subnetwork (7-set cluster) is named after the gene WDR37 (WD Repeat Domain 

37) that encodes a member of the WD repeat protein family and may facilitate the formation 

of heterotrimeric or multiprotein complexes. 

REACTOME_PI3K_EVENTS_IN_ERBB4_SIGNALING (2-set cluster) is named after the 

Reactome pathway centred on genes involved in PI3K events in ERBB4 signalling. ERBB4 

is a member of the Tyr protein kinase family and the epidermal growth factor receptor 

subfamily. It is for the normal development of the embryonic central nervous system, 

especially for normal neural crest cell migration and normal axon guidance. 

Regulation of skeletal muscle fibre development (1-set cluster) is named after the GO 

biological process (GO:0048742) defined as “Any process that modulates the frequency, rate 

or extent of skeletal muscle fibre development”. 

HMGB2 PPI subnetwork (1-set cluster) contains only one single gene set. It is named after 

the gene HMGB2 (High Mobility Group Box 2) that encodes a member of the non-histone 

chromosomal high mobility group protein family. 

 

Significant tissue/cell types 

DEPICT determines the enrichment of expression in particular tissues and cell types by 

testing whether the genes overlapping the GWAS loci are highly expressed in any of 209 

Medical Subject Heading (MeSH) annotations. Interestingly, all the significantly enriched 

tissues (FDR < 0.05) are related to the nervous system except retina, which is annotated to 

sense organs (Fig. 5.b). Furthermore, we observed only 1 significantly enriched cell-type, 

namely “Neural Stem Cells”. All the significantly enriched tissues and cell-type along with 

the gene names are listed in Supplementary Table 10.3. 

 

Significant gene prioritisation 

Any particular locus centred on a SNP may contain multiple genes. One straightforward 

approach is to nominate a gene that is closest to the SNP. But this approach does not consider 

if the expression of the gene is likely to be altered or regulated by the causal site in the locus. 

Therefore, we used DEPICT to map genes to associated loci, which prioritise important genes 

that share similar annotations in bioinformatic databases. For our 132 lead SNPs, DEPICT 

significantly prioritized (FDR < 0.05) 56 genes (Supplementary Table 10.4). For the two 

novel SNPs reported in this study (rs7336518 and rs7522116), DEPICT points to the FOXO6 

(Forkhead Box O6) and the SLITRK1 (SLIT and NTRK Like Family Member 1) genes. 

FOXO6 is predominantly expressed in the hippocampus and has been suggested to be 

involved in memory consolidation, emotion and synaptic function53,54. Similarly, SLITRK1 is 

also highly expressed in the brain55, particularly in the frontal lobe, and has previously been 

suggested as a candidate gene for neuropsychiatric disorders56. In particular, SLITRK1 is also 

associated with Tourette syndrome, which is characterised by persistent involuntary vocal 

and motor tics and often occurs together with Obsessive-Compulsive disorder and ADHD57–

59. 

11.2 GWAS catalog lookup 

In order to investigate the novelty of the 21 SNP associations that were found significant for 

SZ after Bonferroni correction, reported in Table 1, we performed a lookup in the GWAS 

catalogue with the SNPs and all their “LD partners” (i.e. all SNPs with an r2 > 0.5 within a 

250kb window). The LD partners were extracted with PLINK5 using a version of the 1000G 
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reference panel specifically harmonised to combine 1000G phase 1 and phase 3 imputed 

data60, and the reference panel has been described previously4. The result of the GWAS 

catalogue lookup is reported in Supplementary Table 10.5. 

We searched the GWAS catalog61 (revision 2016-08-25, downloaded on 2016-08-29)c to see 

if any of the associated SNPs or their LD partners have been reported to be associated with a 

phenotype previously. 13 out of the 21 SNPs (or their LD partners) have reported 

associations with SZ in the GWAS catalogue – eight out of the 21 SNPs have no reported 

associations with SZ. Combining the associations reported in the GWAS catalog and those 

reported in Ripke et al.2, Pardinal et al.8, and Hellard et al.9, we find two SNPs that have not 

previously been found to be associated with SZ at genome-wide significance (P < 5×10–8) in 

any of these sources – rs7522116 and rs7336518. 
  

                                                           
c URL: https://www.ebi.ac.uk/gwas/api/search/downloads/full 
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14 Supplementary Figures 

Supplementary Figure 1: Phenotypic correlations in the GRAS data collection, SZ cases 

only 

 
Notes: Phenotypic correlations (Pearson’s r) among schizophrenia patients in the GRAS data collection. The 

direction of the correlations is indicated by the coloring (blue for positive, red for negative) and the magnitude 

of the correlations is indicated by the gradient of the color. Black dots indicate nominal P < 0.01. GAF: Global 

Assessment of Functioning. CGI-S: Clinical Global Impression of Severity. PANSS: Positive and Negative 

Syndrome Scale. See detailed statistics in Supplementary Table 8.1. and detailed description of the measures in 

Supplementary Section 6.   
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Supplementary Figure 2: Q–Q plot of the 346 EA-associated SNPs for “unique” SZ(min 

BIP). 

 
 

Notes: SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are blue. SNPs outside 

the grey area would have passed the Bonferroni-corrected significance threshold that corrects for the total number of SNPs 

we tested (P < 0.05/346 = 1.445×10-4). Observed and expected P values are on the −log10 scale. For the sign concordance 

test: P = 0.046, 2-sided. 
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Supplementary Figure 3: Results of the assortative mating simulations – raw 

enrichment Z-statistics of causal SNPs for EA on SZ 

 
 

Notes: The graph shows the Z-statistic of the Wilcoxon rank sum test (i.e. the raw enrichment P value according to the 

methods described in Supplementary Note section 5) for each simulated generation. Causal genetic markers for EA and non-

causal markers are tested for association with SZ. Z-statistic of 1.96 is shown by dashed lines. 
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