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Abstract 

Tissues are complex milieu consisting of numerous cell-types. Numerous recent methods 

attempt to enumerate cell subsets from transcriptomes. However, available method used 

limited source for training and displayed only partial portrayal of the full cellular 

landscape. Here we present xCell, a novel gene-signature based method for inferring 64 

immune and stroma cell-types. We harmonized 1,822 pure human cell-types 

transcriptomes from various sources, employed curve fitting approach for linear 

comparison of cell-types, and introduced a novel spillover compensation technique for 

separating between cell-types. Using extensive in silico analyses and comparison to 

cytometry immunophenotyping we show that xCell outperforms other methods: 

http://xCell.ucsf.edu/. 

 
 
Introduction 

In addition to malignant proliferating cells, tumors are also composed of numerous 

distinct non-cancerous cell types and activation states of those cell types. This notion, 

which is termed the tumor microenvironment, has been in the spotlight of research in 

recent years and is being further explored by novel techniques. The most studied set of 

non-cancerous cell types are the tumor-infiltrating lymphocytes (TILs). However, these 

TILs are only part of a variety of innate and adaptive immune cells, stroma cells and 

many other cell types that are found in the tumor and interact with the malignant cells. 

This complex and dynamic microenvironment is now recognized to be important both in 

promoting and inhibiting of tumor growth, invasion, and metastasis [1,2]. Understanding 

the cellular heterogeneity composing the tumor microenvironment is key for improving 

existing treatments, the discovery of predictive biomarkers and development of novel 

therapeutic strategies. 

Traditional approaches for dissecting the cellular heterogeneity in liquid tissues 

are difficult to apply in solid tumors [3]. Therefore, in the last decade, numerous methods 

have been published for digitally dissecting the tumor microenvironment using gene 

expression profiles [4–7] (Reviewed in [8]). Recently, multitudes of studies have been 

published applying published and novel techniques on publicly available resources of 
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tumor samples such as The Cancer Genome Atlas (TCGA) [6,9–13]. There are two 

general types of techniques: deconvolving the complete cellular composition, and 

assessing enrichments of individual cell types.  

There are at least seven major concerns that the in silico methods could be prone 

to errors, and cannot reliably portray the cellular heterogeneity of the tumor 

microenvironment. First, current techniques depend on the expression profiles of purified 

cell types to identify reference genes and therefore rely heavily on the data source of 

which the references are inferred from, and could be inclined to overfitting to these data. 

Second, current methods portray only a very narrow perspective of the tumor 

microenvironment. The available methods usually focus on a subset of immune cell 

types, thus not accounting for the further richness of cell types in the microenvironment, 

including blood vessels and other different forms of cell subsets [14,15]. A third problem 

is the ability of cancer cells to “imitate” other cell types by expressing immune-specific 

genes, such as macrophages-like expression pattern in tumors with parainflammation 

[16]; only a few of the methods take this into account. Fourth, the ability of existing 

methods to estimate cell abundance have not yet been comprehensively validated in 

mixed samples. Cytometry is a common method for counting cell types in a mixture, and 

when performed in combination with gene expression profiling, can allow validation of 

the estimations. However, in most studies that included cytometry validation, these 

analyses were performed on only a very limited number of cell types and a limited 

number of samples [7,13].  

A fifth challenge is that deconvolution approaches are prone to many different 

biases because of the strict dependencies among all cell types that are inferred. This could 

highly affect reliability in analyzing tumor samples, which are prone to form non-

conventional expression profiles. A sixth problem has been raised with inferring an 

increasing number of closely related cell types [10]. Finally, deconvolution analysis 

heavily relies on the structure of the reference matrix, which limits its application to the 

resource used to develop the matrix. One such deconvolution approach is CIBESORT, 

which is the most comprehensive study to date, allowing the enumeration of 22 immune 

subsets [7]. Newman et al. performed adequate evaluation across data sources and 

validated the estimations using cytometry immunophenotyping. However, the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 15, 2017. ; https://doi.org/10.1101/114165doi: bioRxiv preprint 

https://doi.org/10.1101/114165
http://creativecommons.org/licenses/by-nc/4.0/


shortcomings of deconvolution approaches are apparent in CIBERSORT, which is 

limited to Affymetrix microarray studies.  

On the other hand, gene set enrichment analysis is a simple technique, which can 

be easily applied across data types and can be quickly applied for cancer studies. Each 

gene signature is used independently from all other signatures; thus it is protected from 

the limitations of deconvolution approaches. However, because of this independence, it is 

many times hard to differentiate between closely related cell types. In addition, gene 

signature-based methods only provide enrichment scores, and thus do not allow 

comparison across cell types, and cannot allow insights on the abundance of the cell type 

in the mixture.  

Here, we present xCell, a novel method that integrates the advantages of gene set 

enrichment with deconvolution approaches. We present a compendium of newly 

generated gene signatures for 64 cell types, spanning multiple adaptive and innate 

immunity cells, hematopoietic progenitors, epithelial cells and extracellular matrix cells 

derived from thousands of expression profiles. Using in silico mixtures, we transform the 

enrichment scores to a linear scale, and using a spillover compensation technique we 

reduce dependencies between closely related cell types. We evaluate these adjusted 

scores in RNA-seq and microarray data from primary cell types samples from various 

independent sources. We examine their ability to digitally dissect the tumor 

microenvironment by in silico analyses, and perform the most comprehensive 

comparison to date with cytometry immunophenotyping. We compare our inferences 

with available methods and show that scores from xCell are more reliable in digital 

dissection of mixed tissues. Finally, we apply our method on TCGA tumor samples to 

portray a full tumor microenvironment landscape across thousands of samples. We 

provide these estimations to the community and hope that this resource will allow 

researchers gain a better perspective of the complex cellular heterogeneity in tumor 

tissues. 

 

Results 

Generating a gene signature compendium of cell-types  
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To generate our compendium of gene signatures for cell types, we collected gene 

expression profiles from six sources: the FANTOM5 project, from which we annotated 

719 samples from 39 cell types analyzed by the Cap Analysis Gene Expression (CAGE) 

technique [17]; the ENCODE project, from which we annotated 115 samples from 17 cell 

types analyzed by RNA-seq [18]; the Blueprint project, from which we annotated 144 

samples from 28 cell types analyzed by RNA-seq (http://www.blueprint-epigenome.eu/); 

the IRIS project, from which we annotated 95 samples from 13 cell types analyzed by 

Affymetrix microarrays [19]; the Novershtern et al. study, from which we annotated 180  

samples from 24 cell types analyzed by Affymetrix microarrays [20]; and the Human 

Primary Cells Atlas (HPCA), a collection of Affymetrix microarrays composed of many 

different Gene Expression Omnibus (GEO) datasets, from which we annotated 569 

samples from 41 cell types [21] (Figure 1A). Altogether we collected and curated gene 

expression profiles from 1,822 samples of pure cell types, annotated to 64 distinct cell 

types and cell subsets (Figure 1B and Supplementary Table 1). Of those, 54 cell types 

were found in at least 2 of these data sources. For cell types with 5 or more samples in a 

data source, we left one sample out for testing. All together, 97 samples were left out, and 

all of the model trainings described below were performed on the remaining 1,725 

samples. 

Our strategy for selecting reliable cell type gene signatures is shown in Figure 1C 

and Supplementary Figure 1 (see Methods for full description and technical details). For 

each data source independently we identified genes that are overexpressed in one cell 

type compared to all other cell types. We applied different thresholds for choosing set of 

genes to represent the cell type gene signatures; hence from each source, we generated 

dozens of signatures per cell type. This scheme yielded 6,573 gene signatures 

corresponding to 64 cell types. Importantly, since our primary aim is to develop a tool for 

studying the cellular heterogeneity in the tumor microenvironment, we applied a 

methodology we previously developed [16] to filter out genes that tend to be 

overexpressed in a set of 634 carcinoma cell lines from the Cancer Cell Line 

Encyclopedia (CCLE) [22].  
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Figure 1. xCell study design. A. A summary of Data sources used in the study to 
generate the gene signatures, showing  the number of pure cell types and number of 
samples curated from them. B. Our compendium of 64 human cell types gene signatures 
grouped into 5 cell types families. C. The xCell pipeline: Using the data source and based 
on different thresholds we learn gene signatures for 64 cell types. Of this collection of 
6,573 signatures we choose 489 most reliable cell types, 3 for each cell types from each 
data source were it is available. The raw score is then the average ssGSEA score of all 
signatures corresponding to the cell type. Using simulations of gene expression for each 
cell type we learn a function to transform the non-linear association between the scores to 
a linear scale. Using the simulations we also learn the dependencies between cell types 
scores and apply a spillover compensation method to adjust the scores. 
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Next, we used single-sample gene set enrichment analysis (ssGSEA) to score each 

sample based on all signatures. ssGSEA is a well-known method for aggregating a single 

score of the enrichment of a set of genes in the top of a ranked gene expression profile 

[23]. To choose the most reliable signatures we tested their performance in identifying 

the corresponding cell type in each of the data sources. To prevent overfitting, each 

signature learned from one data source was tested in other sources, but not in the data 

source it was originally inferred. To reduce biases resulting from a small number of genes 

and from the analysis of different platforms, instead of one signature per cell type, the top 

three ranked signatures from each data source were chosen. Altogether we generated 489 

gene signatures corresponding to 64 cell types spanning multiple adaptive and innate 

immunity cells, hematopoietic progenitors, epithelial cells and extracellular matrix cells 

(Supplementary Table 2). Observing the scores in the 97 test primary cell types samples 

affirmed their ability to identify the corresponding cell type compared to other cell types 

across data sources (Supplementary Figure 2). We defined the raw enrichment score per 

cell type to be the average ssGSEA scores from all the cell type’s corresponding 

signatures. 

Spillover compensation between closely related cell types  

Our primary objective is to accurately identify enrichments of cell types in 

mixtures. To imitate such admixtures, we performed an array of simulations of gene 

expression combinations of cell types to assess the accuracy and sensitivity of our gene 

signatures. We generated such in silico expression profiles using different data sources; 

using different sets of cell types in mixtures; and by choosing randomly one sample per 

cell type from all available samples in the data source. The simulations revealed that our 

raw scores reliably predict even small changes in the proportions of cell types, distinguish 

between most cell types, and are reliable in different transcriptomic analysis platforms 

(Supplementary Figure 3). However, the simulations also revealed that raw scores of 

RNA-seq samples are not linearly associated with the abundance and that they do not 

allow comparisons across cell types (Supplementary Figure 4). Thus, using the training 

samples we generated synthetic expression profiles by mixing the cell type of interest 

with another non-related cell types. We then fit a formula that transforms the raw scores 

to cell-type abundances. We found that the transformed scores showed resemblance to 
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the known fractions of the cell types in simulations, thus allowing to compare scores 

across cell types, and not just across samples (Supplementary Figure 5).  

The simulations also revealed another limitation of the raw scores: closely related 

cell-types tend to have correlating scores (Supplementary Figure 5). That is, scores may 

show enrichment for a cell type due to a ‘spillover effect’ between closely related cell 

types. This problem mimics the spillover problem in flow-cytometry, in which 

fluorescent signals correlate with each other due to spectrum overlaps. Inspired by the 

compensations method used in flow-cytometry studies [24], we leveraged our simulations 

to generate a spillover matrix that allows correcting for correlations between cell types. 

To better compensate for low abundances in mixtures we created a simulated dataset 

where each sample contains 25% of the cell type of interest and the rest from a non-

related cell type and produced a spillover matrix, a representation of the dependencies of 

scores between different cell types.  

Applying the spillover correction procedure on the pure cell types (Figure 2A) 

and simulated expression profiles (Figure 2B-C and Supplementary Figures 5-6) showed 

that this method was able to successfully reduce associations between closely related cell 

types. For example, we generated simulated mixtures using an independent data source of 

multiple cell types that was not part of the development of the method (GSE60424) [25], 

and used our method to infer the underlying abundances. We observed decent 

performance in recapitulating the cell types distributions (on the diagonal). However, 

before correcting for spillovers, there were wrong associations between CD4+ and CD8+ 

T-cells, as well as between Monocytes and Neutrophils. The spillover correction was able 

to reduce those associations significantly without harming the correlations on the 

diagonal (Figure 2B). In addition, we generated simulated mixtures using the training 

samples (Supplementary Figure 5) and the testing samples (Supplementary Figure 6). In 

the 18 simulated mixtures using the testing samples, we observed an overall average 

decrease of 17.1% in significant correlations off the diagonal (Figure 2C and 

Supplementary Figure 5). Unexpectedly, following the spillover compensation we 

observed slightly improved associations on the diagonal between the scores and the 

underlying abundances (1.4% average improvement). This pipeline of generating 
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adjusted cell type enrichment scores from gene expression profiles, which we named 

xCell, is available as an R package and a simple web tool: http://xCell.ucsf.edu/. 

	
Figure 2. Evaluation of the performance of xCell using simulated mixtures. A. An 
overview of adjusted scores for of 43 cell type in 259 purified cell types samples from the 
Blueprint and ENCODE data sources (other data sources are in supplementary figure 4). 
Most signatures clearly distinguish the corresponding cell type from all other cell types. 
B. A simulation analysis using GSE60424 as the data source, which was not part of the 
development of xCell. This data source contains 114 RNA-seq samples from 6 major 
immune cell types. Left: Pearson correlation coefficients using our method before 
spillover adjustment and after the adjustment. Dependencies between CD4+ T-cells, 
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CD8+ T-cells and NK cells were greatly reduced; spillover from monocytes to 
neutrophils was also removed. Right: Comparison of the correlation coefficients across 
the different methods. The first column corresponds to xCell’s inferences in predicting 
the underlying abundances of the cell types in the simulations (both color and pie chart 
correspond to average Pearson coefficients). Bindea, Charoentong, Palmer, Rooney and 
Tirosh represent sets of signatures for cell types from the corresponding manuscripts. 
Newman is the inferences produced using CIBERSORT on the simulations. xCell 
outperforms other methods in 17 of 18 comparisons. C. Comparison of the correlation 
coefficients across the different methods based on 18 simulations generated using the 
left-out testing samples. Here rows correspond to methods and columns show the average 
Pearson coefficient for the corresponding cell type across the simulations. Independent 
simulations are available in supplementary figure 6. xCell outperforms other methods in 
64 of 67 comparisons. 
 

We next compared the xCell scores ability to infer the underlying cell types 

enrichments in simulated mixtures with a set of 53 previously published signatures 

corresponding to 26 cell types [6,12,26,27] (Supplementary Table 3). Our analyses 

showed that xCell outperformed the previously published signatures in recapitulating the 

underlying abundances, in mixtures generated using the training samples (Supplementary 

Figure 5) and the testing samples (Supplementary Figure 6) and an independent data 

source (GSE60424) (Figure 2B), in the vast majority of the comparable cell types (51 of 

53 comparisons of mixtures generated using trainings samples, 46 of 49 using testing 

samples and 17 of 18 using GSE60424) (Figure 2C). xCell showed overall better 

performance in all data sources used, proving its versatility across platforms. Importantly, 

our compensation technique was able to completely remove associations between cell 

types, while previously published signatures showed considerate dependencies between 

closely related cell types, such as between CD8+ T-cells and NK cells (Supplementary 

Figure 7). 

In addition, we also compared xCell’s performance on test mixtures with 

CIBERSORT, a prominent deconvolution-based method [7]. Unlike signature-based 

methods, which output independent enrichment scores per cell type, the output from 

deconvolution-based methods is the inferred proportions of the cell types in the mixture. 

Similar to the performance compared to signatures, xCell also outperformed 

CIBERSORT enumerations in all comparable cell types, across all data sources (Figure 

2B-C and Supplementary Figure 5-6). 
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Validation of enrichment scores with cytometry immunoprofilings 

In addition to the simulated mixtures analysis, we compared our estimates for cell 

types enrichments from gene expression profiles with mass spectrometry (CyTOF) 

immunophenotyping. We utilized independent publicly-available studies, in which a total 

of 165 individuals were studied for both gene expression from whole blood and FACS 

across 18 cell subsets from peripheral blood mononuclear cells (PBMC) (available in 

ImmPort SDY311 and SDY420) [28]. We calculated xCell scores for each of the 

signatures using the study’s expression profiles and correlated the scores with the FACS 

fractions of the cell subsets. Of the 14 cell types with at least 1% abundance, xCell was 

able to significantly recover 10 and 12 cell subsets in SDY311 and SDY420 respectively 

(Pearson correlation between calculated and actual cell counts p-value < 0.05) (Figure 3). 

Comparing the performance of xCell to previously published signatures and 

CIBERSORT revealed that no other method was able to recover cell types that our 

method was not able to recover in both data sets (Figure 3). In general, previous methods 

were able to recover signal only from major cell types, including B-cells, CD4+ and 

CD8+ T-cells, and monocytes, suggesting that their performance were not reliable in 

more specialized cell subsets. While our method also struggled in these cell subsets, it 

still showed significant correlations with most of the cell subsets, including effector 

memory CD8+ T-cells, naïve CD4+ T-cells and naïve B-cells. In addition, xCell was 

more reliable in CD4+ T-cells and monocytes and equally reliable in B-cells (Figure 3). 

In CD8+ T-cells xCell was outperformed by methods depending on solely on CD8A 

expression, which may not serve as a reliable biomarker in cancer settings 

(Supplementary Figure 7). 

Despite the generally improved abilities of xCell to estimate cell populations, we 

do note that in some cases the correlations we observed were relatively low, emphasizing 

the difficulty of estimating cell subsets in mixed samples, and the need for cautious 

examination and further validation of findings.  
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Figure 3. Compare digital dissection methods with flow cytometry counts. Right: 
Scatter plots of CyTOF fractions in PBMC vs. cell type scores from whole blood of 61 
samples SDY311 (top) and 104 samples from SDY420 (bottom). Only top correlating 
cell types in each study is shown. Left: Correlation coefficients produced by our method 
compared to other methods. Only cell types with abundance of at least 1% on average, as 
measured by CyTOF, are shown. Non-significant correlations (p-value < 0.05) are 
marked with a gray ‘x’.  
 

Cell types enrichments in tumor samples  

We next applied our methodology on 9,947 primary tumor samples across thirty-seven 

cancer types from the TCGA and TARGET projects [29] (Supplementary Figure 9). 

Average scores of cell types in each cancer type affirmed prior knowledge of expected 

enriched cell types, validating the power of our method for identifying the cell type of 

origin of cancer types. For example, epithelial cells were enriched in carcinomas, 

keratinocytes in squamous cell carcinomas, mesangial cells in kidney cancers, 

chondrocytes in sarcoma, neurons in brain tumors, hepatocytes in hepatocellular 

carcinoma, melanocytes in melanomas, B-cells in B-cells lymphoma, T-cells in 

thymoma, myeloid cells in AML and lymphocytes in ALL (Figure 4A). While these 

results are expected, it is reassuring that xCell can be applied to and studied in human 

cancers. 

Most of the cell types we infer are part of the complex cellular heterogeneity of 

the tumor microenvironment. We hypothesized that an additive combination of all cell 

types’ scores would be negatively correlated with tumor purity. Thus, we generated a 
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microenvironment score as the sum of all immune and stroma cell types. We then 

correlated this microenvironment score with our previously generated purity estimations, 

which are based on copy number variations, gene expression, DNA methylation and 

H&E slides [30]. Our analysis showed highly significant negative correlations in all 

cancer types, suggesting this score as a novel measurement for tumor microenvironment 

abundance (Supplementary Figure 10). 

	
Figure 4. Cell types enrichment analysis in tumors. A. Average scores of 9 cell types 
across 24 cancer types from TCGA. Scores were normalized across rows. Signatures 
were chosen such that they are the cell of origin of cancer types or the most significant 
signature of the cancer type compared to all others. B. t-SNE plot of 8,875 primary 
cancer samples from TCGA colored by cancer type. The t-SNE plot was generated using 
the enrichment scores of 48 non-epithelial, non-stem cells and non-cell types specific 
scores. Many of the cancer types create distinct cluster, emphasizing the important role of 
the tumor microenvironment in characterizing tumors. 
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Finally, to provide insights into the potential of xCell to portray the tumor 

microenvironment, we plot all tumor samples based on their cell types scores. Using 

different sets of cell types inferences, we applied the t-Distributed Stochastic Neighbor 

Embedding (t-SNE) dimensionality reduction technique [31] (Supplementary Figure 11). 

Interestingly, the analysis revealed that unique microenvironment compositions 

characterize different cancer indications. For example, prostate cancers form a unique 

cluster based on their immune cell types composition, while head and neck tumors are 

distinguished by their stroma composition. Remarkably, only when performing the 

analysis with all immune and stroma cell types, clear clusters formed for distinguishing 

between most of the cancer types (Figure 4B), demonstrating the unique composition of 

the tumor microenvironment, which differs between cancer types. This notion 

emphasizes the importance of portraying the full cellular heterogeneity of the tumor 

microenvironment for the study of cancer. To this end, we calculated the enrichment 

scores for 64 cell types across the TCGA spectrum, and provide this data with the hope 

that it will serve the research community as a resource to further explore novel 

associations of cell types enrichment in human tumors (Supplementary Table 4). 

 

Discussion 

Recently, many studies have shown different methodologies for digital dissection 

of cancer samples [3,6,9–13]. These studies have suggested novel insights in cancer 

research and related to therapy efficacy. However, it is important to remember that the 

methods that have been applied for portraying the tumor microenvironment have only 

retained limited validation, and it is unclear how reliable their estimations are. In this 

study, we took a step back and focused on generating cell type gene scores that could 

reliably estimate enrichments of cell types. Our method, which is gene-signature based, is 

more reliable due to its reliance on a group of signatures for each cell type, learned from 

multiple data sources, which increases the ability to detect the signal from the noise. Our 

method also integrates a novel approach to remove dependencies between cell types, 

which allow better reliability in studying closely related cell types. 
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To develop xCell, we collected the most comprehensive resource to date of 

primary cell types, spanning the largest set of human cell types. We then performed an 

extensive validation of the predicted cell types inferences in mixed samples. Our method 

for choosing a set of signatures that are reliable across several data sources has proven to 

be beneficial, as our scores robustly outperformed all available methods in predicting the 

abundance of cell types in in silico mixtures and blood samples. Based on our evaluation, 

xCell provides the most accurate and sensitive way to identify enrichments of many cell 

types in an admixture, allowing the detection of subtle differences in the enrichments of a 

particular cell type in the tumor microenvironment with high confidence. 

It is important to note that xCell, as all other methods, performed significantly 

better in simulated mixtures than in real mixtures. Here, there are several technical 

reasons for this discrepancy. First, the cytometry analyses were performed on PBMCs, 

while the gene expression profiles were generated from the whole blood. Second, not all 

genes required by xCell were present, in fact in SDY420 only 54.5% of the genes 

required by xCell were available. However, other explanations for the lower success to 

infer abundances in real samples are warranting – it may well be possible that the 

expression patterns of marker genes in mixtures is different than in purified cells. Recent 

technologies such as single-cell RNA-sequencing may be able to clarify how much this 

may perturb the analyses. 

We chose to apply a gene signature enrichment approach over deconvolution 

methods because of several advantages that the former provides. First, gene signatures 

are rank-based, and therefore are suitable for cross-platform transcriptome measurements. 

We showed here that our scores reliably predict enrichments in different RNA-seq 

techniques and different microarrays platforms. They are agnostic to normalization 

methods or concerns related to batch effects, making them robust to both technical and 

biological noise. Second, there is no decline in performance with increasing number of 

cell types. The tumor microenvironment is a rich milieu of cell types, and our analyses 

show enrichments of many mesenchymal derived cells in the tumors. A partial portrayal 

of the tumor microenvironment may result in misleading findings. Finally, gene 

signatures are simple and can easily be adjusted.  
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The main disadvantage of gene signatures is their difficulty to discriminate 

closely related cell types, though it is not clear how well other methods can distinguish 

such cell types as well [10]. Our method takes this into account and uses a novel 

technique, inspired by flow cytometry analyses, to remove such dependencies between 

closely related cell types. It is important to note that until this step the cell types scores 

are independent of each other, and a deflection of genes of one cell type will not harm all 

other cell types. However, the ‘spillover correction’ adjustment removes this strict 

independence between cell types inferences as in deconvolution methods. Yet, the 

compensation is very limited, and between most cell types there is no compensation at 

all, thus, most of the inferences are still independent.  

Despite the utility of our signatures for characterizing the tumor 

microenvironment, several issues require further investigation. While our signatures 

outperformed previous methods, it is important to note that our correlations were still far 

from perfect with direct measurements. More expression data from pure cell types, 

especially cell types with limited samples, and more expression data coupled with 

cytometry counts from various tissue types will allow defining signatures more precisely 

and in turn, allow better reliability. Meanwhile, it is necessary to refer to inferences made 

by our method or other methods with a grain of salt. Discoveries made using digital 

dissection methods must be rigorously validated using other technologies to avoid hasty 

conclusions. 

Another limitation of our method is that the inferences are strictly enrichment 

scores, and cannot be interpreted as proportions. This is due to the inability to translate 

the minimal and maximal scores produced by ssGSEA to clear proportions. Thus, while 

our method attempts to calibrate the scores to resemble proportions, this cannot be 

reliably used as such. This limitation also does not allow to provide statistical 

significance for the inferences, by calculating an empirical p-value as suggested by 

Newman et al. [7]. 

In summary, tissue dissection methods are an emerging tool for large-scale 

characterization of the tumor cellular heterogeneity. These approaches do not rely on 

tissue dissociation, opposed to single-cell techniques, and therefore provide an effective 
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tool for dissecting solid tumors. The immense availability of public gene expression 

profiles allows these methods to be efficiently performed on hundreds of historical 

cohorts spanning thousands of patients, and to associate them with clinical outcomes. 

Here we presented the most comprehensive collection of gene expression enrichment 

scores for cell types. Our methodology for generating cell type enrichment scores and 

adjusting them to cell types proportions allowed us to create a powerful tool that is the 

most reliable and robust tool currently available for identifying cell types across data 

sources. We provide a simple web tool to the community and hope that further studies 

will utilize it for the discovery of novel predictive and prognostic biomarkers, and new 

therapeutic targets: http://xCell.ucsf.edu/. 

 

Methods 

Data sources 

Signatures data sources: RNA-seq and cap analysis gene expression (CAGE) 

normalized FPKM were downloaded from the FANTOM5, ENCODE and Blueprint data 

portals. Raw Affymetrix microarray CEL files were downloaded from the Gene 

Expression Omnibus (GEO), accessions: GSE22886 (IRIS), GSE24759 (Novershtern) 

and GSE49910 (HPCA), and analyzed using the Robust Multi-array Average (RMA) 

procedure on probe-level data using Matlab functions. The analysis was performed using 

custom CDF files downloaded from Brainarray [32].  All samples were manually 

annotated to 64 cell types (Supplementary Table 1). 

Other expression data sources: RNA-seq normalized counts were downloaded from the 

gene expression omnibus (GEO) accession GSE60424. Illumina HumanHT-12 V4.0 

Beadchip data of PBMC samples and the accompanying CyTOF data were downloaded 

from ImmPort accession SDY311, and quantile normalized using Matlab functions. 

Similarly, Agilent Whole Human Genome 4 x 44 K slides data of PBMC samples and the 

accompanying CyTOF data were downloaded from ImmPort accession SDY420 [33], 

and quantile normalized using Matlab functions. Multiple probes per gene were collapsed 

using averages. RNA-seq data of Cancer Cell Line Encyclopedia (CCLE) [22] was 

obtained using the PharmacoGx R package [34]. RSEM levels 9,947 primary tumor 
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samples from TCGA and TARGET were downloaded from https://toil.xenahubs.net. 

Published signatures were collected from their corresponding papers [6,12,26,27]. 

(Supplementary Table 3). 

In silico simulated mixtures 

We generated several types of simulated mixtures, but all are based on the same pipeline:  

1) Given a data source of pure cell types, choose n cell types available in the data 

and choose a random fraction for each cell type (the fractions sum to 1). We 

denote this vector of fraction 𝑓.  

2) Generate an expression matrix of pure cell types, 𝑀, with n columns. The 

generation of the expression matrix varied between the experiments we 

performed: a) Synthetic mixtures for learning the power coefficient and spillover 

matrix were generated using the median expression profile of each cell type, 

creating a homogenous and noiseless mixture. b) Training mixtures were 

generated by randomly choosing one of the multiple available samples for each of 

the cell types chosen to be included in the mixture. This random selection 

introduces significant noise to the mixture, and between mixtures in the mixture 

set, which reflect the variation we observe between real datasets. c) Test mixtures, 

where only one sample per cell type was available, were generated by adding a 

random noise for each gene of up to 20% of the expression level. Cell types 

included in a mixture were chosen randomly, by avoiding cell types that cannot be 

distinguished (e.g. CD4+ T-cells and CD4+ memory T-cells). 

3) To generate a simulated expression profile we use the formula: 𝑀×𝑓, which 

returns one simulated mixed gene expression profile based on additive expression 

of the expression profiles of the cell types. This process is then repeated 500 times 

with different 𝑓 and different 𝑀 (as explained in 2b and 2c, 𝑀 is recreated for 

each simulation by adding random noise (in b) or choosing a random sample), 

generating distinct mixtures using same set of cell types. 

The xCell development pipeline 

A workflow of the xCell development pipeline can be found in Supplementary Figure 1, 

and is described in details below. 
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Filtering cancer genes: In a previous study [16] we calculated using CCLE the number 

of cell lines that are over-expressing each gene (2-fold more than the peak of expression 

distribution). For generating the signatures we only use genes that have an 

overexpression rate of less than 5% (less than 32 cell lines of the 634 carcinoma cell 

lines). We use this stringent threshold to eliminate genes that tend to be overexpressed in 

tumors, regardless of the cellular composition. Of 18,988 genes analyzed, 9,506 genes 

were identified as not overexpressing in tumors. For signatures of cell types that may be 

the cell of origin of solid tumors, including epithelial cells, sebocytes, keratinocytes, 

hepatocytes, melanocytes, astrocytes and neurons we used all genes. 

Generating gene signatures: Expression profiles were reduced to 10,808 genes that are 

shared across all 6 data sources. Gene expression was converted to log scale by adding 3 

and then log2 conversion. In each group of samples corresponding to a cell type we 

calculated 10th, 25th, 33.3th, 50th percentiles of low expression (Q1q), and 90th,75th, 66.6th, 

50th quantiles of high expression (Q21-q). For cell type A we calculated the difference for 

each gene between Q1q(A) and max(Q21-q(all other cell types)). We repeated this also for 

second and third largest Q21-q(all other cell types). The signature of cell type A consists of 

all genes that pass a threshold. We used different thresholds here: 0, 0.1, log2(1.5), 

log(2), 3,4 and 5. We repeated this procedure to each of the 6 data sources independently. 

Only gene sets of at least 8 genes and no more than 200 genes were reserved. This 

scheme yielded 6,573 gene signatures corresponding to 64 cell types. We calculated 

single-sample gene set enrichment analysis (ssGSEA) for each of those signatures to 

score each sample in each of the data sources using the GSVA R package [35]. 

Choosing the “best” signature: For each signature we computed the t-statistic between 

the scores of the corresponding cell type compared to all other samples, omitting samples 

from parental or descendant cell types (for CD4+ naïve T-cells the general CD4+ T-cells 

are not used in the calculations). The procedure was performed in each data source where 

the corresponding cell type was available, except the data source from which the 

signature was learned. Thus, a signature is only chosen if it is reliable in a data source 

were it was not trained upon. If the cell type is available in only one data source, the 

signature was tested in that data source. From each data source the top 3 signatures were 

chosen. All together we chose 489 signatures corresponding to 64 cell types (across the 6 
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data sources we have 163 cell types) (Supplementary Table 2). The raw score for a cell 

type is the average of all corresponding signatures, after shifting scores of each signature 

to have a minimal score of 0 across all samples. 

Learning parameters for raw score transformation: For each cell type we created a 

synthetic mixture using the median expression profile of the cell type (cell X) and an 

additional ‘control’ cell type. For ‘control’ in sequencing-based data sources we used 

multipotent progenitor (MPP) cell samples or endothelial cell samples, because both are 

found in all the sequencing-based data sets. In microarray-based data sources we used 

erythrocytes and monocytes. We generated such mixtures using increasing levels of the 

corresponding cell type (0.8% of the cell X and 99.2% control, 1.6% cell X and 98.4% 

control, etc.). We noticed two problems with the raw scores: ssGSEA scores have 

different distributions between different signatures, thus a score from signatures cannot 

be compared with a score from another signature. In addition, in sequencing-based data, 

the association between the underlying levels of the cell type was not linearly associated 

with the score. We thus designed a transformation pipeline for the scores (which is 

applied to both sequencing and microarray-based datasets separately)  – for each cell 

type, using the synthetic mixtures we first shifted the scores to 0 using the minimal score 

(which corresponded to mixtures containing 0.8% of the cell type) and divided by 5000. 

We then fit a power function to the scores ranging corresponding to abundances of 0.8% 

to 25.6%. We used this range because we are mostly interested in identifying cell types 

with low abundance, and above that the function exponential increase may interfere in a 

precise fitting. The power coefficient is then averaged across the data sources were the 

cell type is available (we denote this vector as 𝑃). After adjusting the score using the 

learned power coefficient, we fit a linear curve, and use the learned slope as a calibration 

parameter for the adjusted scores (denoted as 𝑉1). 

Learning the spillover compensation reference matrix: Another limitation that was 

observed in the mixtures is the dependencies between closely related cell types: scores 

that predict enrichment of one cell type also predict enrichment of another cell type, 

which might not even be in the mixture. To overcome this problem we created a 

reference matrix of ‘spillovers’ between cell types. Below we focus on the generation of 

the sequencing-based spillover matrix, however equivalent process was performed to 
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generate the microarray-based spillover matrix. We first generated a synthetic mixture 

set, where each mixture contains 25% of each of the cell types (median expression) and 

75% of a ‘control’ cell type, as in the previous section. We then calculated raw cell types 

scores and transformed them using the learned coefficients as explained above. We 

combined all sequencing-based data sources together by using the average scores, and 

completed the matrix to be 64x64 by adding columns from cell types that are not present 

in any of the sequencing-based data using the microarray reference matrix. We then 

normalized each row of cell types scores by dividing it by the diagonal (denoted as 𝐾 – 

spillover matrix, rows are cell types scores and columns are cell type samples). The 

diagonal, before the normalization, is also used for calibration (denoted as 𝑉2) The 

‘spillover’ between a cell type score (x) and another cell type (y) is the ratio between x 

and y. Finally, we clean the spillover matrix to not compensate between parent and 

descendent cell types by compensating parent cell types only with other parent cell types 

(CD4+ T-cells are compensated against CD8+ T-cells, but not CD8+ Tem), and 

compensating child cell types only compared to other child cell types from the same 

parent and all other parents, but not child cell types from other parents. Some of the 

compensations where too strong, removing correlations between cell types and their 

corresponding signatures, thus we limit the compensation levels, off the diagonal, to 0.5. 

The spillover matrix, power and calibration coefficients are available in Supplementary 

Table 5. 

Calculating scores for a mixture:  

Input: Gene expression data set normalized to gene length (such as FPKM or TPM), rows 

are genes and columns are samples (N – number of samples). Duplicate gene names are 

combined together. xCell uses a set of 10,808 genes for the scoring. It is recommended to 

use data sets that contain at least the majority of these genes. Missing values in a sample 

are treated as missing genes. It is also recommended to use as many samples as possible, 

with highly expected variation in cell types fractions (the xCell web tool requires 

intersection of at least 5000 genes). (1) Calculating ssGSEA for each of the 489 gene 

signatures. (2) Averaging scores of all signatures corresponding to a cell type. The result 

is a matrix (A) with 64 rows and N columns. (3) Each element in the scores matrix (Aij) is 

transformed using the following formula:  
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𝑇!" =
𝐴!" −min 𝐴! /5000)!!

(𝑉1! ∙ 𝑉2!) 

The output is matrix T of transformed scores. Different P, V1 and V2 are used for 

sequencing-based and microarray-based datasets. (4) Spillover compensation is then 

performed for each row using linear least squares that minimizes the following (as 

performed in flow cytometry analyses and explained in Bagwell et al. [24]): 

𝐾 ∙ 𝑥 − 𝑇! , such that 𝑥 ≥ 0 

All x’s are then combined to create the final xCell scores. The compensation may result 

in deteriorating real associations, thus we provide a scaling parameter (alpha), to multiply 

all off-diagonal cells in matrix K. In all experiments in the manuscript we used 

alpha=0.5. Different K matrices are used for sequencing-based and array-based data. 

Cytometry analyses 

Gene expression and cytometry data were downloaded from ImmPort (SDY311 and 

SDY420). The gene expression data was quantile normalized using Matlab functions, and 

multiple probes per gene were collapsed using averages. The cytometry data counts were 

divided by the viable/singlets counts. In the SDY311 dataset 10 patients had two 

replicates of expression profiles, and those were averaged. Two outlier samples in the 

cytometry data set were removed from further analyses (SUB134240,	SUB134283).  

Other tools 

The CIBERSORT web tool was used for inferring proportions using the expression 

profile (http://cibersort.stanford.edu). CIBERSORT results of activated and resting cell 

types were combined, B-cell and CD4+ T-cells percentages are the combination of all 

their subtypes. t-SNE plots were produced using the Rtsne R package. Purity 

measurements were obtained from our previous publication [30]. Correlation plots were 

generated using the corrplot R package.  

Availability of Data and Materials 

The xCell R package for generating the cell type scores, and R scripts for the 

development of xCell are available at https://github.com/dviraran/xCell, and deposited to 

Zenodo (assigned DOI:10.5281/zenodo.800745). 
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Supplementary Information 

Supplementary Figure 1. The xCell development pipeline. A schematic illustration of 

the steps performed for the development of xCell. 

Supplementary Figure 2. Raw scores of the multiple signatures in the test samples. 

Box plots of the raw scores of all signatures corresponding to a cell type presented on the 

97 testing cell types. xCell uses the average of the raw scores for downstream analyses. 

Supplementary Figure 3. Simulated mixtures of pure cell types inferred by raw 

xCell scores. Scatter plots of inferred vs. simulated abundance in 10 mixtures sets. 

Supplementary Figure 4. Transformation procedure of raw scores to linear scales. 

The associations between raw scores and simulated abundances before and after 

transformation. 

Supplementary Figure 5. Cell types inferences in gene expression simulations using 

training samples. Simulations analyses using training samples, showing the correlation 

between cell types based on xCell inferences compared to other methods. 

Supplementary Figure 6. Cell types inferences in gene expression simulations using 

testing samples. Simulations analyses using the left-out testing samples, showing the 

correlation between cell types based on xCell inferences compared to other methods. 

Supplementary Figure 7. Dependencies between CD8+ T-cells and NK cells. An 

example of dependency between cell types in published signatures. 

Supplementary Figure 8. CD8+ T-cells scores vs. CD8A expression in cancer cell 

lines. An example of the problem of using a single gene for predicting cell type 

abundance. 

Supplementary Figure 9. xCell scores in 24 TCGA cancer types. Box plots of cell 

types scores across 24 tumors types from TCGA. 

Supplementary Figure 10. Purity estimations using xCell scores. Comparing a tumor 

microenvironment derived by xCell to the CPE purity estimation. 

Supplementary Figure 11. t-SNE plots based on cell types scores.  
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Supplementary Table 1. Summary table of primary cell types used in this study. 

Number of samples annotated for each of the 64 cell types across the 6 data sources. 

Supplementary Table 2. 489 cell type gene signatures. 

Supplementary Table 3. 53 previously published cell type gene signatures. 

Supplementary Table 4. xCell scores in 9,264 samples from TCGA. 

Supplementary Table 5. Spillover matrix and calibrating coefficients. 
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