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Abstract 
Tissues are a complex milieu consisting of numerous cell types. For example, 
understanding the cellular heterogeneity the tumor microenvironment is an emerging 
field of research. Numerous methods have been published in recent years for the 
enumeration of cell subsets from tissue expression profiles. However, the available 
methods suffer from three major problems: inferring cell subset based on gene sets 
learned and verified from limited sources; displaying only partial portrayal of the full 
cellular heterogeneity; and insufficient validation in mixed tissues. To address these 
issues we developed xCell, a novel gene-signature based method for inferring 64 immune 
and stroma cell types. We first curated and harmonized 1,822 transcriptomic profiles of 
pure human cell types from various sources, employed a curve fitting approach for linear 
comparison of cell types, and introduced a novel spillover compensation technique for 
separating between closely related cell types. We test the ability of our model learned 
from pure cell types to infer enrichments of cell types in mixed tissues, using both 
comprehensive in silico analyses, and by comparison to cytometry immunophenotyping 
to show that our scores outperform previously published methods. Finally, we explore the 
cell type enrichments in tumor samples and show that the cellular heterogeneity of the 
tumor microenvironment uniquely characterizes different cancer types. We provide our 
method for inferring cell type abundances as a public resource to allow researchers to 
portray the cellular heterogeneity landscape of tissue expression profiles: 
http://xCell.ucsf.edu/. 
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Introduction 
In addition to malignant proliferating cells, tumors are also composed of numerous 
distinct non-cancerous cell types and activation states of those cell types. This notion, 
which is termed the tumor microenvironment, has been in the spotlight of research in 
recent years and is being further explored by novel techniques. The most studied set of 
non-cancerous cell types are the tumor-infiltrating lymphocytes (TILs). However, these 
TILs are only part of a variety of innate and adaptive immune cells, stroma cells and 
many other cell types that are found in the tumor and interact with the malignant cells. 
This complex and dynamic microenvironment is now recognized to be important both in 
promoting and inhibiting of tumor growth, invasion, and metastasis [1,2]. Understanding 
the cellular heterogeneity composing the tumor microenvironment is key for improving 
existing treatments, the discovery of predictive biomarkers and development of novel 
therapeutic strategies. 

Traditional approaches for dissecting the cellular heterogeneity in liquid tissues 
are difficult to apply in solid tumors [3]. Therefore, in the last decade, numerous methods 
have been published for digitally dissecting the tumor microenvironment using gene 
expression profiles [4–7] (Reviewed in [8]). Recently, multitudes of studies have been 
published applying published and novel techniques on publicly available resources of 
tumor samples such as The Cancer Genome Atlas (TCGA) [6,9–13]. There are two 
general types of techniques: deconvolving the complete cellular composition, and 
assessing enrichments of individual cell types.  

There are at least seven major concerns that the in silico methods could be prone 
to errors, and cannot reliably portray the cellular heterogeneity of the tumor 
microenvironment. First, current techniques depend on the expression profiles of purified 
cell types to identify reference genes and therefore rely heavily on the data source of 
which the references are inferred from, and could be inclined to overfitting to these data. 
Second, current methods portray only a very narrow perspective of the tumor 
microenvironment. The available methods usually focus on a subset of immune cell 
types, thus not accounting for the further richness of cell types in the microenvironment, 
including blood vessels and other different forms of cell subsets [14,15]. A third problem 
is the ability of cancer cells to “imitate” other cell types by expressing immune-specific 
genes, such as macrophages-like expression pattern in tumors with parainflammation 
[16]; only a few of the methods take this into account. Fourth, the ability of existing 
methods to estimate cell abundance have not yet been comprehensively validated in 
mixed samples. Cytometry is a common method for counting cell types in a mixture, and 
when performed in combination with gene expression profiling, can allow validation of 
the estimations. However, in most studies that included cytometry validation, these 
analyses were performed on only a very limited number of cell types and a limited 
number of samples [7,13].  

A fifth challenge is that deconvolution approaches are prone to many different 
biases because of the strict dependencies among all cell types that are inferred. This could 
highly affect reliability in analyzing tumor samples, which are prone to form non-
conventional expression profiles. A sixth problem has been raised with inferring an 
increasing number of closely related cell types [10]. Finally, deconvolution analysis 
heavily relies on the structure of the reference matrix, which limits its application to the 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 6, 2017. ; https://doi.org/10.1101/114165doi: bioRxiv preprint 

https://doi.org/10.1101/114165
http://creativecommons.org/licenses/by-nc/4.0/


resource used to develop the matrix. One such deconvolution approach is CIBESORT, 
which is the most comprehensive study to date, allowing the enumeration of 22 immune 
subsets [7]. Newman et al. performed adequate evaluation across data sources and 
validated the estimations using cytometry immunophenotyping. However, the 
shortcomings of deconvolution approaches are apparent in CIBERSORT, which is 
limited to Affymetrix microarray studies.  

On the other hand, gene set enrichment analysis is a simple technique, which can 
be easily applied across data types and can be quickly applied for cancer studies. Each 
gene signature is used independently from all other signatures; thus it is protected from 
the limitations of deconvolution approaches. However, because of this independence, it is 
many times hard to differentiate between closely related cell types. In addition, gene 
signature-based methods only provide enrichment scores, and thus do not allow 
comparison across cell types, and cannot allow insights on the abundance of the cell type 
in the mixture.  

Here, we present xCell, a novel method that integrates the advantages of gene set 
enrichment with deconvolution approaches. We present a compendium of newly 
generated gene signatures for 64 cell types, spanning multiple adaptive and innate 
immunity cells, hematopoietic progenitors, epithelial cells and extracellular matrix cells 
derived from thousands of expression profiles. Using in silico mixtures, we transform the 
enrichment scores to a linear scale, and using a spillover compensation technique we 
reduce dependencies between closely related cell types. We evaluate these adjusted 
scores in RNA-seq and microarray data from primary cell types samples from various 
independent sources. We examine their ability to digitally dissect the tumor 
microenvironment by in silico analyses, and perform the most comprehensive 
comparison to date with cytometry immunophenotyping. We compare our inferences 
with available methods and show that scores from xCell are more reliable in digital 
dissection of mixed tissues. Finally, we apply our method on TCGA tumor samples to 
portray a full tumor microenvironment landscape across thousands of samples. We 
provide these estimations to the community and hope that this resource will allow 
researchers gain a better perspective of the complex cellular heterogeneity in tumor 
tissues. 
 

Results 
Generating a gene signature compendium of cell-types  

To generate our compendium of gene signatures for cell types, we collected gene 
expression profiles from six sources: the FANTOM5 project, from which we annotated 
719 samples from 39 cell types analyzed by the Cap Analysis Gene Expression (CAGE) 
technique [17]; the ENCODE project, from which we annotated 115 samples from 17 cell 
types analyzed by RNA-seq [18]; the Blueprint project, from which we annotated 144 
samples from 28 cell types analyzed by RNA-seq (http://www.blueprint-epigenome.eu/); 
the IRIS project, from which we annotated 95 samples from 13 cell types analyzed by 
Affymetrix microarrays [19]; the Novershtern et al. study, from which we annotated 180  
samples from 24 cell types analyzed by Affymetrix microarrays [20]; and the Human 
Primary Cells Atlas (HPCA), a collection of Affymetrix microarrays composed of many 
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different Gene Expression Omnibus (GEO) datasets, from which we annotated 569 
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Figure 1. xCell study design. A. A summary of Data sources used in the study to 
generate the gene signatures, showing  the number of pure cell types and number of 
samples curated from them. B. Our compendium of 64 human cell types gene 
signatures grouped into 5 cell types families. C. The xCell pipeline: Using the data 
source and based on different thresholds we learn gene signatures for 64 cell types. Of 
this collection of 5,327 signatures we choose 489 most reliable cell types, 3 for each 
cell types from each data source were it is available. The raw score is then the average 
ssGSEA score of all signatures corresponding to the cell type. Using simulations of 
gene expression for each cell type we learn a function to transform the non-linear 
association between the scores to a linear scale. Using the simulations we also learn 
the dependencies between cell types scores and apply a spillover compensation 
method to adjust the scores. 
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samples from 41 cell types [21] (Figure 1A). Altogether we collected and curated gene 
expression profiles from 1,822 samples of pure cell types, annotated to 64 distinct cell 
types and cell subsets (Figure 1B and Supplementary Table 1). Of those, 54 cell types 
were found in at least 2 of these data sources.  

Our strategy for selecting reliable cell type gene signatures is shown in Figure 1C 
(see Methods for full description and technical details). For each data source 
independently we identified genes that are overexpressed in one cell type compared to all 
other cell types. We applied different thresholds for choosing set of genes to represent the 
cell type gene signatures; hence from each source, we generated dozens of signatures per 
cell type. This scheme yielded 5,327 gene signatures corresponding to 64 cell types. 
Importantly, since our primary aim is to develop a tool for studying the cellular 
heterogeneity in the tumor microenvironment, we applied a methodology we previously 
developed [16] to filter out genes that tend to be overexpressed in a set of 634 carcinoma 
cell lines from the Cancer Cell Line Encyclopedia (CCLE) [22].  

Next, we used single-sample gene set enrichment analysis (ssGSEA) to score each 
sample based on all signatures. ssGSEA is a well-known method for aggregating a single 
score of the enrichment of a set of genes in the top of a ranked gene expression profile 
[23]. To choose the most reliable signatures we tested their performance in identifying 
the corresponding cell type in each of the data sources. To prevent overfitting, each 
signature learned from one data source was tested in other sources, but not in the data 
source it was originally inferred. To reduce biases resulting from a small number of genes 
and from the analysis of different platforms, instead of one signature per cell type, the top 
three ranked signatures from each data source were chosen. Altogether we generated 489 
gene signatures corresponding to 64 cell types spanning multiple adaptive and innate 
immunity cells, hematopoietic progenitors, epithelial cells and extracellular matrix cells 
(Supplementary Table 2). The raw enrichment score per cell type is defined as the 
average ssGSEA scores from all the cell type’s corresponding signature. Observing the 
scores in pure cell types affirmed their ability to identify the corresponding cell type 
compared to other cell types (Supplementary Figure 1).  
Spillover compensation between closely related cell types  

Our primary objective is to accurately identify enrichments of cell types in mixtures. To 
imitate such admixtures, we performed an array of simulations of gene expression 
combinations of cell types to assess the accuracy and sensitivity of our gene signatures. 
We generated such in silico expression profiles using different data sources, including 
data that was not part of the signatures generation; using different sets of cell types in 
mixtures; and by choosing randomly one sample per cell type from all available samples 
in the data source. The simulations revealed that our raw scores reliably predict even 
small changes in the proportions of cell types, easily distinguish between most cell types, 
and are reliable in different transcriptomic analysis platforms (Supplementary Figure 2). 
However, the simulations also revealed that raw scores of RNA-seq samples are not 
linearly associated with the abundance and that they do not allow comparisons across cell 
types (Supplementary Figure 3). Thus, using our simulations, we fit a formula that 
transforms the raw scores to cell-type abundances. We found that the transformed scores 
showed resemblance to the known fractions of the cell types in simulations, thus allowing 
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to compare scores across cell types, and not just across samples (Supplementary Figure 
4).  

The simulations also revealed another limitation of the raw scores: closely related 
cell-types tend to have correlating scores (Supplementary Figure 4). That is, scores may 
show enrichment for a cell type due to a ‘spillover effect’ between closely related cell 
types. This problem mimics the spillover problem in flow-cytometry, in which 
fluorescent signals correlate with each other due to spectrum overlaps. Inspired by the 
compensations method used in flow-cytometry studies [24], we leveraged our simulations 
to generate a spillover matrix that allows correcting for correlations between cell types. 
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To better compensate for low abundances in mixtures we created a simulated dataset 
where each sample contains 25% of the cell type of interest and the rest from a non-
related cell type and produced a spillover matrix, a representation of the dependencies of 
scores between different cell types. Applying the spillover correction procedure on the 
pure cell types (Figure 2A and Supplementary Figure 1) and simulated expression 
profiles (Figure 2B-C and Supplementary Figure 4) showed that this method could 
successfully reduce associations between closely related cell types, and in general 
improved the associations between scores and abundance. This pipeline of generating 
adjusted cell type enrichment scores from gene expression profiles, which we named 
xCell, is available as an R package and a simple web tool: http://xCell.ucsf.edu/. 

We next compared the xCell scores with a set of 53 previously published 
signatures corresponding to 26 cell types [6,12,25,26] (Supplementary Table 3). We 
applied each of the signatures in an array of simulations and compared their performance 
to estimate the simulated proportions (Supplementary Figure 4). Our analysis showed that 
xCell outperformed the previously published signatures in recapitulating the underlying 
abundances in 19 of the comparable cell types, only showing a slightly weaker ability to 
detect regulatory T-cells (Tregs) (Figure 2B and Supplementary Figure 4). It should be 
noted that the signature that performed better is based on one gene, FOXP3, and it is not 
clear if this gene can reliably predict the Tregs abundance in real mixtures, especially in 
samples where activated T cells are abundant [27]. These simulated mixtures were all 
performed using the data sources that were also used for generating our signatures; thus 
for the next step, we employed an independent data source of multiple cell types that was 
not part of the development of the method (GSE60424) [28]. Again, xCell inferences of 

Figure 2. Evaluation of the performance of xCell using simulated mixtures. A. An 
overview of adjusted scores for of 43 cell type in 259 purified cell types samples from 
the Blueprint and ENCODE data sources (other data sources are in supplementary 
figure 4). Most signatures clearly distinguish the corresponding cell type from all other 
cell types. B. Average correlation coefficients of 24 cell types in 6 simulations using 
Blueprint, ENCODE and FANTOM5. Independent simulations are available in 
supplementary figure 4. The first row corresponds to our inferences in predicting the 
underlying abundances of the cell types in the simulations (both color and pie chart 
correspond to average Pearson coefficients). Bindea, Charoentong, Palmer, Rooney 
and Tirosh represent sets of signatures for cell types from the corresponding 
manuscripts. Newman is the inferences produced using CIBERSORT on the 
simulations. Here the averages do not include the FANTOM5 simulations, since 
CIBERSORT was not able to recover any signal. In all cell types, except regulatory T-
cells, our inferences outperform all other methods. C. A simulation analysis using 
GSE60424 as the data source, which was not part of the development of xCell. This 
data source contains 114 RNA-seq samples from 6 major immune cell types. Left: 
Correlation coefficients using our method before spillover adjustment and after the 
adjustment. Dependencies between CD4+ T-cells, CD8+ T-cells and NK cells were 
greatly reduced; spillover from monocytes to neutrophils was also removed. Right: 
Same as B, but only based on the simulations using GSE60424. Our method 
outperforms all other methods in all 6 cell types. 
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the underlying abundances of the simulated mixtures outperformed all other signatures 
(Figure 2C). Importantly, our compensation technique was able to completely remove 
associations between cell types, while previously published signatures showed 
considerate dependencies between closely related cell types, such as between CD8+ T-
cells and NK cells (Supplementary Figure 5). 

In addition, we also compared xCell with CIBERSORT, a prominent 
deconvolution-based method [7]. Unlike signature-based methods, which output 
independent enrichment scores per cell type, the output from deconvolution-based 
methods is the inferred proportions of the cell types in the mixture. The L22 reference 
matrix of CIBERSORT was only calibrated to work with Affymetrix microarrays, 
nevertheless, it also performed well in our simulations generated using RNA-seq data 
from Blueprint, but not when using data from FANTOM5 (Supplementary Figure 4). 
Similar to the performance compared to signatures, xCell also outperformed 
CIBERSORT enumerations across all cell types, using both Blueprint and GSE60424 as 
data sources (Figure 2B-C and Supplementary Figure 4). xCell performed relatively well 
not just per cell types, but also in assessing proportions per sample, for example in a 
simulation using the Blueprint samples our scores showed a correlation of 0.67 on 
average across the 500 simulated mixtures compared to 0.44 using the CIBERSORT 
enumerations (Supplementary Figure 4). 
Validation of enrichment scores with cytometry immunoprofilings 

In addition to the simulated mixtures analysis, we compared our estimates for cell types 
enrichments from gene expression profiles with mass spectrometry (CyTOF) 
immunophenotyping. We utilized independent publicly-available studies, in which a total 
of 165 individuals were studied for both gene expression from whole blood and FACS 
across 18 cell subsets from peripheral blood mononuclear cells (PBMC) (available in 
ImmPort SDY311 and SDY420) [29]. We calculated xCell scores for each of the 
signatures using the study’s expression profiles and correlated the scores with the FACS 
fractions of the cell subsets. Of the 14 cell types with at least 1% abundance, xCell was 
able to significantly recover 8 and 10 cell subsets in SDY311 and SDY420 respectively 
(Pearson correlation between calculated and actual cell counts p-value < 0.05) (Figure 3). 
Comparing the performance of xCell to previously published signatures and 
CIBERSORT revealed that no other method was able to recover cell types that our 
method was not able to recover in both data sets (Figure 3). In general, previous methods 
were able to recover signal only from major cell types, including B-cells, CD4+ and 
CD8+ T-cells, and monocytes, suggesting that their performance were not reliable in 
more specialized cell subsets. While our method also struggled in these cell subsets, it 
still showed significant correlations with most of the cell subsets, including effector 
memory CD8+ T-cells, naïve CD4+ T-cells and naïve B-cells. In addition, xCell was 
more reliable in CD4+ T-cells and monocytes and equally reliable in B-cells (Figure 3). 
In CD8+ T-cells xCell was outperformed by methods depending on solely on CD8A 
expression, which may not serve as a reliable biomarker in cancer settings 
(Supplementary Figure 6). 
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Newman et al. [7] generated a smaller dataset of 20 samples analyzed by both 
gene expression and cytometry (available at GSE65133). xCell recovered 7 of the 8 
measurements (p-value < 0.05) and was significantly more reliable in 4 of the cell types 
(Supplementary Figure 7). 

Despite the generally improved abilities of xCell to estimate cell populations, we 
do note that in some cases the correlations we observed were relatively low, emphasizing 
the difficulty of estimating cell subsets in mixed samples, and the need for cautious 
examination and further validation of findings.  

Cell types enrichments in tumor samples  
We next applied our methodology on 8,875 TCGA primary tumor samples from twenty-
four cancer types. We used the expression profiles devised by Rahman et al. [30], which 
include FPKM levels of twenty-two solid tumors and two liquid tumors (Supplementary 
Figure 8). Average scores of cell types in each cancer type affirmed our prior knowledge, 
validating the power of our method for identifying the cell type of origin of cancer types. 
As expected, epithelial cells were enriched in carcinomas, keratinocytes in squamous cell 
carcinomas, endothelial cells in clear cell carcinoma, hepatocytes in hepatocellular 
carcinoma, melanocytes in melanoma, B-cells in B-cells lymphoma, myeloid cells in 
AML and neurons in brain cancers (Figure 4A). While these results are expected, it is 
reassuring that xCell can be applied to and studied in human cancers. 
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Figure 3. Compare digital dissection methods with flow cytometry counts. Right: 
Scatter plots of CyTOF fractions in PBMC vs. cell type scores from whole blood of 61 
samples SDY311 (top) and 104 samples from SDY420 (bottom). Only top correlating 
cell types in each study is shown. Right: Correlation coefficients produced by our 
method compared to other methods. Only cell types with abundance of at least 1% on 
average, as measured by CyTOF, are shown. Non-significant correlations (p-value < 
0.05) are marked with a gray ‘x’.  
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Most of the cell types we infer are part of the complex cellular heterogeneity of 
the tumor microenvironment. We hypothesized that an additive combination of all cell 
types’ scores would be negatively correlated with tumor purity. Thus, we generated a 
microenvironment score as the sum of all immune and stroma cell types. We then 
correlated this microenvironment score with our previously generated purity estimations, 
which are based on copy number variations, gene expression, DNA methylation and 
H&E slides [31]. Our analysis showed highly significant negative correlations in all 
cancer types, suggesting this score as a novel measurement for tumor microenvironment 
abundance (Supplementary Figure 9). 
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Figure 4. Cell types enrichment analysis in tumors. A. Average scores of 9 cell 
types across 24 cancer types from TCGA. Scores were normalized across rows. 
Signatures were chosen such that they are the cell of origin of cancer types or the most 
significant signature of the cancer type compared to all others. B. t-SNE plot of 8,875 
primary cancer samples from TCGA colored by cancer type. The t-SNE plot was 
generated using the enrichment scores of 47 non-epithelial, non-stem cells and non-
cell types specific scores. Many of the cancer type creates distinct cluster, 
emphasizing the important role of the tumor microenvironment in characterizing 
tumors 
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Finally, to provide insights into the potential of xCell to portray the tumor 
microenvironment, we plot all tumor samples based on their cell types scores. Using 
different sets of cell types inferences, we applied the t-Distributed Stochastic Neighbor 
Embedding (t-SNE) dimensionality reduction technique [32] (Supplementary Figure 10). 
Interestingly, the analysis revealed that unique microenvironment compositions 
characterize different cancer indications. For example, prostate cancer samples are easily 
distinguished based on their myeloid cell types composition, a unique lymphoid 
composition characterizes kidney cancers. Performing the analysis with all immune and 
stroma cell types revealed clear clusters distinguishing between most of the cancer types 
(Figure 4B), suggesting that the microenvironment composition uniquely characterizes 
cancer types. This notion emphasizes the importance of portraying the full cellular 
heterogeneity of the tumor microenvironment for the study of cancer. To this end, we 
calculated the enrichment scores for 64 cell types across the TCGA spectrum, and 
provide this data with the hope that it will serve the research community as a resource to 
further explore novel associations of cell types enrichment in human tumors 
(Supplementary Table 4). 

Discussion 
Recently, many studies have shown different methodologies for digital dissection of 
cancer samples [3,6,9–13]. These studies have suggested novel insights in cancer 
research and related to therapy efficacy. However, it is important to remember that the 
methods that have been applied for portraying the tumor microenvironment have only 
retained limited validation, and it is unclear how reliable their estimations are. In this 
study, we took a step back and focused on generating cell type gene scores that could 
reliably estimate enrichments of cell types. Our method, which is gene-signature based, is 
more reliable due to its reliance on a group of signatures for each cell type, learned from 
multiple data sources, which increases the ability to detect the signal from the noise. Our 
method also integrates a novel approach to remove dependencies between cell types, 
which allow better reliability in studying closely related cell types. 

To develop xCell, we collected the most comprehensive resource to date of 
primary cell types, spanning the largest set of human cell types. We then performed an 
extensive validation of the predicted cell types inferences in mixed samples. Our method 
for choosing a set of signatures that are reliable across several data sources has proven to 
be beneficial, as our scores robustly outperformed all available methods in predicting the 
abundance of cell types in in silico mixtures and blood samples. Based on our evaluation, 
xCell provides the most accurate and sensitive way to identify enrichments of many cell 
types in an admixture, allowing the detection of subtle differences in the enrichments of a 
particular cell type in the tumor microenvironment with high confidence. 

We chose to apply a gene signature enrichment approach over deconvolution 
methods because of several advantages that the former provides. First, gene signatures 
are rank-based, and therefore are suitable for cross-platform transcriptome measurements. 
We showed here that our scores reliably predict enrichments in different RNA-seq 
techniques and different microarrays platforms. They are agnostic to normalization 
methods or concerns related to batch effects, making them robust to both technical and 
biological noise. Second, there is no decline in performance with increasing number of 
cell types. The tumor microenvironment is a rich milieu of cell types, and our analyses 
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show enrichments of many mesenchymal derived cells in the tumors. A partial portrayal 
of the tumor microenvironment may result in misleading findings. Finally, gene 
signatures are simple and can easily be adjusted.  

The main disadvantage of gene signatures is their difficulty to discriminate 
closely related cell types, though it is not clear how well other methods can distinguish 
such cell types as well [10]. Our method takes this into account and uses a novel 
technique, inspired by flow cytometry analyses, to remove such dependencies between 
closely related cell types. It is important to note that until this step the cell types scores 
are independent of each other, and a deflection of genes of one cell type will not harm all 
other cell types. However, the ‘spillover correction’ adjustment removes this strict 
independence between cell types inferences as in deconvolution methods. While our 
method only compensates between closely related cell types and is, therefore, most of the 
inferences are still independent, the results should yet be cautiously analyzed. 

Despite the utility of our signatures for characterizing the tumor 
microenvironment, several issues require further investigation. While our signatures 
outperformed previous methods, it is important to note that our correlations were still far 
from perfect with direct measurements. More expression data from pure cell types, 
especially cell types with limited samples, and more expression data coupled with 
cytometry counts from various tissue types will allow defining signatures more precisely 
and in turn, allow better reliability. Meanwhile, it is necessary to refer to inferences made 
by our method or other methods with a grain of salt. Discoveries made using digital 
dissection methods must be rigorously validated using other technologies to avoid hasty 
conclusions.  

In summary, tissue dissection methods are an emerging tool for large-scale 
characterization of the tumor cellular heterogeneity. These approaches do not rely on 
tissue dissociation, opposed to single-cell techniques, and therefore provide an effective 
tool for dissecting solid tumors. The immense availability of public gene expression 
profiles allows these methods to be efficiently performed on hundreds of historical 
cohorts spanning thousands of patients, and to associate them with clinical outcomes. 
Here we presented the most comprehensive collection of gene expression enrichment 
scores for cell types. Our methodology for generating cell type enrichment scores and 
adjusting them to cell types proportions allowed us to create a powerful tool that is the 
most reliable and robust tool currently available for identifying cell types across data 
sources. We provide a simple web tool to the community and hope that further studies 
will utilize it for the discovery of novel predictive and prognostic biomarkers, and new 
therapeutic targets: http://xCell.ucsf.edu/. 

 
Methods 

Data sources 
Signatures data sources: RNA-seq and cap analysis gene expression (CAGE) 
normalized FPKM were downloaded from the FANTOM5, ENCODE and Blueprint data 
portals. Raw Affymetrix microarray CEL files were downloaded from the Gene 
Expression Omnibus (GEO), accessions: GSE22886 (IRIS), GSE24759 (Novershtern) 
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and GSE49910 (HPCA), and analyzed using the Robust Multi-array Average (RMA) 
procedure on probe-level data using Matlab functions. The analysis was performed using 
custom CDF files downloaded from Brainarray [33].  All samples were manually 
annotated to 64 cell types (Supplementary Table 1). 

Other expression data sources: RNA-seq normalized counts were downloaded from the 
gene expression omnibus (GEO) accession GSE60424. Illumina HumanHT-12 V4.0 
beadchip data of PBMC samples and the accompanying CyTOF data were downloaded 
from ImmPort accession SDY311, and quantile normalized using Matlab functions. 
Similarly, Agilent Whole Human Genome 4 x 44 K slides data of PBMC samples and the 
accompanying CyTOF data were downloaded from ImmPort accession SDY420 [34], 
and quantile normalized using Matlab functions. Multiple probes per gene were collapsed 
using averages. RNA-seq data of Cancer Cell Line Encyclopedia (CCLE) [22] was 
obtained using the PharmacoGx R package [35]. FPKM levels of 9,264 TCGA samples 
were downloaded from GEO accession GSE62944, and non-primary tumor samples were 
removed. 
Published signatures were collected from their corresponding papers [6,12,25,26]. 
(Supplementary Table 3). 
In silico mixtures 

The simulations were performed as following: A mixture set contains 500 mixtures 
(simulated expression profiles) that were generated using one of the data sources. First, 
we choose a representative group of cell types available in the data. Second, in each of 
the mixtures we randomly chose one sample for each cell type to represent the expression 
profile of the cell type. This random selection introduces significant noise to the mixture, 
and between mixtures in the mixture set, which reflect the variation we observe between 
real datasets. We then randomly choose a fraction for each of the cell types (the fractions 
sum to 1). The expression profile of each cell type is multiplied by its corresponding 
fraction, and the expression profile of the mixture is the sum of all cell types. This 
process is repeated 500 times to create 500 distinct mixtures using same set of cell types. 
We also created simulated mixtures that use the median expression profile of a cell type 
instead of choosing randomly one of the samples. This creates significantly homogenous 
and noiseless mixture, and the signatures can precisely identify small differences. 
The xCell pipeline 

Filtering cancer genes: In a previous study [16] we calculated using CCLE the number 
of cell lines that are over-expressing each gene (2-fold more than the peak of expression 
distribution). For generating the signatures we only use genes that have an 
overexpression rate of less than 5% (less than 32 cell lines of the 634 carcinoma cell 
lines). We use this stringent threshold to eliminate genes that tend to be overexpressed in 
tumors, regardless of the cellular composition. Of 18,988 genes analyzed, 9,506 genes 
were identified as not overexpressing in tumors. For signatures of cell types that may be 
the cell of origin of solid tumors, including epithelial cells, sebocytes, keratinocytes, 
mesangial cells, hepatocytes, melanocytes, astrocytes and neurons we used all genes. 
Generating gene signatures: Expression profiles were reduced to 10,782 genes that are 
shared across all 6 data sources. Gene expression was converted to log scale by adding 3 
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and then log2 conversion. In each group of samples corresponding to a cell type we 
calculated 10th, 25th, 33.3th, 50th percentiles of low expression (Q1q), and 90th,75th, 66.6th, 
50th quantiles of high expression (Q21-q),q=10%,25%,33.3%,50%.=. For cell type A we 
calculated the difference for each gene between Q1q(A) and max(Q21-q(all other cell 
types)). We repeated this also for second and third largest Q21-q(all other cell types). The 
signature of cell type A consists of all genes that pass a threshold. We used different 
thresholds here: 0, 0.1, log2(1.5), log(2), log2(3), log2(4). We repeated this procedure to 
each of the 6 data sources independently. Only gene sets of at least 10 genes and no more 
than 200 genes were reserved. This scheme yielded 5,327 gene signatures corresponding 
to 64 cell types. We calculated single-sample gene set enrichment analysis (ssGSEA) for 
each of those signatures to score each sample in each of the data sources using the GSVA 
R package [36]. 

Choosing the “best” signature: For each signature we computed the t-statistic between 
the scores of the corresponding cell type compared to all other samples, omitting samples 
from parental or descendant cell types (for CD4+ naïve T-cells the general CD4+ T-cells 
are not used in the calculations). The procedure was performed in each data source where 
the corresponding cell type was available, except the data source from which the 
signature was learned. Thus, a signature is only chosen if it is reliable in a data source 
were it was not trained upon. If the cell type is available in only one data source, the 
signature was tested in that data source. From each data source the top 3 signatures were 
chosen. All together we chose 489 signatures corresponding to 64 cell types (across the 6 
data sources we have 163 cell types) (Supplementary Table 2). The raw score for a cell 
type is the average of all corresponding signatures. 
Learning parameters for raw scores transformation: For each cell type we created a 
synthetic mixture using the median expression profile of the cell type (cell X) and an 
additional ‘control’ cell type. For ‘control’ we used multipotent progenitor (MPP) cell 
samples or endothelial cell samples, because both are found in all the sequencing-based 
data sets. We generated such mixtures using increasing levels of the corresponding cell 
type (0.8% of the cell X and 99.2% control, 1.6% cell X and 98.4% control, etc.). We 
noticed two problems with the raw scores: ssGSEA scores have different distributions 
between different signatures, thus a score from a signatures cannot be compared with a 
score from another signature. In addition, in RNA-seq data, the association between the 
underlying levels of the cell type was not linearly associated with the score. We thus 
designed a transformation pipeline for the scores – for each cell type, using the synthetic 
mixtures we first shifted the scores to 0 using the minimal score (which corresponded to 
mixtures containing 0.8% of the cell type) and divided by 5000. We then fit a power 
function to the scores ranging corresponding to abundances of 0.8% to 25.6%. We used 
this range because we are mostly interested in identifying cell types with low abundance, 
and above that the function exponential increase may interfere in a precise fitting. The 
power coefficient is then averaged across the data sources were the cell type is available.  

Learning the spillover compensation reference matrix: Another limitation that was 
observed in the mixtures is the dependencies between closely related cell types: scores 
that predict enrichment of one cell type also predict enrichment of another cell type, 
which might not even be in the mixture. To overcome this problem we created a 
reference matrix of ‘spillovers’ between cell types. We creating a synthetic mixture set, 
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where each mixture that contains 25% of each of the cell types (median expression) and 
75% of a ‘control’ cell type. We calculated raw cell types scores and transformed them 
using the learned coefficients as explained above (P – power coefficients vector). We 
combined all sequencing-based data sources together by using the average scores, and 
added samples from cell types that are not in any of the sequencing-based data sources as 
well to have a full matrix of 64x64, where rows are cell types scores and column are cell 
type samples (K – spillover matrix). We then normalize each row of cell types scores by 
the score of corresponding cell type. In another words, we normalized the matrix by the 
diagonal. This diagonal vector is then used as calibration vector in generating the final 
scores (V - calibration vector). The ‘spillover’ between a cell type score (x) and another 
cell types (y) is the ratio between x and y. We only take into account spillover between 
cell types from the same family (immune, hematopoietic stem cells and non-immune); 
parent cell types are only compensated between other parent cell types (CD4+ T-cells are 
compensated against CD8+ T-cells, but not CD8+ Tem); child cell types are only 
compensated compared to other child cell types from the same parent. The spillover 
matrix, power and calibration coefficients are available in Supplementary Table 5. 

Calculating scores for a mixture:  
Input: Gene expression data set, rows are genes and columns are samples (N – number of 
samples). Duplicate gene names are combined together. (1) Calculating ssGSEA for each 
of the 489 gene signatures. (2) Averaging scores of all signatures corresponding to a cell 
type. The result is a matrix (A) with 64 rows and N columns. (3) Each element in the 
scores matrix (Aij) is transformed using the following formula:  

𝑇!" = 𝐴!" −min 𝐴! /(5000 ∗ 𝑉!)!! 

The output is matrix T of transformed scores. If the input is microarray based, P is not 
used. (4) Spillover compensation is then performed for each row using linear least 
squares that minimizes the following: 

𝐾 ∙ 𝑥 − 𝑇! , such that 𝑥 ≥ 0 

All x’s are then combined to create the final xCell scores. 
Cytometry analyses 

Gene expression and cytometry data were downloaded from ImmPort (SDY311 and 
SDY420). The gene expression data was quantile normalized using Matlab functions, and 
multiple probes per gene were collapsed using averages. The cytometry data counts were 
divided by the viable/singlets counts. In the SDY311 dataset 10 patients had two 
replicates of expression profiles, and those were averaged. Two outlier samples in the 
cytometry data set were removed from further analyses (SUB134240,	  SUB134283).  

Other tools 
The CIBERSORT web tool was used for inferring proportions using the expression 
profile (http://cibersort.stanford.edu). CIBERSORT results of activated and resting cell 
types were combined, B-cell and CD4+ T-cells percentages are the combination of all 
their subtypes. t-SNE plots were produced using the Rtsne R package. Purity 
measurements were obtained from our previous publication [31]. Correlation plots were 
generated using the corrplot R package.  
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Supplementary Information 

Supplementary Figure 1. Reliability of cell types signatures across data sources 
before and after adjustments. Boxplots of the ssGSEA scores of each of the 64 cell 
types scores across the 6 data sources. Red boxplots represent the corresponding cell 
type; blue boxplots represent parental or descendant cell types. Each page presents the 
raw scores in each pure cell type (top) and the adjusted scores (bottom).  
Supplementary Figure 2. Simulated mixtures of pure cell types inferred by raw 
xCell scores. Scatter plots of inferred vs. simulated abundance in 10 mixtures sets. 
Supplementary Figure 3. Transformation procedure of raw scores to linear scales. 
The associations between raw scores and simulated abundances before and after 
transformation. 

Supplementary Figure 4. Cell types inferences in gene expression simulations. 
Simulations analyses, showing the correlation between cell types based on our inferences 
compared to other methods. 
Supplementary Figure 5. Dependencies between CD8+ T-cells and NK cells. An 
example of dependency between cell types in published signatures. 
Supplementary Figure 6. CD8+ T-cells scores vs. CD8A expression in cancer cell 
lines. An example of the problem of using a single gene for predicting cell type 
abundance. 

Supplementary Figure 7. Comparison of xCell, CIBERSORT and flow cytometry 
counts in GSE65133. Additional cytometry and expression data set used in the 
CIBERSORT study. 
Supplementary Table 1. Summary table of primary cell types used in this study. 
Number of samples annotated for each of the 64 cell types across the 6 data sources. 
Supplementary Table 2. 489 cell type gene signatures. 

Supplementary Table 3. 53 previously published cell type gene signatures. 
Supplementary Table 4. xCell scores in 9,264 samples from TCGA. 

Supplementary Table 5. Spillover matrix and calibrating coefficients. 
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