
 1  
 

Rational design of proteins that exchange on functional timescales 1 

 2 

James A. Davey,† Adam M. Damry,† Natalie K. Goto* & Roberto A. Chica* 3 

 4 

Affiliations: 5 

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, 6 

K1N 6N5, Canada 7 

 8 

*Correspondence to: E-mail: rchica@uottawa.ca, ngoto@uottawa.ca  9 

† These authors contributed equally to this work 10 

  11 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113845doi: bioRxiv preprint 

https://doi.org/10.1101/113845


 2  
 

Abstract 12 

Proteins are intrinsically dynamic molecules that can exchange between multiple 13 

conformational states, enabling them to carry out complex molecular processes with extreme 14 

precision and efficiency. Attempts to design novel proteins with tailored functions have mostly 15 

failed to yield efficiencies matching those found in nature because standard methods do not allow 16 

for the design of exchange between necessary conformational states on a functionally-relevant 17 

timescale. Here, we develop a broadly-applicable computational method to engineer protein 18 

dynamics that we term meta-multistate design. We used this methodology to design spontaneous 19 

exchange between two novel conformations introduced into the global fold of Streptococcal protein 20 

G domain β1. The designed proteins, named DANCERs, for Dynamic And Native Conformational 21 

ExchangeRs, are stably folded and exchange between predicted conformational states on the 22 

millisecond timescale. The successful introduction of defined dynamics on functional timescales 23 

opens the door to new applications requiring a protein to spontaneously access multiple 24 

conformational states.   25 
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Main Text 26 

Proteins have found widespread application in research, industry, and medicine because 27 

they can mediate complex molecular processes with extreme precision and efficiency. Even so, 28 

continued engineering of proteins with tailored functions is essential to enable novel 29 

biotechnological applications. Computational protein design (CPD) has enjoyed considerable 30 

success in creating protein sequences that stably adopt a single targeted structure (1-5). However, 31 

attempts to use these methods to generate proteins that can carry out specific functions have mostly 32 

failed to match the efficiencies that are found in nature (6-9), suggesting that fundamental aspects 33 

of protein structure that are not currently considered in design strategies must be incorporated in 34 

order to create proteins that can approach the efficacy of naturally occurring systems. One such 35 

feature is dynamics, which have been shown to be essential for many complex protein functions 36 

(10-13). The development of a general strategy for the rational design of protein sequences 37 

displaying predictable dynamic properties has great potential to expand the range and functionality 38 

of designed proteins, paving the way to applications that are currently inaccessible using natural 39 

proteins.  40 

The rational design of protein dynamics requires the prediction of sequences that can adopt 41 

the necessary conformational states for exchange. The recent development of multistate design 42 

(MSD) approaches applicable to large structural ensembles (14-16) has provided a method for the 43 

evaluation of protein sequence energies in the context of a large number of possible conformational 44 

states. Thus, MSD can in principle be used to assess the energy landscape of a target protein and 45 

identify sequences that can exchange between distinct states. However, introduction of functionally 46 

relevant conformational exchange into a stable protein fold is a difficult design problem as it 47 

requires a priori knowledge of the structural features of the relevant conformational states for 48 

dynamic exchange, including the endpoint structures and intermediate states that the protein must 49 
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adopt as it undergoes this conformational transition, which are often unknown. In addition, the 50 

multivariable optimization of sequences across many conformational states presents a significant 51 

computational challenge, since sequences must be designed that not only satisfy stability 52 

requirements for multiple target structures, but also yield an energy profile that would allow 53 

exchange between structures to occur on a functionally relevant timescale.  54 

Herein, we have developed a general procedure that addresses these challenges and enables 55 

the rational design of protein dynamics, which we termed meta-MSD (Fig. 1). Meta-MSD enables 56 

the evaluation of protein energy landscapes in order to predict sequences able to spontaneously 57 

exchange between specific states. Unlike standard MSD methodologies where states are defined 58 

by the user prior to calculation (e.g., target and off-target states), meta-MSD instead assigns the 59 

identity of the states based on their structural characteristics after rotamer optimization, enabling 60 

the unbiased prediction of the preferred state for each sequence, along with an evaluation of the 61 

relative energies of every state that the sequence can stably adopt. We applied this methodology to 62 

the design of sequences that adopt the global fold of Streptococcal protein G domain β1 (Gβ1) and 63 

spontaneously exchange between two conformations that have not been previously observed for 64 

this fold. The designed dynamic Gβ1 variants, termed DANCERs, for Dynamic And Native 65 

Conformational ExchangeRs, were shown to be stably folded and to exchange between the 66 

predicted conformational states on the millisecond timescale.  67 

 68 

Computational design of a protein energy landscape 69 

A dynamic protein that spontaneously interconverts between two distinct conformational 70 

states adopts a continuum of unique configurations during exchange. However, the energy 71 

landscape is complex and the range of configurations that are sampled over the course of exchange 72 

cannot be completely defined. Nevertheless, it should be possible to engineer a user-defined 73 
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exchange trajectory by identifying sequences that stabilize configurations having structural 74 

characteristics postulated to facilitate this exchange. To simplify the exchange reaction coordinate, 75 

the conformational landscape can be conceptually divided into three states: a major, a minor, and 76 

a transition state (Fig. S1). In the context of this work, we treat each of these states as a collection 77 

of unique configurations that we will refer to as microstates. Microstates are generated by 78 

optimizing rotamers for predefined sequences on an ensemble of backbone templates using MSD, 79 

which also returns an energy value for each microstate that reflects its predicted stability (Fig. 1, 80 

panels I–III). Following MSD, microstates are partitioned into their corresponding states according 81 

to their structural features (Fig. 1, panel IV), and the energy of each state is calculated from the 82 

energy of its constituent microstates. Evaluation of relative energies between each state then allows 83 

prediction of the exchange profile for each sequence, allowing identification of sequences that 84 

would give rise to static or dynamic Gβ1 folds (Fig. 1, panels V–VI). We call this framework meta-85 

MSD because both state and dynamic behavior are assigned after rotamer optimization by MSD. 86 

Meta-MSD can be used to identify sequences that can stably populate the two target states, with a 87 

transition state barrier that is small enough to allow interconversion between these two states, 88 

enabling the rational design of dynamics. 89 

To validate our meta-MSD framework, we targeted the introduction of millisecond 90 

timescale exchange into the Gβ1 structure. Native Gβ1 is rigid on this timescale (17), with a small 91 

size (56 amino acids) that facilitates characterization of its dynamic properties at atomic resolution. 92 

Additionally, Gβ1 possesses a single tryptophan residue (Trp43) that in high-resolution structures 93 

of Gβ1 and its natively folded variants (18-28) exclusively occupies a single side-chain 94 

conformation with χ1 and χ2 dihedrals of –74 ± 9° and +75 ± 11°, respectively. We name this 95 

conformation +g(–) due to its positive χ2 dihedral angle and its gauche(–) χ1 dihedral (Fig. S2). In 96 

Gβ1, the Trp43 side chain is mostly solvent inaccessible, making intimate contacts with several 97 
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residues that comprise the hydrophobic core. This makes it an attractive target for the design of 98 

conformational exchange, with one state being buried, and the other being excluded from the 99 

hydrophobic core in a solvent-exposed conformation that should be straightforward to distinguish 100 

spectroscopically. In addition, exchange between a core-buried and solvent-exposed state is 101 

expected to involve the disruption of side-chain interactions that should increase the kinetic barrier 102 

separating states, while not requiring large-scale changes in backbone structure that could prove 103 

kinetically inaccessible (29). Moreover, with exchange of the tryptophan side chain being set as 104 

our target for the design of dynamics, tryptophan side-chain dihedral angles provide a convenient 105 

metric for the assignment of microstates to one of the target states defined in our meta-MSD 106 

approach. 107 

Using meta-MSD, we designed Gβ1 sequences that could adopt the native fold and also 108 

undergo conformational exchange between a state where the Trp43 indole is solvent-exposed 109 

[−g(+)] and a state where the indole is sequestered from the solvent in the hydrophobic core [–110 

g(−)] (Fig. S3). Notably, we avoided selection of the native Trp43 conformation [+g(−)] for the 111 

core-buried state, since CPD has a tendency to overemphasize the stability of the native rotamer 112 

relative to non-native configurations (30). A final and particularly critical aspect of our 113 

conformational exchange design was the definition of an intermediate state with the Trp43 side 114 

chain in the –t conformation, since this state is necessary to provide a model of transiently 115 

populated microstates that are sampled along the reaction coordinate. Use of the –t conformation 116 

as a proxy of the transition state thus allowed estimation of kinetic barriers between states, enabling 117 

the elimination of sequences predicted to stably adopt two end-states separated by large kinetic 118 

barriers that would not exchange on functionally relevant timescales.  119 

To ensure adequate sampling of the range of structures that may be required to 120 

accommodate the designed conformational exchange, an ensemble of 12,648 templates was 121 
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prepared using a combination of several template generation procedures (Fig. S4, Table S1, and SI 122 

Text). Using this ensemble, MSD was performed to optimize rotamers for a library of 1,296 Gβ1 123 

sequences comprising combinations of core-residue mutations (Fig. S5) that were previously 124 

reported to result in folded Gβ1 variants (14). MSD thus yielded >16 million microstates and 125 

corresponding energies, allowing for approximation of the accessible conformational landscape of 126 

Trp43 in the native Gβ1 fold. 127 

Sequences having a Boltzmann-weighted average of MSD energies greater than that of the 128 

wild-type sequence are less likely to adopt a stable Gβ1 fold (15) and were therefore eliminated 129 

from the meta-MSD analysis. For the remaining 195 sequences, each microstate was classified as 130 

being in a core-buried [–g(–)], solvent-exposed [–g(+)], or intermediate [–t] state based on the χ1 131 

and χ2 dihedrals of the Trp43 side chain. The energy of each of these states was determined for 132 

every sequence by taking the energy of the most stable microstate assigned to each state. State 133 

energies were used to construct an energy profile for each sequence (Fig. 1, panel V), enabling us 134 

to identify 35 sequences predicted to allow conformational exchange between the target core-135 

buried and solvent-exposed conformations (SI Text), of which four were selected for experimental 136 

characterization (Table 1, DANCER proteins).  137 

 138 

Experimental characterization 139 

Although the four DANCER proteins each contained between five and six mutations, 140 

representing approximately 10% of the Gβ1 total sequence length, they expressed as soluble 141 

monomers (Fig. S6), adopted the native Gβ1 fold (Fig. S7), and were folded at room temperature 142 

(Fig. S8, Table S2). Chemical denaturation experiments (Fig. S9) could be fit to a two-state model 143 

with m-values similar to that of the wild type (Table S2), indicating a similar level of protein surface 144 

exposed to solvent upon unfolding (31). In addition, all DANCER variants have unfolding free 145 
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energies that are 1.5 kcal/mol and higher (Table 1), confirming that they are stably folded at room 146 

temperature. Solution NMR was used to assess the dynamic properties of DANCER proteins, with 147 

1H-15N heteronuclear single quantum coherence (HSQC) spectra showing immediate evidence that 148 

DANCER proteins exist in two distinct conformational states (Fig. S10). Specifically, spectra for 149 

DANCER-1, DANCER-2, and DANCER-3 all showed the presence of a minor species not seen in 150 

spectra of wild-type Gβ1 (Fig. S11). The only exception was DANCER-0, which instead showed 151 

significant peak broadening, suggesting that it is dynamic on a faster timescale (32).  152 

Using 1H-15N HSQC ZZ-exchange experiments (Fig. 2 and S12), we confirmed that the 153 

minor species in DANCER-1, DANCER-2, and DANCER-3 is an alternate state of Gβ1 154 

undergoing exchange with the major species. Mixing-time dependent changes in peak intensities 155 

acquired over a range of temperatures could be fit to kinetic and thermodynamic parameters of 156 

exchange for DANCER-1 and DANCER-3 (Table 1, Fig. S13), confirming that conformational 157 

exchange is occurring on the millisecond timescale. DANCER-1 exhibits approximately 10-fold 158 

faster exchange than DANCER-3, with an activation barrier that is 1.75 kcal/mol smaller in 159 

magnitude. Conformational exchange was also observed for DANCER-2, although the small 160 

population of the minor state (< 10%) prevented quantitative measurement of kinetic parameters 161 

for this mutant.   162 

To obtain structural evidence that the two conformations sampled by our dynamic Gβ1 163 

variants matched structural states predicted by meta-MSD, solution NMR was used to solve the 164 

structure of the major state of DANCER-2 (Fig. 3A, Table S3). As predicted, this structure shows 165 

a native Gβ1 fold with χ1 and χ2 dihedrals for Trp43 that correspond to the solvent-exposed −g(+) 166 

conformation (Table 2). However, there was also a secondary network of low intensity NOEs 167 

involving the Trp43 side chain that were not compatible with this structure, but could be used to 168 

determine a structural model for the alternate, minor state (SI Text). According to this model (Fig. 169 
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3B, Table S3), the configuration of Trp43 in the minor state is in the core-buried –g(–) state (Table 170 

2), as predicted by meta-MSD. Taken together, these data demonstrate that we have successfully 171 

designed a sequence that adopts the Gβ1 fold while undergoing conformational exchange on a 172 

millisecond timescale between two conformational states that have not previously been observed, 173 

but were the targets of our design protocol.  174 

 To illustrate the reliability of our meta-MSD predictions, we also characterized the structure 175 

and dynamics of DANCER-1 and DANCER-3. While the exchange parameters for these mutants 176 

made it impractical to attempt structure determination, 1H-15N HSQC spectra of the major species 177 

showed similarities with those of other structurally characterized variants, suggesting a high degree 178 

of structural similarity with these states. Specifically, the DANCER-1 spectrum shows only small 179 

chemical shift differences from that of DANCER-2 (Fig. 4A), suggesting that the major species of 180 

DANCER-1 also contains Trp43 in the solvent-exposed −g(+) state. Likewise, the 1H-15N HSQC 181 

spectrum for DANCER-3 was highly similar to that of a variant that we determined to 182 

thermodynamically and kinetically favor the −g(+) state as predicted by meta-MSD (Fig. 4B), 183 

called NERD-S, for Non-Exchanging Rigid Design with a Solvent-exposed Trp43 side chain (SI 184 

Text, Fig. 3C, Tables 1, 2, and S3). Therefore in all three of the mutants predicted by meta-MSD 185 

to be dynamic for which structural information could be obtained, the major conformation was the 186 

Gβ1 structure with Trp43 being in the solvent-exposed −g(+) state. 187 

Insight into the minor states being sampled in the conformational exchange exhibited by 188 

DANCER-1 and DANCER-3 was provided by 1H-15N-NOE correlations involving the Trp43 189 

indole NH proton. DANCER-1 and DANCER-3 spectra show NOE correlations (Fig. S14) to 190 

similar regions of the protein as was observed in DANCER-2 (Fig. 4C), consistent with exchange 191 

between core-buried –g(–) and solvent-exposed –g(+) states. Furthermore, comparison of NOEs 192 

involving the Trp43 indole NH proton confirmed that these correlations do not correspond to the 193 
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core-buried state found in the wild-type structure [+g(–)] (SI text, Fig. S15). Taken together, our 194 

NMR results confirm that the Trp43 residues of DANCER-1 and DANCER-3 exchange between 195 

the solvent-exposed –g(+) and core-buried –g(–) conformations that were the targets of our design, 196 

and also suggest that exchange is achieved via a coordinated change in side-chain configurations 197 

for a triad of aromatic residues (Phe34, Trp43, Phe45) in a process we have termed an aromatic 198 

relay (SI text, Fig. S16). 199 

  200 

Discussion  201 

  The meta-MSD framework described here enabled the rational design of Gβ1 variants that 202 

spontaneously exchange between two predefined states on the millisecond timescale without the 203 

need for an external stimulus to induce exchange. To our knowledge, this work represents the first 204 

successful application of CPD to engineer a specific mode of conformational exchange into a stable 205 

protein fold. Although a previous CPD-based design generated a protein capable of reversible 206 

exchange between coiled-coil trimer and zinc-finger folds (8), this relied on the presence of a metal 207 

that was critical for the formation of the zinc finger structure. In that case, it was possible to design 208 

exchange by simultaneously minimizing the sum of the sequence energies across both folds. In 209 

contrast, to design conformational exchange between two states in the absence of a ligand or other 210 

external stimulus, we found that it was essential to explicitly consider both the relative energies 211 

between the two target end-states (∆Eeq) and the barrier to conformational exchange (∆E‡).  212 

Without estimation of both of these energy differences, it would not have been possible to 213 

distinguish between dynamic (DANCER) and static (NERD) sequences (e.g., both ∆Eeq and ∆E‡ 214 

values for DANCERs were lower than for NERDs and wild-type Gβ1, Table 1).   215 

Another key advantage arising from our utilization of a meta-analysis-based design strategy 216 

is that it enabled the use of a significantly larger structural ensemble than has previously been 217 
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utilized in MSD approaches. This was of critical importance, since we found that the full 218 

complement of seed structure and ensemble generation strategies used in our framework was 219 

required to approximate the energy landscape of the designed exchange trajectory with enough 220 

accuracy to predict DANCER variants (SI Text, Table S4). In addition, the large ensemble size 221 

made it possible to design exchange in the absence of specific structures corresponding to each 222 

end-state, in contrast with the metal-triggered conformational exchange that was previously 223 

designed using available crystal structures as templates for the two end-states (8).  224 

Importantly, our results show that the introduction of dynamics on the millisecond timescale 225 

cannot be achieved via a single mutation and that instead dynamics is conferred through subtle 226 

interactions across a network of residues. For example, the A34F mutation, which was previously 227 

shown to induce dimerization of Gβ1 without altering the Trp43 conformation (27, 33), is common 228 

to all DANCER proteins and an integral component of the aromatic relay that underlies exchange 229 

(Fig. S16). However, this mutation alone is not sufficient to introduce dynamics into the Gβ1 fold, 230 

since the variant NERD-S also possesses this mutation but does not undergo exchange on the 231 

millisecond timescale (Table 1). Introduction of the conservative and isosteric I39L mutation into 232 

the NERD-S sequence appears to be sufficient to introduce the targeted conformational exchange, 233 

giving rise to the dynamic variant DANCER-3. These results highlight the challenges of attempting 234 

to infer dynamics from simple sequence characteristics, and demonstrate the power of meta-MSD 235 

to design conformational exchange into proteins even without prior knowledge of the mechanism 236 

of exchange. 237 

 238 

Conclusion 239 

The meta-MSD framework presented here is in principle applicable to the design of specific 240 

conformational exchange into any globular protein. In the future, meta-MSD could also be used to 241 
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design proteins with functions that rely on the ability to spontaneously access more than one 242 

conformational state (e.g. open and closed states of an enzyme to facilitate substrate binding and 243 

catalysis, respectively). Alternatively, meta-MSD could be used to enrich functionally relevant but 244 

low occupancy states from an ensemble of dynamic configurations to improve function (34). 245 

Moreover, while we have demonstrated the introduction of dynamics into a rigid protein, 246 

dampening of dynamics should in principle also be possible, as demonstrated by our design of 247 

NERD-C and NERD-S. This potential for meta-MSD to be used for the rigidification of highly 248 

dynamic regions in proteins without adversely affecting the overall structure, in effect imitating 249 

conformational selection in silico, opens the door to the design of proteins with a wider range of 250 

functions than previously possible. 251 

 252 

Data Availability. Structure coordinates have been deposited in the Protein Data Bank with 253 

accession codes 5UB0 (NERD-C), 5UBS (NERD-S), 5UCE (major state of DANCER-2), and 254 

5UCF (minor state of DANCER-2). NMR data has been deposited in the Biological Magnetic 255 

Resonance Data Bank with accession codes 30220 (NERD-C), 30221 (NERD-S), 30222 256 

(DANCER-2), 27030 (DANCER-0), 27031 (DANCER-1), and 27032 (DANCER-3). 257 

 258 
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Table 1. Predicted and Experimental Properties of Gβ1 variants 447 

  Meta-MSD Predictions Stability Exchange e 

Protein Mutations Behavior a 
ΔEeq 

b  

(kcal/mol) 

ΔE‡ c 

(kcal/mol) 

ΔGU 
d 

(kcal/mol) 

k–1
f
 

(s-1) 

k1
g
 

(s-1) 

ΔG‡ h 

(kcal/mol) 

ΔGeq 
i 

(kcal/mol) 

Wild type  +g(−) 8.6 15.2 4.1 ± 0.2     

DANCER-0 Y3F/L5A/L7I/A34F/V39I −g(+) ↔ −g(−) 0.9 7.8 1.5 ± 0.2     

DANCER-1 Y3F/L5A/L7I/A34F/V39L/V54I −g(−) ↔ −g(+) 3.7 8.4 2.2 ± 0.1 30 ± 10 110 ± 50 18.9 ± 0.3 0.3 ± 0.1 

DANCER-2 Y3F/L5A/L7I/A34F/V39L −g(+) ↔ −g(−) 1.3 9.4 1.7 ± 0.1 j j j 1.4 ± 0.7 

DANCER-3 Y3F/L7I/A34F/V39L/V54I −g(−) ↔ −g(+) 2.9 13.7 2.0 ± 0.3 3.9 ± 0.2 23 ± 5 20.65 ± 0.08 1.3 ± 0.3 

NERD-S Y3F/L7I/A34F/V39I/V54I −g(+) 4.3 14.7 2.7 ± 0.1     

NERD-C Y3F/L7I/F30L/V39I +g(−) 12.2 15.3 4.0 ± 0.3     

a Static variants (NERD-S and NERD-C) are predicted to occupy a single state while DANCER proteins are predicted to exchange between major and minor states (major state ↔ 448 

minor state) 449 

b Energy difference between the two lowest energy states 450 

c Energy barrier to conformational exchange (see SI text for more detail) 451 

d Free energy of unfolding determined by chemical denaturation with guanidium chloride at 25 °C 452 

e Kinetic parameters (k1, k–1, ΔG‡) reported at 15 °C, ΔGeq at 25 °C. 453 

f Rate constant for exchange from major to minor state 454 

g Rate constant for exchange from minor to major state 455 

h Energy barrier for exchange from major to minor state 456 

i Free energy difference between major and minor states 457 

j Exchange peaks were observed but could not be quantified 458 
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Table 2. Comparison of predicted and experimental structures 459 

Protein TM-score to 1PGA a 
Predicted 

Trp43 Conformation 

Experimental χ1 

(°) 

Experimental χ2 

(°) 

DANCER-2     

Major species 0.67 −g(+) +75 ± 2 –74 ± 1 

Minor Species 0.66 −g(−) –95 ± 1 –110 ± 2 

Static Gβ1 variants     

NERD-S 0.66 −g(+) +54 ± 4 –89 ± 2 

NERD-C 0.85 +g(−) –84 ± 4 +80 ± 4 

 460 

a TM-score has a value between 0 and 1, where 1 indicates a perfect match between two structures. Two proteins with a TM-score 461 

greater than 0.5 are considered to adopt the same fold (35, 36). 462 

  463 
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Figures 464 

 465 

 466 

Figure 1. Meta-MSD. Multistate design (MSD) with an ensemble of backbone templates 467 

approximating the conformational landscape for dynamic exchange between targeted states (I) is 468 

used to generate microstates by solving the lowest energy rotamer configuration for each sequence 469 

on each backbone template (II). MSD also returns an energy value for each microstate that reflects 470 

its predicted stability (III). A geometry-based analysis of the rotamer-optimized microstates is 471 

performed (IV), allowing assignment of each microstate to major, minor or transition state in the 472 

energy landscape (V). Prediction of conformational dynamics is then done based on an evaluation 473 

of the relative energies of these states (VI). For a sequence to be predicted as dynamic, all three 474 
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states must be stable, with an energy profile that is compatible with exchange (e.g., sequence D). 475 

Sequences A, B, and C are predicted to be static because they either stabilize a single state or cannot 476 

stabilize the transition state required for exchange. Sequence E is also predicted to be static because 477 

it stabilizes only one endpoint state. Sequence F is predicted to be unfolded because it is unstable 478 

on all states. 479 

  480 
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 481 

 482 

 483 

Figure 2. 1H-15N ZZ-Exchange spectrum for DANCER-3. ZZ-Exchange spectrum (blue) is 484 

shown overlaid with 1H-15N HSQC spectrum (black) to highlight the presence of exchange peaks. 485 

 486 

 487 

105

110

115

120

125

130

15
N

 (
p

p
m

)

1H (ppm)
11.0 10.0 9.0 8.0 7.0 6.0

DANCER-3

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113845doi: bioRxiv preprint 

https://doi.org/10.1101/113845


 26  
 

 488 

Figure 3. Solution structures of Gβ1 variants. NMR ensembles for (A) DANCER-2 major 489 

species, (B) DANCER-2 minor species, and (C) NERD-S. The minor species of DANCER-2 is a 490 

model generated using NOESY data that excluded a small subset of peaks from the automatic NOE 491 

assignment process that could be unambiguously assigned to the major species (SI Text). The 492 

Trp43 side chain is shown as sticks. 493 

 494 

 495 
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 496 

Figure 4. Structural analysis of DANCER-1 and DANCER-3. (A) Superimposed 1H-15N-HSQC 497 

spectra of DANCER-2 and DANCER-1 reveal high structural similarity between major states. 498 

Residues showing significant average amide shift differences (Δδ > Δδavg + 1σ) are labeled and 499 

highlighted in blue on the inset DANCER-2 structure. These residues are all proximal to the single 500 

amino acid that differs between the two DANCER proteins (shown as sticks). (B) 1H-15N-HSQC 501 

spectra demonstrating that the major state of DANCER-3 has the same structure as NERD-S. (C) 502 

Summary of NOE correlations involving the Trp43 indole N-H shown on a position map 503 

(secondary structure elements on top) and on each structure. Correlations are colored green, blue, 504 

or magenta, if they are observed in static, dynamic, or both variants respectively. Trp43 side-chain 505 
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conformation(s) consistent with observed NOEs are shown for each structure. Included in this 506 

analysis is the solution NMR structure of NERD-C (Non-Exchanging Rigid Design with a Core-507 

buried Trp43 conformation, SI Text), which adopts the native +g(–) configuration (Fig. S15, Table 508 

2). NERD-C shows several unique indole N-H NOE correlations that are not observed in any of 509 

the DANCER variants, confirming that this state is not sampled by the DANCER proteins. 510 

 511 
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