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Abstract

Motivation: Antimicrobial resistance has become a major worldwide public
health concern, calling for a better characterization of existing and novel resis-
tance mechanisms. GWAS methods applied to bacterial genomes have shown
encouraging results for new genetic marker discovery. Most existing approaches
either look at SNPs obtained by sequence alignment or consider sets of kmers,
whose presence in the genome is associated with the phenotype of interest.
While the former approach can only be performed when genomes are similar
enough for an alignment to make sense, the latter can lead to redundant de-
scriptions and to results which are hard to interpret.
Results: We propose an alignment-free GWAS method detecting haplotypes
of variable length associated to resistance, using compacted De Bruijn graphs.
Our representation is flexible enough to deal with very plastic genomes subject
to gene transfers while drastically reducing the number of features to explore
compared to kmers, without loss of information. It accomodates polymorphisms
in core genes, accessory genes and noncoding regions. Using our representation
in a GWAS leads to the selection of a small number of entities which are easier
to visualize and interpret than fixed-length kmers. We illustrate the benefit of
our approach by describing known as well as potential novel determinants of
antimicrobial resistance in P. aeruginosa, a pathogenic bacteria with a highly
plastic genome.
Availability and implementation: The code and data used in the experi-
ments will be made available upon acceptance of this manuscript.
Contact: magali.dancette@biomerieux.com
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1 Introduction

Antimicrobial resistance has become a major worldwide public health concern,
as illustrated by the increase of hospital-acquired infections on which both em-
pirical and targeted treatments fail because of multi-resistant bacterial strains
(Micek et al., 2015). This worrisome situation calls for a better comprehension
of the genetic bases of resistance mechanisms. Genome-wide association studies
(GWAS) aim at linking genetic determinants to phenotypes, and seem appro-
priate for this purpose. Indeed over the past four years, bacterial GWAS have
shown encouraging results for genetic marker discovery thanks to the increase
in rich panels of bacterial genomes and phenotypic data (Alam et al., 2014;
Chewapreecha et al., 2014; Earle et al., 2016; Farhat et al., 2013; Sheppard
et al., 2013).

GWAS rely on a particular definition of genetic variants, such as the pres-
ence in the genome of SNPs against a reference genome, of genes in a predefined
list or of fixed-length kmers. Each genome in the panel is encoded as a vector
with one entry per genetic variant – indicating, e.g., whether the genome con-
tains the variant – and all variants are tested for association with the phenotype
of interest. The objective of this paper is to describe a novel representation of
genetic variation for bacterial GWAS, and to discuss its advantages over exist-
ing ones.

Most existing bacterial association studies use approaches developed for hu-
man GWAS to encode genome variation: they align all genomes in the panel
against a reference genome, identify SNPs and represent each strain by a pres-
ence/absence vector with one entry per SNP (Farhat et al., 2013; Alam et al.,
2014; Chewapreecha et al., 2014). However a suitable reference is not always
available, in particular for species with extensive genome plasticity and a large
accessory genome. The accessory genome is the part of the genome not found
in all strains of the same species, and is largely composed of genetic mate-
rial acquired by horizontal gene transfer. For highly plastic species – including
pathogenic and antibiotic resistant species such as P. aeruginosa–, it can repre-
sent more than a quarter of the complete genome, leading to manifold genomes
which vary by their size and content (Kung et al., 2010). Aligning such genomes
against a reference makes little sense and alternative representations of genetic
variation are required.

To account for the variation in gene content, some studies also use as candi-
dates the presence or absence of genes represented in the studied panel (Earle
et al., 2016). However, genetic determinants linked to transcriptional or trans-
lational regulation may be located in noncoding regions, and thus are missed
by approaches relying on this representation, whose quality also depends a lot
on the quality of the available annotation.

Finally to get around these issues, other studies have represented genomes
as vectors of presence or frequency of kmers, i.e., of length k sequences in
the genome (Sheppard et al., 2013; Earle et al., 2016). Contrarily to SNP-
or gene-based approaches, kmers are able to describe genome diversity without
requiring an alignment against a reference genome or prior annotation. A major

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113563doi: bioRxiv preprint 

https://doi.org/10.1101/113563
http://creativecommons.org/licenses/by-nc-nd/4.0/


issue of this approach however is that the number of distinct kmers contained in
a set of genomes increases with k, easily reaching tens of millions of candidates
and leading to very high memory requirements, time loads and complexity
in feature interpretation. At the same time it is clear that the information
carried by kmers is highly redundant as each single locus is represented by
several overlapping kmers, suggesting that they are not the optimal resolution
to describe genome variation. Thus, the best way to encode genomic variation
in bacterial GWAS remains an open question (Read and Massey, 2014; Power
et al., 2017).

Our proposed representation is based on compacted De Bruijn graphs (de Bruijn,
1946) (DBG), which are widely used for de novo genome assembly (Pevzner
et al., 2001; Zhang et al., 2011) and variant calling (Iqbal et al., 2012; Le Bras
et al., 2016). All fixed-length kmers corresponding to the same long sequence in
a set of genomes are represented as a single longer word associated with a node
in the graph. The nodes of the compacted DBG therefore provide a lossless,
data dependent compression of the fixed-length kmers, leading to a resolution
adapted to the local variability of the genomes.

We show in this paper how using these nodes to define genetic variants for
bacterial GWAS indeed leads to selecting a few entities which are easier to
interpret and make more sense biologically than fixed-length kmers. We also
show how DBGs themselves facilitate the analysis of a set of candidate variants
found to be significantly associated with microbial antibiotic resistance. We
illustrate these advantages using a panel of P. aeruginosa strains with multiple
phenotypic resistances to antimicrobial drugs.

2 Methods

We here introduce our proposed definition of genomic variants, showing how it
generalizes two standard alternatives based on presence/absence of:

• SNPs obtained by alignment against a reference genome,

• Fixed-length kmers.

We then detail how we use it in a GWAS context and how we assess its perfor-
mance.

2.1 Encoding genome variation using compacted De
Bruijn graphs

DBGs are directed graphs representing overlaps between a set of strings. More
specifically, the DBG nodes are all unique kmers extracted from the sequences
and an edge is drawn between any two nodes if the (k -1)-length suffix of one
equals the (k -1)-prefix of the other.

When considering a set of similar sequences, a single DBG built over all
these sequences displays a particular topology, providing information on any
variation among sequences in the set. A SNP for example leads to kmers which
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Figure 1: DBG construction. For this example, k=4. A) the 4-mer “TTCG”
present in both sequences overlaps two other 4-mers (“TCGC” and “TCGA”) but
these two 4-mers differ by their 4th base and we obtain a fork pattern. B) both
branches of the fork join on the shared 4-mer “TAGT”, and this creates a bubble
pattern representing here the SNP C to A. C) linear paths of the graph are compacted
; the remaining graph contains fewer nodes representing longer kmers (unitigs): two
4-mers and two 7-mers instead of eleven 4-mers before compaction. Compacted nodes
have variable length.

are constant across genomes, followed by kmers differing by one letter, followed
by more constant kmers. When building the DBG, if a kmer overlaps two other
kmers but these two kmers differ by their kth base we obtain a fork pattern
in the graph (Figure 1A). When both branches of the fork join again into one
shared kmer, we obtain a bubble pattern with two branches of equal length,
representing the SNP (Figure 1B). Insertions of large sequences in some of
the genomes lead to bubbles with one branch longer than the other, and can
therefore be represented in the same framework. This makes DBGs a tool of
choice to describe genomic variants (Le Bras et al., 2016).

Interestingly, these graphs can be compacted by first using a unique node
to store a kmer sequence and its reverse complement, and then merging lin-
ear paths, i.e., sequences of nodes not linked to more than two other nodes.
This compression is done without loss of information, because it only affects
redundant descriptors, i.e., kmers whose presence/absence pattern is identical
across genomes (Butler et al., 2008; Zerbino and Birney, 2008; Chikhi et al.,
2016). Thus, the nodes of the compacted DBG can be thought of as haplo-
types of variable length in different regions of the genomes, including coding
and noncoding regions as well as core and accessory genome (Figure 1C). In
the remainder, we denote by unitig the variable-length kmer associated with a
node in the compacted graph.

Rather than representing genomes by presence/absence patterns of SNPs,
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Figure 2: Alignment to a reference (when possible), DBG and kmers ob-
tained for similar (A) and very polymorphic sequences (B). In the first case,
the 3 loci represented as polymorphic in the alignment lead to 3 bubble patterns in
the DBG, and numerous redundant kmers. In the second case, genomes are so poly-
morphic that an alignment is not possible. The DBG summarizes well the common
regions and the links between them, while the collection of unique kmers still contains
redundancy.

full genes or fixed-length kmers, we propose to use presence/absence patterns
of these unitigs. We discuss in Section 2.1.1 how they generalize in an adaptive
fashion existing representations based on presence/absence patterns of fixed
length kmers or of SNPs defined by alignments against a reference genome.

2.1.1 Unitigs, SNPs and fixed-length kmers

When dealing with a clonal panel of very similar genomes, genomic variants
in prokaryote genomes are classically defined as the presence/absence of SNPs
identified by alignment of each genome against a reference. For highly plastic
genomes on the other hand, alignment against a single reference genome is
unsuitable and genomic variation is often encoded as the presence/absence of
fixed-length kmers in the genomes. The presence/absence of unitigs of a DBG
built over the genomes of several individuals provides a flexible representation
thereof which interpolates between these two alternatives in a data adaptive
fashion.

At one extreme in the case of a clonal panel with only SNPs as genetic vari-
ants (Figure 2A), the DBG is a path with a few bubble patterns – assuming
genomes do not contain repeated regions longer than k. This graph is iso-
morph to a reference genome with SNPs. On the other hand, the collection
of fixed-length kmers belonging to these genomes is very redundant: all kmers
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containing the same SNP at different positions have the same presence/absence
across strains by construction. Those containing no SNP – most of them – do
not represent any polymorphism: they are present in all genomes in the panel
and their presence/absence representation would be 1 identically across strains.

As variability across individual genomes increases and alignment of the
genomes becomes ill-defined (Figure 2B), the DBG drifts away from a path
to accommodate local variation beyond isolated SNPs. Fixed-length kmers
are also able to represent this variation but still contain a lot of redundancy:
all kmers with a given color arise from the same larger colored segment (or
junction between segments). They correspond to the same unitig, and their
presence/absence across strains is the same. By contrast, the DBG exploits
the fact that some regions can be more or less polymorphic across genomes
to compact redundant kmers into single longer non-redundant unitigs: their
presence/absence across strains is different – unless the corresponding regions
are present in the exact same set of genomes because of linkage disequilibrium
(LD). In the extreme case where genomes in the panel have so little in common
that no compaction is possible in the DBG, the unitig representation reduces
to the fixed-length kmer representation.

In this sense, unitigs always represent the best of both worlds between
a SNP-based representation of genetic variation and one based on a set of
unstructured fixed-length kmers. It results in a locally optimal resolution:
regions of the genome which are conserved across individuals are represented
as single long words while regions which are too variable are fractioned into
shorter structured kmers.

In addition to removing redundancy compared to fixed-length kmers, DBGs
maintain an information regarding how kmers follow each others in the panel,
and can be used to interpret those whose presence in the genome is associated
with resistance by visualizing the proportion of resistant strains in which they
are present. We use these facts in Section 2.5.2 to interpret our results.

2.1.2 Choice of k

Each choice of a fixed-length k leads to a different DBG (Supplementary Fig-
ures 1), and there is no general rule as to how to choose k. Small values of k
produce very connected sets of non-specific kmers which fail to represent the
specificities of the data. In particular, any region larger than k which is re-
peated in two different parts of the genome creates a cycle in the DBG. On
the contrary, large values of k can fail to create 2 different nodes for 2 different
SNPs separated by less than k bases. In this case, the 2 SNPs will be consid-
ered as a unique variant. We tested a few values of k and judged by the general
aspect of the DBG obtained on our panel and by the GWAS performance, as
detailed in Supplementary Figures 1 and 2. We fix k to 31 for the rest of this
study, as this value leads to both an exploitable topology for the DBG built
on the gyrA gene, and good performances on GWAS. We found our results to
be robust to small variations of k. We discuss the effect of k in more detail in
Section 3.1.
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2.2 Testing procedure

We build our test using a linear model relating resistance phenotypes to a
candidate genetic determinant and population structure. Let n be the number
of observed samples (i.e., strains with available genome and phenotype). When
testing any particular haplotype (presence/absence of a unitig or a fixed-length
kmer in the genome) for association with the resistance phenotype, we use the
following model:

Yi = Xiβ +W>i α+ εi, i = 1, . . . , n, (1)

with εi
iid∼ N (0, σ2), σ2 > 0. For any sample i, Yi is a binarized antibiotic sus-

ceptibility status: 0 for susceptible strains and 1 for non-susceptible (resistant
and intermediary) strains, Xi is 1 when the sample has the major version of
the haplotype, 0 otherwise. We discuss the set of tested candidates X in Sec-
tion 2.3. β is the effect of the haplotype on the phenotype, Wi ∈ Rl is a factor
representing the population structure, α ∈ Rl is the effect of this population
structure on the phenotype. We choose to use a linear model rather than a
logistic one even though our outcomes Yi are binary: we tried a logistic model
in preliminary experiment, but obtained worse detection performances. Many
combinations of X and W factors indeed led to poorly conditioned optimization
problems and poor numerical solutions. The logistic model also led to much
longer computation for the test.

Our objective is to detect haplotypes whose presence in the genome is as-
sociated with antimicrobial resistance. Formally for each haplotype X, we test
H0 : β = 0 versus H1 : β 6= 0 in model (1).

It is well known from the human GWAS literature that spurious associa-
tions can be detected if the effect of the population structure is not taken into
account (Balding, 2006; Zhou and Stephens, 2014; Widmer et al., 2014). For
example, assume a clade contains only resistant individuals because a mutation
acquired by a common ancestor of this clade confers resistance. Then all other
mutations which are acquired later in evolution and are more present in the
clade will also be found to be associated with the resistance phenotype. Popu-
lation structure can be very strong within bacterial strains (Earle et al., 2016;
Falush and Bowden, 2006). We estimate this structure from the whole design
matrix X ∈ Rn×p, where p is the number of unitigs or kmers (as discussed
in Section 2.3, X typically has several identical columns). We evaluated with
three models on both simulated and real data: (i) no correction, (ii) fixed effect
α and (iii) random effect α. Denoting X = UΛV > the singular value decompo-
sition (SVD) of X, we use W = Uq (the matrix formed by the first q columns

of U) in the fixed effect model and W = UΛ
1
2 in the random effect model.

For the first two models, we compute p-values for H0 using a likelihood ratio
test. For the random effect model, we use the bugwas implementation of Earle
et al. (2016) to test H0, providing a pre-computed population structure W .
Note that bugwas also offers to detect “lineage effect”, namely columns of the
population matrix W which are associated with resistance, as a mean to avoid
throwing away candidates whose association is explained away by the popu-
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lation structure: some of them could actually be causal, and bugwas would
return the whole lineage along with correlated candidates as a lower resolution
entity.

2.3 Genome-wide variant matrix building

One goal of this paper is to illustrate the advantage of testing unitigs rather than
fixed-length kmers for association with antimicrobial resistance. To do so, we
need to represent both fixed-length kmers and unitigs as 2-levels factors coding
for the presence/absence of kmers/unitigs in model (1). More precisely, we
consider both as generalized haplotypes with two alleles: presence or absence
of the kmer or unitig in the genome. We then express each haplotype as a
binary vector X ∈ {0, 1}n, with Xi = 1 if sample i has the minor allele (the
less frequent one across the dataset), 0 otherwise. Consistently with Earle
et al. (2016), we refer to such a binary vector as a pattern in the remainder
of this paper, to emphasize the difference with the actual kmer or unitig they
represent. Different kmers or unitigs can indeed be represented by the same
binary vector because their presence/absence pattern across the genomes is the
same. We only perform one test for each unique pattern (presence/absence
binary vector), but retain the link between each pattern and the corresponding
kmers and unitigs for later interpretation.

Both fixed-length kmers and unitigs lead to the same set of distinct pat-
terns (represented by vectors in {0, 1}n) across the genomes. Indeed, every
unitig represents (at least) one fixed-length kmer, and conversely every fixed-
length kmer is represented by one (single) unitig. As a consequence, the set of
patterns tested for association with microbial resistance is identical for the two
representations, which further illustrates the fact that using unitigs does not
remove information compared to fixed-length kmers.

Every pattern we test often corresponds to a large number of fixed-length
kmers. Many of them can come from a single longer sequence of DNA which is
either entirely present or absent in each genome of the panel: in this case, they
all map to the same unitig. This redundancy is a nuisance because it amounts
to artificially fractioning a single pattern into several pieces only because we are
not working at the right resolution. For example, the SNP on Figure 1 can be
represented by one long kmer (unitig) whose only variation across all genomes
is at the position of this SNP. Likewise, a unitig can correspond to a gene which
is present in some of the genomes but not all of them. In both cases, breaking
the unitig into several shorter fixed-length kmers does not bring any additional
information and makes the results harder to interpret.

Each pattern in turn typically corresponds to a much lower number of unit-
igs than kmers. By construction, two unitigs related to the same pattern cannot
correspond to overlapping words – they would have been compacted as a single
longer unitig otherwise. They are only redundant in the sense that a genome
contains one of the unitigs if and only if it contains the other. This redundancy
can be dealt with by inspecting the DBG, as we discuss in Section 2.5.2. The
reasons can range from nearby nodes being separated by a rare variant, to two
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separate genomic regions being in LD.
We build a single compacted DBG from 282 P. aeruginosa genome as-

semblies (see section 2.4) using the kissplice software, version 2.3.1 (Sacomoto
et al., 2012). A specific aspect of our approach is that we build our compacted
DBG from assembled genomes (more precisely, from contigs) rather than from
primary sequence reads. This allows us to avoid dealing with sequencing er-
rors, which are present in reads but are mostly eliminated during the assembly
process. We choose kissplice settings in order to have no filter on the kmer
frequencies or occurrences (-c 0 -C 0.001) and build one DBG per tested kmer
length: k=13, 15, 17, 19, 21, 31, 41, 51 and 61 pbs. All resulting fixed-length
kmers and DBG unitig sequences are then mapped without mismatch to the
original genome assemblies using Bowtie 2 (Langmead and Salzberg, 2012) in
order to determine the presence or absence of each kmer and unitig in each
genome, as this information is not provided by kissplice.

2.4 Dataset

We use a panel of 282 strains of P. aeruginosa species, a ubiquitous bacterial
species responsible of various infections, highly adaptable thanks to its ability
to exchange genetic material. The species accessory genome is particularly im-
portant, in terms of size and diversity, and carries a large part of the genetic
determinants already described to confer resistance to antimicrobial drugs (Jail-
lard et al., 2017). This strain panel was gathered from two collections including
mostly clinical strains: the bioMérieux collection (n=219) (van Belkum et al.,
2015) and the Pirnay collection (n=63) (Pirnay et al., 2009). Genomes were
sequenced on Illumina HiSeq 2500, assembled using a modified version of the
IDBA UD assembler (Peng et al., 2012), and annotated for the identification
of core and accessory genes (van Belkum et al., 2015). Both sequencing and
assembly are available on NCBI with accession number PRJNA297679.

Antibiotic resistance phenotypes were obtained by broth dilution assays
complemented with VITEK2 testing (bioMérieux, Marcy-l’Étoile, France), for
several drugs commonly used in P. aeruginosa infections, including amikacin
(280/282 strains) and levofloxacin (117/282 strains) (van Belkum et al., 2015).
A minimal inhibitory concentration (MIC) value was thus available for all the
characterized strain/antibiotic couples. Clinical and Laboratory Standards In-
stitute (CLSI) guidelines were applied on the resistance data to determine sus-
ceptibility or non-susceptibility (phenotypic data in Supplementary Table 1).
The reader is referred to van Belkum et al. (2015) and Jaillard et al. (2017) for
more information on all strains and their analysis.

2.5 Evaluation

We evaluate two complementary aspects of our unitigs. First, we verify that
when used in GWAS, they lead to the detection of true genetic determinants
on both simulated and real data, under different population structures. Then
we assess how insightful the representation is and what type of event underlies
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each tested pattern.

2.5.1 Ability to detect variants associated with resistance

Quantifying how well a detection method works is difficult, as not all genetic
determinants of antimicrobial resistance are known. If a method calls an asso-
ciation between resistance and a particular variant which was never described
as causal it may be a false positive but it may also be because the method
discovered a new unreported mechanism. We therefore choose to evaluate how
well our test detects true determinants on three complementary indicators.

First, we simulate resistance phenotypes based on our real genomes, arbi-
trarily fixing which patterns X built in Section 2.3 have a non-zero effect on the
phenotype Y . Let X̃ be an n×q matrix whose columns are the unique patterns
(in contrast with X ∈ Rn×p whose columns correspond to typically non-unique
kmers or unitigs), β is an Rq vector of the corresponding effects. We sample
the phenotype Yi of each sample i from a multivariate logistic model:

Yi ∼ B(πi), πi =
1

1 + e−X̃iβ−Wiα
. (2)

Using this set of positive and negatives, we can plot a Receiver Operating Char-
acteristic (ROC) curve for each of the three methods introduced in Section 2.2.
The simulation is multivariate, accounting for the fact that resistance can stem
from a combination of causes rather than a single one whereas we are using
univariate model (1) for our test. Since we use a logistic model which is the
generalized linear model (GLM) of choice to handle binary outcomes, as op-
posed to the linear model which we use for convenience in our test, it also
takes into account the potential misspecification between the model underlying
our procedure and the actual distribution of the data. On the other hand,
the conclusions we draw from this simulation are contingent upon the capacity
of the logistic model (2) to represent the relationship between haplotype and
phenotype.

Using the true phenotype data for both amikacin and levofloxacin resistance,
we also evaluate a metric based on libraries of known genetic determinants
of resistance (Jaillard et al., 2013) (mentionned thereafter as reported causal
variants) which we use as our positive set. In this case we do not need the
assumptions made in the simulation, but we lose the exact knowledge of which
haplotypes are negative, i.e., have no effect on the phenotype: some selected
patterns may not be linked to any know genetic determinant of resistance just
because there are still unreported. Instead of ROC curves, we therefore resort
to plotting the true positive rate (TPR) – using identified and hence known
positives – as a function of the number of positives called by the method –
the false positive rate corresponding to this number being unknown. Assigning
each selected pattern (which can represent several mutations or presence of
accessory genes) to a true or false status requires a mapping step and some
type of approximation: we choose to identify a pattern as a true determinant
if it corresponds to at least one kmer/unitig which maps to a known genetic
determinant from a resistance gene sequence database (Jaillard et al., 2013).
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Finally using the true phenotype data for amikacin resistance, we plot the
proportion of reported causal variants recovered as a function of the number
of kmers or unitigs called positive. We restrict ourselves to the million kmers
(resp. unitigs) with the lowest p-values. While the first two metrics focus on
unique patterns and do not distinguish between kmer and unitig encoding (both
leading to the same set of patterns), this third metric allows us to compare the
number of kmers and unitigs that need to be inspected to identify a given
proportion of all reported causal variants. This number can be different as
each presence/absence pattern corresponds to different numbers of kmers and
unitigs.

2.5.2 Making sense of the selected patterns using the com-
pacted DBG

The analysis we describe in Section 2.5.1 is necessary because we need to verify
that our test actually discriminates between patterns corresponding to causal
variants and those not corresponding to any causal variant. It is however not
sufficient to ensure that our procedure is suited to identifying unreported ge-
netic determinants of antibiotics resistance: to be able to perform this analysis,
we had to define which patterns were true determinants using annotated SNPs
and genes known to be linked to resistance. In addition to being approximate,
this definition cannot be used to go beyond recovering existing determinants.

In order to perform this task, we must be able to interpret the selected
patterns. Assuming a pattern is found to be associated with resistance in our
test, its interpretation in a fixed-length kmer paradigm can be cumbersome: it
typically requires to map all kmers corresponding to the pattern to all genomes
– as there is no single reference genome in this context – and to make sense of
these mappings. For example, one may find that several of these kmers map
to similar regions or annotated genes in all genomes. The task can be heavy as
each pattern is typically associated to a large number of redundant fixed-length
kmers.

Annotation of our unitigs is easier for three reasons. First, the number of
unitig sequences to be mapped is much lower than the number of fixed-length
kmers, as illustrated on Figure 3. Second, unitigs are longer than kmers, mak-
ing them more likely to map to a unique region in the genome. Finally, the
DBG itself and its colored version (Iqbal et al., 2012) can help us understand
which type of event is associated with a unitig. The colored DBGs we use rely
on node sizes to represent allele frequencies, i.e., the proportion of genomes
containing the sequence. They also rely on node colors to represent the pro-
portion of resistant strains containing the corresponding unitig, countinuously
interpolating between a red node for unitigs found in resistant strains only and
a blue node for those found in susceptile strains only.

Concretely, we select a few patterns with lowest p-values from the GWAS
results. We then retrieve all unitigs corresponding to these low p-value patterns
– some unitigs can share their presence/absence profiles because of LD, and thus
are duplicated. We build the subgraph of our colored DBG induced by these
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top unitig plus all their neighboring unitigs for a given neighboring size s. We
refer to this subgraph as the s-neighboring DBG. This representation offers
several advantages:

• It can be done regardless of the association of the pattern with the resis-
tance phenotype and whether or not any annotation is available for the
studied genomes. Its topology reflects the nature of the variant: bubbles
for example correspond to SNPs while paths represent gene insertion.

• Node colors visually help understand which unitigs or more complex sub-
graphs are associated with resistance. This allows us to identify bubbles
(e.g. SNPs or indel) whose branches differentiate phenotype status, and
can still be done when no genome annotation is available, using only the
strain phenotypes.

• Top unitigs which are close to each others in the genomes will be gathered
into connected components of the induced subgraph. These components
may represent well-defined genomic regions such as genes or mobile ge-
netic elements – not all connected components will correspond to genomic
regions however: some may result from repeated regions in the genome.
On the other hand, unitigs mapping to different connected components
– distant neighborhoods – carry information on LD, i.e., separate hap-
lotypes which happen to be present in the same set of samples, possibly
because of the population structure.

3 Results

We describe the results obtained in our experiments on simulated and real
antibiotic resistance phenotypes. We study both the ability of the unitigs to
detect causal variants when used in GWAS and the interpretability of the de-
tected objects.

3.1 Extracting fixed-length kmers and unitigs from
complete genomes

The length k of the kmers used to build the DBG determines how the DBG rep-
resents our set of genomes and its ability to provide some level of compression.
Small values (below 20) generate words of low complexity which are highly re-
peated in the genomes, creating numerous loops in the DBG. Consequently, the
graph is hardly compacted, as it is very connected and contains few linear parts.
For k=15, we only count twice more kmers than unitigs (34 M versus 15 M).
As k increases, the number of kmers increases but they become more specific
and less repeated within genomes, leading to better levels of graph compaction.
For k=41, we obtain 62.5 M kmers and 2.2 M unitigs. More generally, panel A
of Figure 4 shows that as k increases, the number of kmers increases whereas
the number of unitigs remains stable.

12

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113563doi: bioRxiv preprint 

https://doi.org/10.1101/113563
http://creativecommons.org/licenses/by-nc-nd/4.0/


GWAS on unique
features

[for amikacin]

Retrieve
corresponding fixed,
length kmers 81222w

Retrieve
corresponding unitigs

847w

Build 5,neighboring
DBG 88 connected
componentsw

Select the most
associated features
[15 lowest p,values]

Knowledge:
, nb of regions
, type of variant

Annotate 8 genomic
regions

Annotate 1222 kmer
sequencesy without
prior knowledge

Figure 3: Flowchart of post-processing. The flowchart is illustrated with the
results obtained for amikacin resistance: settings are given between brackets while
resulting numbers are given between parenthesis. The annotation burden is lighter
when using the DBG unitigs than fixed-length kmers. Indeed in the case of amikacin
resistance, the number of kmer sequences to map against all genome exceeds 1000,
while using the DBG unitigs we map no more than 47 unitig sequences and can also
rely on the identified 8 genomic regions for a complementary interpretation.
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Figure 4: Preprocessing. Panel A shows the number of fixed-length kmers (red)
and unitigs (blue) in the data as a function of k. Panel B shows the corresponding
distribution of variable length kmers associated with each unitig. Panel C shows which
proportion of kmers and unitigs correspond to unique presence/absence patterns in
the data.
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Simultaneously, panel B of Figure 4 shows that increasing k leads to unitigs
of increasingly variable size – larger or equal to k by construction. For k=41,
the median length of unitigs is 54 and the longest unitig is 163017 bp long.
This illustrates both the redundancy of the fixed-length kmer representation
and the capacity of unitigs to produce descriptors whose resolution is adapted
to the local variation observed across the genomes.

Panel C of Figure 4 represents for each k the percentage of kmers or unitigs
which we filter out from our GWAS because their minor allele frequency (MAF)
is too low (dark grey). Furthermore as discussed in Section 2.3 several kmers or
unitigs can have the same presence/absence pattern on a given set of genomes,
so we also represent the proportion of kmers or unitigs which are filtered out
from our GWAS because they correspond to duplicated kmers or unitigs (light
grey). As expected, this proportion is much larger for fixed-length kmers than
for unitigs: a large fraction of fixed-length kmers associated with a single pat-
tern are summarized as a single unitig. This is consistent with the observation
that the number of fixed-length kmers is much larger than the number of unit-
igs but that both representations ultimately lead to the same number of unique
patterns.

3.2 Phenotype simulation study

We generate synthetic data with two scenarios under model (2) to illustrate
the capacity of our test to detect patterns associated with resistance and the
importance of adjusting for population structure. This will also help interpret
results on real data in Section 3.3.

We use the design matrix X built from our panel of P. aeruginosa genomes.
We compute its singular value decomposition X = UΛV > and set W = UΛ

1
2 .

Our first scenario is intended to illustrate the case where there is a popula-
tion effect on the observed resistance (some clades are enriched or depleted in
resistant samples) which is not explained by the set of patterns in the tested
design X. In practice, this could be a non-genetic (e.g. environmental or batch)
effect. More importantly, this could happen if some genetic determinants are
not included in the model used for testing. This is likely to be the case when
we use model (1) which is univariate, i.e., which only considers one pattern at a
time. For example, it could be the case that one mutation A causing resistance
was acquired by the ancestor of a clade and transmitted to its descendants:
the clade would then be enriched in resistant individuals. If a second mutation
B not related to resistance is acquired by a close descendant of the common
ancestor and transmitted, many samples from the clade will also have mutation
B. A univariate test of association of B with resistance will not account for
A. If the test does not account for population structure either, it may assign
a smaller p-value to B than to other mutations with an actual causal effect,
e.g. because these mutations involve fewer individuals, which leads to a lower
power to detect true determinants.

To simulate this scenario, we arbitrarily assign two columns of W (the
second and the sixth) to have non-zero effects α, so l = 2. By construction,
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the first columns of W represent a large fraction of the variation across strains.
A non-zero effect α in the GLM (2) used to simulate resistance phenotypes
therefore makes resistance associated with the population structure. We then
select 10 distinct patterns from X̃ as true determinants (i.e., coordinates j ∈
1, . . . , r associated to non-zero effects βj). To do so, we compute the largest
dot product of each pattern with the first six columns of W (two of which
have non-zero effects α), and choose our true determinants among those whose
largest dot product is below the fifth percentile of dot products calculated across
all patterns. This allows us to simulate the case where true determinants are
independent from the population structure (their effect is not inflated by the
Wα term). The odd ratios eβj are fixed to 6 for these patterns. We also
randomly select 290 patterns from X̃ as non-determinants, i.e., with a βj = 0
effect in the model, so r = 300 in our simulation. The population structure
can lead to spurious discoveries, as we do not control the dot product between
columns of W and these patterns with zero effect. Finally in order to control
the amplitude of the population effect, we normalize Wα to 6 times the median
value of the |X̃jβj | across non-zero βj , where X̃j denotes the j-th columns of

X̃.
We then apply the three versions of our univariate test described in Sec-

tion 2.2 to each of the patterns. For the fixed effect correction, we use the first
10 columns of W , and for the random effect correction we provide the entire W
matrix to bugwas. We perform 100 repetitions of this simulation, and plot a
Receiver Operating Characteristic (ROC) curve after pooling the results (Sup-
plementary Figure 3). As expected, the test which does not account for the
population structure has very low power to detect patterns associated with the
phenotype: by construction, some patterns with zero actual effect have large
dot products with Wα which inflates the estimate of their effect and leads to
false discoveries. Taking the population structure into account in the model
improves the power by limiting this inflation.

Our second scenario is meant to illustrate the case where there is little
population effect observed on the phenotype except for that caused by the as-
sociation of modeled causal patterns X with W , i.e., outside of X̃β in (2). In
other words, we assume that all the imbalance in proportion of resistant sam-
ples across clades is explained by patterns in the design X̃. This can happen if
most of the true causal patterns are not too related to the population structure,
e.g. because they appeared by homoplasy on several unrelated individuals and
there is no imbalance. In this case, correcting for the population structure can
decrease the estimated effect of causal patterns which do have some association
with this structure, i.e., which were acquired by ancestors. To simulate this
scenario, we use the same setting as before but we select the 10 true determi-
nants among those that have a large dot product with W rather than a small
one, and set all α effects to zero. We apply the same three tests as in the
previous scenario over 100 data generations and plot a ROC curve. This time,
we observe the opposite effect as in the previous scenario: correcting for the
population structure decreases the power to detect true determinants. Assum-
ing there is a population effect when there is no such effect in reality leads to
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artificially deflating the estimated effects of patterns which are associated with
the population structure.

3.3 Application on real data

We then turn to results obtained from real actual amikacin and levofloxacin
resistance measured on this panel.

3.3.1 True positive rate vs number of positive predicted

Supplementary Figure 4A is produced by bugwas, and shows the p-value of the
test for association of each column of W with the phenotype (Earle et al., 2016).
In the case of amikacin, two columns are found to have a significant effect at
level 0.01, whereas all columns have p-values larger than 0.01 in the case of
levofloxacin. Accordingly, Supplementary Figure 4B shows that correcting for
population structure increases the proportion of known genetic determinants of
resistance to amikacin recovered for every number of predicted positives, but
decreases this proportion in the case of levofloxacin.

The results on the amikacin resistance phenotype are consistent with our
first simulation, where the population structure had a non-zero effect α on re-
sistance: the estimated effect β̂ of true determinants which are not associated
with the population structure (low dot product between X and Wα) is un-
affected by the presence of a population effect while the β̂ of some patterns
confounded with Wα but with zero actual effect β are inflated. Consequently,
the true determinants are not ranked among the first patterns, leading to de-
creased performances on Supplementary Figure 4. Correcting for the popula-
tion structure limits this inflation of β̂ for negative patterns associated with
the population structure.

Conversely, assuming there is indeed no unmodeled effect of the population
structure on levofloxacin resistance, corrected models may just underestimate
the effect of true determinants whose presence is associated with the popula-
tion structure, as in our second simulation. For example, if a causal SNP is
shared by a clade which is consequently enriched in resistant samples and all
the other SNPs shared by this clade also are causal, correcting for the pop-
ulation structure only decreases the estimated effect of the true determinant,
leading to decreased performances on Supplementary Figure 4.

The random effect approach of bugwas is a good choice on both simulated
(Supplementary Figure 3) and real data (Supplementary Figure 4B) regardless
of the effect of the population structure on the phenotype: it outperforms both
the uncorrected and the fixed effect approaches in the presence of a population
effect and is only moderately affected by the absence of such effect.

3.3.2 True positive rate vs number of explored features

The analysis of Section 3.2 and 3.3.1 establishes that representing genomes by
their unitig content in GWAS allows to discriminate between (reported) causal
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Figure 5: Proportion of true positive versus number of predicted positive
kmers and unitigs for the first 106 positive calls using bugwas on the amikacin
resistance phenotype.

variants and other variants (including non-causal and unreported causal vari-
ants in our experiment on real resistance phenotypes). However necessary, this
result does not illustrate an advantage of unitigs compared to fixed-length kmers
as both lead to the same set of presence/absence patterns and the analyses of
both Sections only involve these patterns.

By contrast, Figure 5 shows the TPR for detecting reported causal variants
for amikacin resistance as a function of the number of kmers and unitigs called
positive – from 1 to 106. In other words, this metric indicates which proportion
of reported causal variants is recovered after inspecting a given number of
elements. The unitigs perform much better than the kmers in this metric
because every false positive pattern typically leads to a very large number
of false positive kmers, and a lower number of false positive unitigs. This
illustrates the fact that manipulating kmers is more cumbersome than unitigs
as it is necessary to inspect, map and annotate more kmers than unitigs to
recover the same number of causal variants.

3.3.3 Analysis of the selected haplotypes

We build the 5-neighboring DBGs from the 15 patterns with lowest bugwas
p-values, for both amikacin and levofloxacin resistance, as described in Sec-
tion 2.5.2. Using the uncorrected or fixed effect approaches leads to very similar
lists of 15 patterns.
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The top 15 patterns correspond to 47 unitigs for amikacin (resp. 22 for
levofloxacin) or 1222 (resp. 262) kmers. The 5-neighboring DBG induced by
these unitigs has 8 (resp. 6) connected components whose unitigs consistently
map to a small number of annotated events (Supplementary Figures 5 and 6,
Supplementary Tables 2 and 3).

The annotation of the 8 components found for amikacin highlights the im-
portance of the accessory genome in resistance. Indeed, all top patterns map
within or near mobile elements: more than half the connected components
represent coding or non-coding neighborhood of transposase or integrase. By
contrast, half of the 6 components found in the levofloxacin experiment repre-
sent SNPs in core gene, recognizable by paths of node with a high prevalence in
all strains (violet nodes), and forks that split between a red (resistant pheno-
type) and blue (sensitive phenotype) path. This matches the current knowledge
about levofloxacin resistance mechanism, mainly based on target alteration.

As discussed in Section 2.5.2, the few connected components induced by the
top 15 patterns are much easier to interpret than the corresponding large sets of
fixed-length kmers. We select 6 of these connected components (Supplementary
Figure 5g, a, h and 6b, c, f) and extend their neighborhood up to distance 20
rather than 5 to illustrate the large variety of variants which are selected by
our procedure.

SNP in an accessory gene (amikacin)
Figure 6A contains a quasi linear structure which evokes a polymorphic

gene. The purple color of the structure suggests that the gene is more present
in resistant than in sensitive samples, but that the differential of presence is
not very important – the nodes would be red otherwise. In the middle of this
structure (green box on the figure), the path forks into one blue and one red
node, which suggests we have identified a SNP whose presence is associated
with amikacin resistance. Note that we are able to make this interpretation
regardless of any gene annotation, just by analyzing the topology of the graph
component enriched by strain resistance information. Mapping the unitig se-
quences of this component onto our annotation reveals that the subgraph cor-
responds to the AAC accessory gene, whose presence is indeed known to be
involved in P. aeruginosa resistance to amikacin. However, the selected event
here is not the presence of the gene but the particular SNP within this gene.

SNP in a core gene (levofloxacin)
Components D to F of Figure 6 describe SNPs in core genes. Like in the

previous AAC SNP example, each of these subgraphs is a linear structure in
which most nodes are present in the same proportion of resistant and sensitive
individuals. The linear structure contains a fork which separates resistant (red)
and sensitive (blue) samples. Mapping the unitigs on sample genomes reveals
that the first two components represent the well-known gyrA (D) and parC
(E) quinolone resistance-determining region (QRDR). The third subgraph cor-
responds to a gene which is not present in our resistance database: the hybrid
sensor histidine kinase/response regulator (HS histidine kinase/RR). This gene
may be found associated with resistance to levofloxacin because it is in LD with
a causal region, or may be itself causal.
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Whole plasmid (amikacin)
Figure 6B shows a connected component with mostly red nodes assembled

in a linear structure suggesting that this entire structure, as opposed to a point
mutation, is involved in the detected event. This is in clear contrast with
Figure 6A, where most of the linear structure is purple with a localized fork
involving one red and one blue node. The unitigs of this subgraph corresponding
to the top 15 patterns map to the pHS87b plasmid, which was recently described
as being involved in resistance (Bi et al., 2016). Our representation extracts
the whole plasmid, with both its coding and noncoding regions which makes it
easier to understand that the selected patterns correspond to an integration of
this plasmid.

Noncoding region (amikacin)
The unitigs of the component represented in Figure 6C map to a noncoding

region in the P. aeruginosa genomes. Interestingly, this region contains a path
of unitigs strongly associated with resistance (colored in red). Not all of these
unitigs belong to the top 15, but the DBG view highlights this long linear
structure. This haplotype is not compacted as a single unitig because it is
not either present or absent in each genome: some only contain parts of this
haplotype.

Alternative approaches
Our approach is able to select and detect any kind of event where current

methods could be limited to some regions or patterns. SNPs called against a
reference genome are of limited interest in the context of P. aeruginosa because
of the size of the species accessory genome; causal variants in the accessory
genome not represented by the chosen reference would not be detected at all.
Gene presence/absence and SNPs called in the pangenome would miss all events
in noncoding regions, by construction. Even assuming that only coding regions
are causal, the noncoding region may have a strong association with resistance
because of LD, and be among the top patterns in our test whereas the coding
region is not because of noise, finite sample or model misspecification. Methods
targeting only coding regions would miss the marker in this case. Finally, the
gene presence/absence approach would miss the SNP that we identify in the
AAC accessory gene. It could have detected the presence of the full gene
as being associated with resistance to amikacin, but with less power: only
one mutated version of the gene is involved in resistance. Fixed-length kmer
approaches are able to target any region of all genomes. However in the case
of an event defined by the presence of a complete plasmid such as pHS87b, a
fixed length kmer representation would lead to identifying disconnected regions.
Identifying the whole plasmid rather than sets of disconnected hits makes it
easier to understand which mechanism underlies the selected patterns.

4 Discussion

We have introduced unitigs as a new and efficient mean to represent candidate
genetic determinants in GWAS. Unitigs correspond to variable length kmers:
genomic regions which are constant across samples map to single long kmers
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Amikacin resistance Levofloxacin resistance

D) mutation on gyrA QRDR region

E) mutation on parC QRDR region

F) mutation on HS histidine kinase/RR

A) mutation on AAC gene

B) presence of plasmid pHS87b

C) path in a non-coding region

Figure 6: Neighboring De Bruijn subgraphs Subgraphs of the De Bruijn graph
obtained by retaining nodes separated by less than 5 edges from a node corresponding
to a pattern whose p-value for association with resistance is among the 15 smallest.
Node size represent the frequency of the corresponding haplotype, node color the
proportion of resistant/sensitive ratio of samples containing this haplotype, from red
for resistant only to blue for sensitive only. The left panel shows the result for amikacin
resistance, the right panel for levofloxacin resistance.21
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while more polymorphic regions are supported by several shorter kmers, leading
to higher resolution. This representation generalizes both SNPs obtained by
alignments against reference genomes and fixed-length kmers. Compared to the
former, it is more flexible and can deal with highly plastic genomes. Compared
to the latter, it is less redundant and leads to a drastic reduction in the number
of candidate entities that need to be tackled without loss of information, leading
to easier computation and interpretation of the result. Furthermore, extracting
neighboring De Bruijn subgraphs provides additional insight as to what type
of genomic event underlies a unitig which is detected as being associated with
a phenotype of interest. Experiments on P. aeruginosa illustrate that our
representation is able to capture very different genomic features ranging from
SNPs to large gene insertions.

We conjecture that using unitigs rather than fixed-length kmers could also
yield better estimates of the population structure. Typical estimators of this
structure are based on representations of the genomes by their haplotypes rather
than their unique patterns to avoid down-weighting haplotypes which map to
the same presence/absence profile. While duplicated unitigs only represent
biological duplicates, i.e., regions in perfect LD, duplicates within kmers also
account for neighbor sequence overlaps and can lead to arbitrary inflation of
the weight of single long haplotypes. Validating our conjecture that DBG nodes
provide better population structure estimates than kmers and lead in turn to
more power for detecting genetic determinants requires simulation of synthetic
genomes from a given phylogeny and will be the subject of future work.

Finally an important improvement would be to generalize our representa-
tion to paths or more general subgraphs of the DBG, i.e., to larger haplotypes
defined by conjunctions of those represented in unitigs. This could help fil-
ter out minor variations in the genome which are unrelated to resistance but
prevent long haplotypes to be merged into a single node. The De Bruijn neigb-
horing subgraphs we selected in our experiments suggest that this configuration
happens frequently in practice.

Acknowledgements

The authors thank Sarah Earle, Chieh-Hsi Wu and Daniel Wilson for their
insightful comments.

Funding

LJ is funded by the ANR (MACARON project under grant number ANR-14-
CE23-0003-01). LL is funded by the Brazilian Ministry of Science, Technology
and Innovation (MCTI), under the Science Without Borders (CSF) scholarship
grant process number 203362/2014-4. VL is funded by the Agence Nationale
de la Recherche ANR-12-BS02-0008 (Colib’read).

22

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 3, 2017. ; https://doi.org/10.1101/113563doi: bioRxiv preprint 

https://doi.org/10.1101/113563
http://creativecommons.org/licenses/by-nc-nd/4.0/


References
Alam, M. T., Petit, R. A., Crispell, E. K., Thornton, T. A., Conneely, K. N., Jiang, Y., Satola, S. W.,

and Read, T. D. (2014). Dissecting vancomycin-intermediate resistance in staphylococcus aureus using

genome-wide association. Genome biology and evolution, 6(5), 1174–1185.

Balding, D. J. (2006). A tutorial on statistical methods for population association studies. Nature Reviews

Genetics, 7(10), 781–791.

Bi, D., Xie, Y., Tai, C., Jiang, X., Zhang, J., Harrison, E. M., Jia, S., Deng, Z., Rajakumar, K., and Ou,

H.-Y. (2016). A site-specific integrative plasmid found in pseudomonas aeruginosa clinical isolate hs87

along with a plasmid carrying an aminoglycoside-resistant gene. PloS one, 11(2), e0148367.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I. A., Belmonte, M. K., Lander, E. S., Nusbaum, C.,

and Jaffe, D. B. (2008). ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome

Research, 18(5), 810–820.

Chewapreecha, C., Marttinen, P., Croucher, N. J., Salter, S. J., Harris, S. R., Mather, A. E., Hanage, W. P.,

Goldblatt, D., Nosten, F. H., Turner, C., et al. (2014). Comprehensive identification of single nucleotide

polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet,

10(8), e1004547.

Chikhi, R., Limasset, A., and Medvedev, P. (2016). Compacting de Bruijn graphs from sequencing data

quickly and in low memory. Bioinformatics, 32(12), i201 – i208.

de Bruijn, N. (1946). A combinatorial problem. Proceedings of the Koninklijke Nederlandse Akademie van

Wetenschappen. Series A, 49(7), 758.

Earle, S. G., Wu, C.-H., Charlesworth, J., Stoesser, N., Gordon, N. C., Walker, T. M., Spencer, C. C.,

Iqbal, Z., Clifton, D. A., Hopkins, K. L., et al. (2016). Identifying lineage effects when controlling for

population structure improves power in bacterial association studies. Nature Microbiology, page 16041.

Falush, D. and Bowden, R. (2006). Genome-wide association mapping in bacteria? Trends in microbiology,

14(8), 353–355.

Farhat, M. R., Shapiro, B. J., Kieser, K. J., Sultana, R., Jacobson, K. R., Victor, T. C., Warren, R. M.,

Streicher, E. M., Calver, A., Sloutsky, A., et al. (2013). Genomic analysis identifies targets of convergent

positive selection in drug-resistant mycobacterium tuberculosis. Nature genetics, 45(10), 1183–1189.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo assembly and genotyping of

variants using colored de bruijn graphs. Nature Genetics, 44(2), 226–232.

Jaillard, M., Schicklin, S., Larue-Triolet, A., and Veyrieras, J.-B. (2013). A comprehensive microbial

knowledge base to support the development of in-vitro diagnostic solutions in infectious diseases. In

I-SEMANTICS , pages 55–59.

Jaillard, M., van Belkum, A., Cady, K. C., Creely, D., Shortridge, D., Blanc, B., Barbu, E. M., Dunne,

W. M., Zambardi, G., Enright, M., Mugnier, N., Le Priol, C., Schicklin, S., Guigon, G., and Veyrieras,

J.-B. (2017). Correlation between phenotypic antibiotic susceptibility and the resistome in pseudomonas

aeruginosa.

Kung, V. L., Ozer, E. A., and Hauser, A. R. (2010). The accessory genome of pseudomonas aeruginosa.

Microbiology and Molecular Biology Reviews, 74(4), 621–641.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. Nat. methods, 9(4),

357–359.

Le Bras, Y., Collin, O., Monjeaud, C., Lacroix, V., Rivals, É., Lemaitre, C., Miele, V., Sacomoto, G.,
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